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Abstract

This report is substantially based on the contents of a proposal to

submitted to the National Science Foundation, in response to Advanced

Computational Infrastructure and Research Programs, New Technologies

Program.

1 Motivation

It is generally accepted that data parallel programming has a vital role in high-

performance scienti�c computing. The basic implementation issues related to

this paradigm are well understood. But the choice of high-level programming

environment remains uncertain. Five years ago the High Performance Fortran

Forum published the �rst standardized de�nition of a language for data parallel

programming [19, 29]. In the intervening period considerable progress has been

made in HPF compiler technology, and the HPF language de�nition has been

extended and revised in response to demands of compiler-writers and end-users

[20]. Yet it seems to be the case that most programmers developing paral-

lel applications|or environments for parallel application development|do not

code in HPF. The slow uptake of HPF can be attributed in part to immaturity

in the current generation of compilers. But there is the suspicion that many

programmers are actually more comfortable with the lower-level Single Program

Multiple Data (SPMD) programming style, perhaps because the e�ect of exe-

cuting an SPMD program is more controllable, and the process of tuning for
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e�ciency is more intuitive. (Partially, no doubt, this re
ects a status quo where

expert programmers build parallel programs and less experienced programmers

merely use them.)

SPMD programming has been very successful. There are countless appli-

cations written in the most basic SPMD style, using direct message-passing

through MPI [21] or similar low-level packages. Many higher-level parallel pro-

gramming environments and libraries assume the SPMD style as their basic

model. Examples include ScaLAPACK [4], PetSc [2], DAGH [34], Kelp [30, 18],

the Global Array Toolkit [32] and NWChem [3, 27]. While there remains a prej-

udice that HPF is best suited for problems with very regular data structures and

regular data access patterns, SPMD frameworks like DAGH and Kelp have been

designed to deal directly with irregularly distributed data, and other libraries

like CHAOS/PARTI [35, 16] and Global Arrays support unstructured access to

distributed arrays. These successes aside, the library-based SPMD approach to

data-parallel programming certainly lacks the uniformity and elegance of HPF.

All the environments referred to above have some idea of a distributed array,

but they all describe those arrays di�erently. Compared with HPF, creating

distributed arrays and accessing their local and remote elements is clumsy and

error-prone. Because the arrays are managed entirely in libraries, the compiler

o�ers little support and no safety net of compile-time checking.

The work described here will investigate a class of programming languages

that borrow certain ideas, various run-time technologies, and some compilation

techniques from HPF, but relinquish some of its basic tenets, in particular: that

the programmer should write in a language with (logically) a single global thread

of control, that the compiler should determine automatically which processor

executes individual computations in a program, and that the compiler should

automatically insert communications if an individual computation involves ac-

cesses is to array element held outside the local processor.

If these foundational assumptions are removed from the HPF model, does

anything useful remain? In fact, yes. What will be retained is an explicitly

SPMD programming model complemented by syntax for representing distributed

arrays, syntax for expressing that certain computations are localized to certain

processors, and syntax for expressing concisely a distributed form of the parallel

loop. The claim is that these are just the features needed to make calls to

various data-parallel libraries, including application-oriented libraries and high-

level libraries for communication, about as convenient as, say, making a call to

an array transformational intrinsic function in Fortran 90. We hope to illustrate

that, besides their advantages as a framework for library usage, the resulting

programming languages can conveniently express various practical data-parallel

algorithms. The resulting framework may also have better prospects for dealing

e�ectively with irregular problems than is the case for HPF.

This proposal brings together several important research areas including

parallel compilers, data parallel SPMD libraries and object oriented program-

ming models. We research combinations of these ideas which achieve high per-
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formance with an approach that implies more work for the programmer than

envisaged in systems such as HPF, but can more clearly be implemented in a

robust fashion on a range of languages. Explicitly we are combining our research

on the use of Java and Web technologies with the high performance SPMD li-

braries and some of the compiler techniques developed as part of HPF research.

Java has many features that suggest it could be a very attractive language for

scienti�c and engineering or what we now term \Grande" applications. Clearly

Java needs many improvements both to the language and the support environ-

ment to achieve the required linkage of high performance with expressivity. This

cannot be guaranteed but we have helped set in motion a community activity

involving academia, government and industry (including IBM, Intel, Microsoft,

Oracle, Sun and perhaps most importantly James Gosling from Javasoft) which

is designed to both address language changes and the establishment of standards

for numerical libraries and distributed scienti�c objects. The Java environment

is still malleable and we are optimistic that this e�ort will be succesful and Java

will emerge as a premier language for large scale computation. Our research

will be aimed at multi-language programming paradigms but our new imple-

mentations will focus on Java exploiting existing high performance C++ and

Fortran libraries. Our collaborater Professor Xiaoming Li from Peking Uni-

versity will be developing the Fortran and C++ aspects of this general high

level SPMD environment. We can consider our work from either of two points

of view; bringing the power of Java to a data parallel SPMD environment or

alternatively researching the expression of data parallelism within Java. Note

that we are adopting a more modest approach than a full scale data parallel

compiler like HPF; we believe this is an appropriate approach to Java where the

situation is changing rapidly and one needs to be very 
exible.

We should stress what we are not doing! Many of the discussions of Java

at the recent \Grande" workshops [23, 24, 22] have focussed on its use in dis-

tributed object and mobile or Web client based computing. In fact our group

also is looking into this for composing large scale distributed systems. However

in this proposal, we are addressing \hard-core" science and engineering com-

putations where data parallelism and the highest performance are viewed as

critical.

The work described in this report will continue research conducted in the

the Parallel Compiler Runtime Consortium (PCRC) project [14]. PCRC was

a DARPA-supported project involving Rice, Maryland, Austin, Indiana, CSC,

Rochester and Florida, with NPAC as prime contractor. Achievements included

construction of an experimental HPF compilation system [39], delivery of the

NPAC PCRC runtime kernel (Adlib) [11] and early work on the design and

implementation of HPJava [10].
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2 Objective and expected signi�cance

Our system aims to support a programming model that is a 
exible hybrid of the

data-parallel, language-oriented, HPF style, and the established and popular,

library-oriented, SPMD style. We refer to this model as HPspmd.

Primary goals of the current project include

1. Providing a small set of syntax extensions to various base languages

(including Java, Fortran, and C++). These syntax extensions add dis-

tributed arrays as language primitives, and introduce a few new control

constructs, such as the distributed loop.

2. Providing bindings from the extended languages to various communication

and arithmetic libraries. These may include libraries modelled on, or

simply new interfaces to, some subset of Adlib, CHAOS, Global Arrays,

MPI, DAGH, ScaLAPACK, etc. Supporting the libraries for irregular

communication will be an important goal.

3. Testing and evaluating HPJava and the HPspmd model in general on large

scale applications.

A major thrust of the proposed work will be on researching compiler (or

preprocessor) support for our extended languages, and development of exemplar

interfaces from the new languages to a subset of the libraries mentioned above.

The research aspects of the proposed work involve investigation of compiler

optimizations and safety checks peculiar to the new languages, extensions to

the basic language model to improve support of irregular problems, and design

of attractive class-library bindings for the various SPMD environments involved

in the project.

The next four subsections overview the language extensions we are investi-

gating, the libraries we will study, issues concerning low-level MPI programming

in the proposed environment, and the parallel machine model.

2.1 HPspmd language extensions

We aim to provide a 
exible hybrid of the data parallel and low-level SPMD

approaches. To this end HPF-like distributed arrays appear as language prim-

itives. A design decision is made that all access to non-local array elements

should go through library functions|for example, calls to a collective commu-

nication library, or simply get and put functions for access to remote blocks of

a distributed array. This puts an extra onus on the programmer; but making

communication explicit encourages the programmer to write algorithms that

exploit locality, and simpli�es the task of the compiler writer.

For the newcomer to HPF, one of its advantages lies in the fact that the e�ect

of a particular operation is logically identical to its e�ect in the corresponding
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sequential program. This means that, assuming the programmer understands

conventional Fortran, it is very easy for him or her to understand the behaviour

of a program at the level of what values are held in program variables, and the

�nal results of procedures and programs. Unfortunately, the ease of understand-

ing this \value semantics" of a program is counterbalanced by the di�culty in

knowing exactly how the compiler translated the program. Understanding the

performance of an HPF program may require the programmer to have very de-

tailed knowledge of how arrays are distributed over processor memories, and

what strategy the compiler adopts for distributing computations across proces-

sors.

The language model we discuss has various similarities to the HPF model,

but the HPF-style semantic equivalence between the data-parallel program and

a sequential program is abandoned in favour of a literal equivalence between

the data-parallel program and an SPMD program. Because understanding an

SPMD program is presumably more di�cult than understanding a sequential

program, our language may be slightly harder to learn and use than HPF. But

understanding performance of programs should be much easier.

The distributed arrays of the new languages will be kept strictly separate

from ordinary arrays. They are a di�erent kind of object, not type-compatible

with ordinary arrays. An important property of the languages we describe is

that if a section of program text looks like program text from the unenhanced

base language (Java or Fortran 90 for example), it is translated exactly as for

the base language|as local sequential code. Only statements involving the ex-

tended syntax behave specially. This makes preprocessor-based implementation

of the new languages very straightforward, allows sequential library code to

be called directly, and gives the programmer good control over the generated

code|he or she can be con�dent no unexpected overhead have been introduced

in code that looks like ordinary Fortran (for example).

In the baseline language we adopt a distributed array model semantically

equivalent to to the HPF data model in terms of how elements are stored,

the options for distribution and alignment, and facilities for describing regular

sections of arrays. Distributed arrays may be subscripted with global subscripts,

as in HPF. But a subscripting operation must not imply access to an element

on a di�erent processor. We will sometimes be refer to this restriction as the

SPMD constraint. To simplify the task of the programmer, who must ensure

an accessed element is held locally, the languages will typically add distributed

control constructs. These play a role something like the ON HOME directives

of HPF 2.0 and earlier data parallel languages [28]. A further special control

construct will facilitate access to all elements in the locally held section of a

particular array (or group of aligned arrays). This is the distributed loop or

overall construct.
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Java, Fortran and C++ versions. A Java instantiation (HPJava) of the

HPspmd language model outlined above has been described in [10, 9]. A brief re-

view is given in section 3.1. HPJava is a superset of the Java language that adds

prede�ned classes and some additional syntax for dealing with distributed ar-

rays. It also adds three new control constructs, including the overall distributed

loop, which is used to traverse local elements of distributed arrays.

In [7] we have outlined possible syntax extensions to Fortran to provide sim-

ilar semantics to HPJava. As emphasized previously, a distinguishing property

of the proposed system, compared to HPF, is that it includes ordinary Fortran

as a strict subset, and ordinary Fortran constructs are unchanged by the trans-

lator. The proposed system would not attempt to exploit parallelism even in

constructs such as the array syntax of Fortran 90 or the FORALL statement of

Fortran 95, because those constructs operate on the standard sequential arrays

of the language. This policy drastically simpli�es the translator, and gives the

programmer much �ner control over the generated code.

So far as C++ is concerned, a working prototype of our language model

exists in the form of the ad++ interface to Adlib [5, 12]. This extends C++

only by class libraries and macros. In C++ we can use features like operator-

overloading, templates, reference-valued functions, and macros to e�ectively

prototype new language constructs. But the current ad++ is very ine�cient

(and the concrete syntax is quite clumsy) compared with what could be achieved

with a purpose-built compiler or preprocessor.

In the proposed work, research into optimizing compilers and preprocessor

for HPspmd versions of Fortran and C++ will be led by our collaborater Pro-

fessor Xiaoming Li from Peking University.

General translation issues. The language extensions described earlier were

devised partly to provide a convenient interface to a distributed-array library

developed in the Parallel Compiler Runtime Consortium (PCRC) project [14].

Compared with HPF, translation of the HPspmd languages is very straight-

forward. The HPJava compiler, for example, is being implemented initially as

a translator to ordinary Java, through a compiler construction framework de-

veloped in the PCRC project. The distributed arrays of the extended language

appear in the emitted code as a pair|an ordinary Java array of local elements

and a Distributed Array Descriptor object (DAD). In the initial implementation,

details of the distribution format, including non-trivial details of global-to-local

translation of the subscripts, are managed in the runtime library. Even with

these overheads, acceptable performance is achievable, because in useful paral-

lel algorithms most work on distributed arrays occurs inside overall constructs

with large ranges. In normal usage, the formulae for address translation can be

linearized inside these constructs, and the cost of runtime calls handling non-

trivial aspects of address translation (including array bounds checking) can be

amortized in the startup overheads of the loop. These compiler optimizations
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will be important in the base level translator. If array accesses are genuinely

irregular, the necessary subscripting cannot usually be directly expressed in our

language; subscripts cannot be computed randomly in parallel loops without

violating the SPMD restriction that accesses be local. This is not necessarily a

shortcoming: it forces explicit use of an appropriate library package for handling

irregular accesses (such as CHAOS, see section 2.2).

The basic HPJava translator will be available by the start date of the pro-

posed work. In �gure 1 we give benchmark results for HPJava examples man-

ually converted to Java, following the translation scheme outlined above. The

examples are essentially the ones described in section 3.1. The parallel pro-

grams are executed on 4 sparc-sun-solaris2.5.1 using MPICH and the Java JIT

compiler in JDK 1.2Beta2, through a JNI interface to Adlib for collective com-

munications. In both cases arrays are 1024 by 1024. For Jacobi iteration, the

timing is for about 90 iterations. Timings are compared with sequential Java

and C++ versions of the code (horizontal lines). Note that poor scaling in

the Cholesky case is attributable to the poor performance of MPICH on this

platform not overheads of HPJava. Scaling will be much improved by using

SunHPC MPI.

The single-processor HPJava performance is better than sequential Java, be-

cause the pure Java version was coded in the natural way, using two-dimensional

arrays|quite ine�cient in Java. The HPJava translation scheme linearizes ar-

rays. (We remark that in recent workshops James Gosling has stated that this

is his preferred approach to adding generalized array-like structure in Java.)

Although absolute performance is still somewhat lower than C++, Java per-

formance has improved dramatically over the last year, and we expect to see

further gains. Parity between Java and C or Fortran no longer seems an un-

realistic expectation. In fact, even if the performance of Java does not rapidly

approach that of C and Fortran, Java remains an excellent research platform

for the general language model we espouse. It combines strong support for

dynamic and object-oriented programming in a relatively simple language, for

which preprocessors for extended versions of the language (\little languages")

are a straightforward proposition.

2.2 Integration of high-level libraries, regular and irregu-

lar

Libraries are at the heart of the HPspmd model. From one point of view, the

language extensions are simply a framework for invoking libraries that operate

on distributed arrays. The base language model was originally motivated by

work on HPF runtime libraries carried out in the Parallel Compiler Runtime

Consortium (PCRC) project [14] led by Syracuse (and earlier related work by

one of us [12]).

Hence an essential component of the proposed work is to de�ne a series

of bindings from our languages to established SPMD libraries and environ-
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Figure 1: Preliminary HPJava performance

ments. Because our language model is explicitly SPMD, such bindings are a

more straightforward proposition than in HPF, where one typically has to pass

some extrinsic interface barrier before invoking SPMD-style functions.

Various issues must be addressed in interfacing to multiple libaries. For ex-

ample, low-level communication or scheduling mechanisms used by the di�erent

libraries may be incompatible. As a practical matter these incompatibilities

must be addressed, but the main thrust of the proposed research is at the level

of designing compatible interfaces, rather than solving interference problems in

speci�c implementations.

We will group the existing SPMD libraries for data parallel programming

into three classes, loosely based on the complexity of design issues involved in

integrating them into our language framework.

In the �rst class we have libraries like ScaLAPACK [4] and PetSc [2] where

the primary focus is similar to conventional numerical libraries|providing im-

plementations of standard matrix algorithms, say, but operating on elements in

regularly distributed arrays. We believe that designing HPspmd interfaces to

this kind of package will be relatively straightforward

ScaLAPACK for example, provides linear algebra routines for distributed-

memory computers. These routines operate on distributed arrays|in par-
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ticular, distributed matrices. The distribution formats supported are re-

stricted to two-dimensional block-cyclic distribution for dense matrices and one-

dimensional block distribution for narrow-band matrices. Since both these dis-

tribution formats are supported by HPspmd (it supports all HPF-compatible

distribution formats), using ScaLAPACK routines from the HPspmd frame-

work should present no fundamental di�culties. Problems can only arise if the

caller attempts to pass in matrix with a distribution format unsupported by the

ScaLAPACK routines. The interface code between HPspmd and ScaLAPACK

(which converts between array descriptors) must either 
ag a runtime error in

this case, or remap the argument array (using, for example, the remap primitive

of Adlib [11]).

In the second class we place libraries conceived primarily as underlying sup-

port for general parallel programs with regular distributed arrays. They empha-

size high-level communication primitives for particular styles of programming,

rather than speci�c numerical algorithms. These libraries include rutimes li-

braries for HPF-like languages, such as Adlib and Multiblock Parti [1], and the

Global Array toolkit [32].

Adlib is a runtime library was initially designed to support HPF translation.

It provides communication primitives similar to Multiblock PARTI, plus all

Fortran 90 transformational intrinsics for arithmetic on distributed arrays. It

also provides some gather/scatter operations for irregular access.

The array descriptor of Adlib supports the full HPF 1.0 distributed array

model|including all standard distribution formats, all alignment options in-

cluding replicated alignment, and a facility to map an array to an arbitrary

subgroup of the set of active processors. The runtime array descriptor of the

HPspmd languages will be an enhanced version of the Adlib descriptor (with

a few extra features, such as support for the GENBLOCK distribution format of

HPF 2.0 [20]). The Adlib collective communication library will provide initial

library support for regular applications in HPspmd.

The Global Array (GA) toolkit, developed at Paci�c Northwest National

Lab, provides an e�cient and portable \shared-memory" programming interface

for distributed-memory computers. Each process in a MIMD parallel program

can asynchronously access logical blocks of distributed arrays, without need

for explicit cooperation by other processes (\one-sided communication"). This

model has been popular and successful. GA is a foundation of the NWChem

[3, 27] computational chemistry package.

The existing interface to Global Arrays only supports two-dimensional arrays

with general block distribution format. Distributed arrays are created by calls

to Fortran functions which return integer handles to an array descriptor. The

authors of the package are currently investigating generalization to support

multi-dimensional arrays, with more general distribution format. They have

already expressed interest in making their library accessible through the kind

of language extensions for distributed arrays described in this proposal.

Besides providing a much more tractable interface for creation of multidi-
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mensional distributed arrays, our syntax extensions will provide a more conve-

nient interface to primitives such as ga get, which copies a patch of a global

array to a local array. Advantages over the existing API include the fact is that

the interface can be made uniform for all ranks of arrays, and various sorts of

checking can subsumed by the general mechanisms for array section creation,

leading to improved safety and compile-time analysis.

Regular problems (such as the linear algebra examples in section 3.1) previ-

ous section) are an important subset of parallel applications, but of course they

are far from exclusive. Many important problems involve data structures too

irregular to express purely through HPF-style distributed arrays.

Our third class of libraries therefore includes libraries designed to support

irregular problems. These include CHAOS [35, 16] and DAGH [34].

We anticipate that irregular problems will still bene�t from regular data-

parallel language extensions (because, at some level they usually resort to rep-

resentations involving regular arrays). But lower level SPMD programming,

facilitated by specialized class libraries, are likely to take a more dominant role

when dealing with irregular problems.

The CHAOS/PARTI runtime support library provides primitives for e�-

ciently handling irregular problems on distributed memory computers. The

complete library includes partitioners to choose optimized mapping on arrays

to processors, functions to remap input arrays to meet the optimized partition-

ing, and functions which optimize interprocessor communications. After data is

repartitioned (if necessary) CHAOS programs involve two characteristic phases.

The inspector phase analyses data access patterns in the main loop, and gen-

erates a schedule of optimized optimized communication calls. The executor

phase involves executing a loop essentially similar to the loop of the original

sequential program.

How best to capture this complexity in a convenient HPspmd interface will

be a subject of research in the proposed work. A baseline approach (in HPJava,

for example) is to handle the translation tables, schedules, etc of CHAOS as

ordinary Java objects, constructed and accessed in explicit library calls. Pre-

sumbly the initial values for the data and indirection arrays will be provided

as normal HPspmd distributed arrays. The simplest assumption is that the

CHAOS preprocessing phases yield new arrays: the indirection arrays may well

be left as HPspmd distributed arrays, but the data arrays may be reduced to

ordinary Java arrays holding local elements (in low-level SPMD style). Then,

with no extensions to the currently proposed HPJava language, the parallel

loops of the executor phase can be expressed using overall constructs. More ad-

vanced schemes may incorporate irregular maps into generalized array descriptor

[20, 17, 13]. Extensions to the HPspmd language model may be indicated.

DAGH (Distributed Adaptive Grid Hierarchy) was developed at Texas,

Austin as a computational toolkit for several projects including the Binary Black

Hole NSF Grand Challenge Project. It provides the framework to solve systems

of partial di�erential equations using adaptive mesh re�nement methods. The
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computations can be executed sequentially or in parallel according to the spec-

i�cation of the user. In the parallel case DAGH takes over communication,

updating ghost regions on the boundaries of component grids.

Conceivably the HPspmd distributed array descriptor could be generalized to

directly represent a DAGH grid hierarchy. This is probably unrealistic. DAGH

implements a non-trivial storage scheme for its grid hierarchy, based on space-

�lling curves. It seems unlikely that the details of such a structure can be

sensibly handled by a compiler. A more straightforward possibility is to rep-

resent the individual grid functions (on the component regular meshes of the

hierachy) as essentially standard HPspmd distributed arrays. Since DAGH is

supposed to maintain storage for these functions in Fortran-compatible fashion,

it should be practical to create an HPspmd array descriptor for them. The hier-

archy itself would be represented as a Java object from a library-de�ned class.

This is a crude outline of a particular scenario. Devising practical and conve-

nient HPspmd bindings for DAGH and similar application-oriented libraries is

a research topic in the proposed work.

2.3 Java MPI linkage

In HPF, with its global-thread-of-control model, a proper interface to the under-

lying message-passing platform is only practical through the extrinsic procedure

mechanism. In HPspmd it is possible to access the MPI interface directly. In

Fortran and C++ bindings of HPspmd probably the only major issue arising is

access to the local elements of distributed arrays as standard sequential Fortran

or C++ arrays, which can be passed to the standard MPI functions. Inquiry

functions on distributed arrays return the sequential arrays as pointers or han-

dles (depending on the language instantiation).

We have already implemented a Java language binding for MPI, version 1.1

[6, 8]. Our current approach is a relatively direct transcription of standard MPI

bindings, but Java object serialization introduces new possibilities for passing

compound objects. Similar projects on Java MPI bindings are in progress else-

where [26, 15].

2.4 Integration of thread-based single Java VM and multi-

VM data parallel

Our language model is primarily aimed at distributed memory computers, in-

cluding networks of workstations or PCs. Clearly the Java version of HPspmd

also holds special promise in the domain of metacomputing|targeting heteroge-

neous systems. At the other extreme, the same model can be straightforwardly

implemented on symmetric multiprocessors|using threads within a single Java

virtual machine. The most naive approach is to directly simulate the SPMD

model in this environment with a �xed set of threads. Further possibilities

arise if a few restrictions on variable usage are added to the language model.
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The main program can execute as a single thread, with multiple threads forked

only when an overall construct is encountered. These issues will be investigated

further.

3 Related work

3.1 HPJava.

HPJava [10, 9] is an instance of the HPsmpd language model. HPJava extends

the base Java language by adding prede�ned classes and some additional syntax

for dealing with distributed arrays, and three new control constructs.

As explained in the previous section, the underlying distributed array model

is equivalent to the HPF array model. As a matter of detail, distributed array

mapping is described in terms of a slightly di�erent set of basic concepts. HPF

describes the decomposition of an array through alignment to some template,

which is in turn distributed over a processor arrangement. The analogous con-

cepts in our parametrization of the distributed array are the distributed range

(or simply range) and the process group (or simply group). A distributed range

is akin a single dimension of an HPF template|it de�nes a map from an integer

global subscript range into a particular dimension of a process group. A process

group is equivalent to an HPF processor arrangement, or to a certain subset

of such an arrangement. Switching from templates to ranges and groups is a

change of parametrization only. In itself it does not change the set of allowed

ways to decompose an array. The new primitives �t better with our distributed

control constructs, and correspond more directly to components of our run-time

array descriptor. Ranges and groups are treated as proper objects in the ex-

tended language. They are values that can be stored in variables or passed to

procedures. The group and ranges describing a particular distributed array are

accessible through inquiry functions.

To motivate the discussion of HPJava, we will refer to �gure 2, which gives

a parallel implementation of Choleski decomposition in the extended language.

In pseudocode, the sequential algorithm is

For k = 1 to n� 1

lkk = a
1=2
kk

For s = k + 1 to n

lsk = ask=lkk
For j = k + 1 to n

For i = j to n

aij = aij � likljk

lnn = a
1=2
nn

The parallel version has been selected to introduce essentially all the new lan-

guage extensions in HPJava.
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Procs1 p = new Procs1(NP) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[,#]] a = new float [[N, x]] ;

float [[]] b = new float [[N]] ; // buffer

Location l ;

Index m ;

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x [k]) {

float d = Math.sqrt(a [k, l]) ;

a [k, l] = d ;

for(int s = k + 1 ; s < N ; s++)

a [s, l] /= d ;

}

Adlib.remap(b [[k + 1 : ]], a [[k + 1 : , k]]);

over(m = x | k + 1 : )

for(int i = x.idx(m) ; i < N ; i++)

a [i, m] -= b [i] * b [x.idx(m)] ;

}

at(l = x [N - 1])

a [N - 1, l] = Math.sqrt(a [N - 1, l]) ;

}

Figure 2: Choleski decomposition.

In HPJava a base class Group describes a general group of processes. It has

subclasses Procs1, Procs2, . . . , that represent one-dimensional process grids,

two-dimensional process grids, and so on. In the example p is de�ned as a

one-dimensional grid of extent NP. The on construct in the example acts like

a conditional, excluding processors outside the group p. A distributed range,

base class Range, de�nes a range of integer global subscripts, and speci�es how

they are mapped into a process grid dimension. In the example, the range x is

initalized to a cyclically distributed range of extent N. CyclicRange is one of

several subclasses of Range that de�ne di�erent distribution formats.
Now a and b are declared to be distributed arrays. In HPJava the type-

signatures and constructors of distributed arrays use double brackets to distin-
guish them from ordinary Java arrays. If a particular dimension of an array has
a distributed range, the corresponding slot in the type signature of the array
should include a # symbol. Because b has no range distributed over the active
process group (p) it is de�ned to be replicated across this group. The mapping
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of a and b is equivalent to the HPF declarations

!HPF$ PROCESSORS p(np)

!HPF$ TEMPLATE t(n)

!HPF$ DISTRIBUTE t(CYCLIC) ONTO p

REAL a(n, n), b(n)

!HPF$ ALIGN a(i, *) WITH t(i)

!HPF$ ALIGN b(*) WITH t(*)

with range x taking over the role of the one-dimensional template t.
Subscripting operations on distributed arrays are subject to a strict restric-

tion. An access to an array element such as a [s, k] is legal, but only if the
local process holds the element in question. The language provides syntax to al-
leviate the inconvenience of this restriction. The idea of a location is introduced.
It can be viewed as an abstract element, or \slot", of a distributed range. Any
location is mapped to a particular slice of a process grid. Locations are used to
parametrize a new distributed control construct called the at construct. This
works like on, except that its body is executed only on processes that hold the
speci�ed location. Locations can also be used directly as array subscripts, in
place on integers (locations used as array subscripts must be elements of the
corresponding ranges of the array). The array access above can be safely written
in the context

Location l = x [k] ;

at(l)

... a [s, l] ...

(the �rst dimension of a is sequential, so we don't have to worry about the

SPMD constraint for subscript s). In the main example, this syntax is used to

ensure that the �rst block of code inside the loop only executes on the processor

holding column k.

The example involves one communication operation. This is taken from

the Adlib library: the function remap copies the elements of one distributed

array or section to another of the same shape. The two arrays can have any,

unrelated decompositions. Because b has replicated mapping, remap copies

identical values to all processors|ie it implements a broadcast of the values

in the array section a [[k + 1 : , k]]. The syntax for array sections in

HPJava is almost identical to the syntax of sections in Fortran 90. Subscript

triplets work in the same way as in Fortran 90.

The last and most important distributed control construct in the language

is called over. It is used to access all locally held locations in a particular

range, and can therefore be used to access all locally held elements of arrays

parametrized by that range. The over construct implements a distributed paral-

lel loop. Its parameter is a member of the special class Index which is a subclass

of Location. The idx member of Range can be used inside parallel loops to
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Procs2 p = new Procs2(NP, NP) ;

on(p) {

Range x = new BlockRange(N, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(N, p.dim(1), 1) ; // ghost width 1

float [[#,#]] u = new float [[x, y]] ;

int [] widths = {1, 1} ; // Widths updated by `writeHalo'

// ... some code to initialise `u'

for(int iter = 0 ; iter < NITER ; iter++) {

for(int parity = 0 ; parity < 2 ; parity++) {

Adlib.writeHalo(u, widths) ;

Index i, j ;

over(i = x | 1 : N - 2)

over(j = y | 1 + (x.idx(i) + parity) % 2 : N - 2 : 2)

u [i, j] = 0.25 * (u [i - 1, j] + u [i + 1, j] +

u [i, j - 1] + u [i, j + 1]) ;

}

}

}

Figure 3: Red-black iteration.

yield arithmetic expressions that depend on global index values. In the example

the over construct is used to iterate over all columns of the matrix to the right

of column k.

As promised, the Choleski example has introduced essentially all the im-

portant language ideas in HPJava. Further extensions are minor, or consist in

adding new subclasses of Range or Group, rather than syntax extensions. Figure

3 gives a parallel implementation of red-black relaxation in the same language.

To support this important stencil-update paradigm, ghost regions are allowed

on distributed arrays [25]. In our case the width of these regions is speci�ed in

a special form of the BlockRange constructor. The ghost regions are explicitly

brought up to date using the library function writeHalo.

Note that the new range constructor and writeHalo function are library fea-

tures (respectively from the base HPJava runtime and the Adlib communication

library), not new language extensions. One new piece of syntax is involved: the

addition and subtraction operators are overloaded so that integer o�sets can be

added or subtracted to locations, yielding new, shifted, locations. This kind of

shifted access only works if the subscripted array has suitable ghost extensions.
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3.2 Adlib.

The Adlib runtime library was initially designed to support HPF translation.

Early development took place in the shpf [31] project at Southampton, UK.

Subsequently the library was redesigned and reimplemented at Syracuse during

in the PCRC project, and delivered as the NPAC PCRC runtime kernel [11].

It has been used as a foundation of two experimental HPF compilation systems

[31, 39], (one in Europe and one at Syracuse), and is currently being used as a

basis of the HPJava translator.

The Adlib kernel is C++ class library, built on MPI. Fortran, C++ and

Java interfaces are available or under development. It provides communication

primitives similar to Multiblock PARTI, plus the Fortran 90 transformational

intrinsics for arithmetic on distributed arrays. It also provides some collective

gather/scatter operations for irregular access. Benchmarks reported in [39] sug-

gested Adlib provides superior performance to the then-current version of the

commercial PGI HPF compiler.

The array descriptor of Adlib supports the full HPF 1.0 distributed array

model|including all standard distribution formats, all alignment options in-

cluding replicated alignment. The runtime array descriptor of the HPspmd

languages will be an enhanced version of the Adlib descriptor. The Adlib col-

lective communication library will provide initial library support for regular

applications in HPspmd.

3.3 Related languages

F- - [33] is an extended Fortran dialect for SPMD programming. The approach

is quite di�erent to the one proposed here. In F- -, array subscripting is local by

default, or involves a combination of local subscripts and explicit process ids.

There is no analogue of global subscripts, or HPF-like distribution formats. In

F- - the logical model of communication is built into the language|remote mem-

ory access with intrinsics for synchronization|where we follow the philosophy

of providing communication through separate libraries. While F- - and our ap-

proach share an underlying programming model, we believe that our framework

o�ers greater opportunities for exploiting established library technologies.

Spar [37] is a Java-based language for array-parallel programming. Like our

language it introduces multi-dimensional arrays, array sections, and a parallel

loop. There are some similarities in syntax, but semantically Spar is very dif-

ferent to HPJava. Spar expresses parallelism but not explicit data placement or

communication|in this sense it is a higher level language|closer to HPF.

ZPL [36] is a new programming language for scienti�c computations. Like

Spar, it is an array language. It has an idea of performing computations over

a region, or set of indices. Within a compound statement pre�xed by a region

speci�er, aligned elements of arrays distributed over the same region can be

accessed. This idea has certain similarities to our overall construct. Commu-
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nication is more explicit than, say, Spar, but not as explicit as in the language

discussed in this article.

Titanium [38] is another Java-based language for high-performance comput-

ing. It provides multi-dimensional arrays and a global address space, with an

SPMD programming model. It does not provide any special support for dis-

tributed arrays, and the programming style is quite di�erent to HPJava.
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