
Towards a Java Environment for SPMD

Programming

Bryan Carpenter, Guansong Zhang, Geo�rey Fox

Xiaoming Li?, Xinying Li and Yuhong Wen

NPAC at Syracuse University

Syracuse, New York,

NY 13244, USA

fdbc,zgs,gcf,lxm,xli,weng@npac.syr.edu

Abstract. As a relatively straightforward object-oriented language, Java

is a plausible basis for a scienti�c parallel programming language. We

outline a conservative set of language extensions to support this kind

of programming. The programming style advocated is Single Program

Multiple Data (SPMD), with parallel arrays added as language primi-

tives. Communications involving distributed arrays are handled through

a standard library of collective operations. Because the underlying pro-

gramming model is SPMD programming, direct calls to other communi-

cation packages are also possible from this language.

1 Introduction

Java boasts a direct simplicity reminiscent of Fortran, but also incorporates

many of the important ideas of modern object-oriented programming. Of course

it comes with an established track-record in the domains of Web and Internet

programming. The idea that Java may enable new programming environments,

combining attractive user interfaces with high performance computation, is gain-

ing increasing attention amongst computational scientists [7, 8].

This article will focus speci�cally on the potential of Java as a language

for scienti�c parallel programming. We envisage a framework called HPJava.

This would be a general environment for parallel computation. Ultimately it

should combine tools, class libraries, and language extensions to support various

established paradigms for parallel computation, including shared memory pro-

gramming, explicit message-passing, and array-parallel programming. This is a

rather ambitious vision, and the current article only discusses some �rst steps

towards a general framework. In particular we will make speci�c proposals for

the sector of HPJava most directly related to its namesake: High Performance

Fortran.

For now we do not propose to import the full HPF programming model to

Java. After several years of e�ort by various compiler groups, HPF compilers

are still quite immature. It seems di�cult justify a comparable e�ort for Java

? Current address: Peking University

before success has been convincingly demonstrated in Fortran. In any case there

are features of the HPF model that make it less attractive in the context of the

integrated parallel programming environment we envisage. Although an HPF

program can interoperate with modules written in other parallel programming

styles through the HPF extrinsic procedure interface, that mechanism is quite

awkward. Rather than follow the HPF model directly, we propose introducing

some of the characteristic ideas of HPF|speci�cally its distributed array model

and array intrinsic functions and libraries|into a basically SPMD programming

model. Because the programming model is SPMD, direct calls to MPI [1] or other

communication packages are allowed from the HPJava program.

The language outlined here provides HPF-like distributed arrays as language

primitives, and new distributed control constructs to facilitate access to the local

elements of these arrays. In the SPMD mold, the model allows processors the

freedom to independently execute complex procedures on local elements: it is

not limited by SIMD-style array syntax. All access to non-local array elements

must go through library functions|typically collective communication opera-

tions. This puts an extra onus on the programmer; but making communication

explicit encourages the programmer to write algorithms that exploit locality, and

simpli�es the task of the compiler writer. On the other hand, by providing dis-

tributed arrays as language primitives we are able to simplify error-prone tasks

such as converting between local and global array subscripts and determining

which processor holds a particular element. As in HPF, it is possible to write

programs at a natural level of abstraction where the meaning is insensitive to

the detailed mapping of elements. Lower-level styles of programming are also

possible.

2 Multidimensional Arrays

First we describe a modest extension to Java that adds a class of true multi-

dimensional arrays to the standard Java language. The new arrays allow regular

section subscripting, similar to Fortran 90 arrays. The syntax described in this

section is a subset of the syntax introduced later for parallel arrays and algo-

rithms: the only motivation for discussing the sequential subset �rst is to simplify

the overall presentation.
No attempt is made to integrate the new multidimensional arrays with the

standard Java arrays: they are a new kind of entity that coexists in the lan-
guage with ordinary Java arrays. There are good technical reasons for keeping
the two kinds of array separate2. The type-signatures and constructors of the
multidimensional array use double brackets to distinguish them from ordinary
arrays:

int [[,]] a = new int [[5, 5]] ;

2 For example, the run-time representation of our multi-dimensional arrays includes

extra descriptor information that would encumber the large class \non-scienti�c"

Java applications.

float [[,,]] b = new float [[10, n, 20]] ;

int [[]] c = new int [[100]] ;

a, b and c are respectively 2-, 3- and one- dimensional arrays. Of course c is
very similar in structure to the standard array d, created by

int [] d = new int [100] ;

c and d are not identical, though. For example, c allows section subscripting (see

below), whereas d does not. The value c would not be assignable to d, or vice

versa..
Access to individual elements of a multidimensional array goes through a

subscripting operation involving single brackets, for example

for(int i = 0 ; i < 4 ; i++)

a [i, i + 1] = i + c [i] ;

For reasons that will become clearer in later sections, this style of subscript-

ing is called local subscripting. In the current sequential context, apart from

the fact that a single pair of brackest may include several comma-separated

subscripts, this kind of subscripting works just like ordinary Java array sub-

scripting. Subscripts always start at zero, in the ordinary Java or C style (there

is no Fortran-like lower bound).
Our HPJava imports a Fortran-90-like idea of array regular sections. The

syntax for section subscripting is di�erent to the syntax for local subscripting.
Double brackets are used. These brackets can include scalar subscripts or sub-
script triplets. A section is an object in its own right|its type is that of a suitable
multi-dimensional array. It describes some subset of the elements of the parent
array.

int [[]] e = a [[2, 2 :]] ;

foo(b [[: , 0, 1 : 10 : 2]]) ;

e becomes an alias for the 3rd row of elements of a. The procedure foo should

expect a two-dimensional array as argument. It can read or write to the set of

elements of b selected by the section. As in Fortran, upper or lower bounds can

be omitted in triplets, defaulting to the actual bound of the parent array, and

the stride entry of the triplet is optional.
In general our language has no idea of Fortran-like array assignments. In

int [[,]] e = new int [[n, m]] ;

...

a = e ;

the assignment simply copies a handle to object referenced by e into a. There is
no element-by-element copy involved. On the other hand the language provides
a standard library of functions for manipulating its arrays, closely analogous to
the array transformational intrinsic functions of Fortran 90:

int [[,]] f = new int [[5, 5]] ;

HPJlib.shift(f, a, -1, 0, CYCL) ;

float g = HPJlib.sum(b) ;

int [[]] h = new int [[100]] ;

HPJlib.copy(h, c) ;

The shift operation with shift-mode CYCL executes a cyclic shift on the data

in its second argument, copying the result to its �rst argument|an array of the

same shape. In the example the shift amount is -1, and the shift is performed

in dimension 0 of the array|the �rst of its two dimensions. The sum operation

simply adds all elements of its argument array. The copy operation copies the

elements of its second argument to its �rst|it is something like an array as-

signment. These functions can be overloaded to apply to some �nite set of array

types. In the initial implementation of the language, the new arrays will be re-

stricted to taking elements of primitive type. This is not regarded as an essential

limit to the language, but it simpli�es various aspects of the implementation,

such as the communication library.

3 Distributed Arrays

HPJava adds class libraries and some additional syntax for dealing with dis-

tributed arrays. These arrays are viewed as coherent global entities, but their

elements are divided across a set of cooperating processes. As a preliminary to

introducing distributed arrays we discuss the process arrays over which their

elements are scattered.
A base class Group describes a general group of processes. It has subclasses

Procs1, Procs2, . . . , representing one-dimensional process arrays, two-dimen-
sional process arrays, and so on.

Procs2 p = new Procs2(2, 2) ;

Procs1 q = new Procs1(4) ;

These declarations set p to represent a 2 by 2 process array and q to represent

a 4-element, one-dimensional process array. In either case the object created de-

scribes a group of 4 processes. At the time the Procs constructors are executed

the program should be executing on four or more processes. Either construc-

tor selects four processes from this set and identi�es them as members of the

constructed group.
The multi-dimensional structure of a process array is reected in its set of

process dimensions. An object is associated with each dimension. These objects
are accessed through the inquiry member dim:

Dimension x = p.dim(0) ;

Dimension y = p.dim(1) ;

Dimension z = q.dim(0) ;

As indicated, the object returned by the dim inquiry has class Dimension.

Now, some or all of the dimensions of a multi-dimensional array can be

declared as distributed ranges. In general a distributed range is represented by

an object of class Range. A Range object de�nes a range of integer subscripts,

and de�nes how they are mapped into a process array dimension. For example,

the class BlockRange is a subclass of Range which describes a simple block-

distributed range of subscripts. Like BLOCK distribution format in HPF, it maps

blocks of contiguous subscripts to each element of its target process dimension3.

The constructor of BlockRange usually takes two arguments: the extent of the

range and a Dimension object de�ning the process dimension over which the

new range is distributed.

The syntax of Sect. 2 is extended in the following way to support distributed

arrays

{ A distributed range object may appear in place of an integer extent in the

\constructor" of the array (the expression following the new keyword).

{ If a particular dimension of the array has a distributed range, the correspond-

ing slot in the type signature of the array should include a # symbol. (From

the point of view of the type hierarchy, the sequential multi-dimensional ar-

rays of the last section are regarded as a specialization of the more general

distributed distributed array class embellished with # symbols).

{ In general the constructor of the distributed array must be followed by an

on clause, specifying the process group over which the array is distributed.

Distributed ranges of the array must be distributed over distinct dimensions

of this group. The on clause can be omitted in some circumstances|see

Sect. 4.

For example, in

Procs2 p = new Procs2(3, 2) ;

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[#,#]] a = new float [[x, y]] on p ;

a is created as a 100 � 200 array, block-distributed over the 6 processes in p.
The fragment is essentially equivalent to the HPF declarations

!HPF$ PROCESSORS p(3, 2)

REAL a(100, 200)

!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO p

Because a is declared as a collective object we can apply collective operations
to it. The HPJlib functions introduced in Sect. 2 apply equally well to distributed
arrays, but now they imply inter-processor communication.

3 Other range subclasses include CyclicRange, which produces the equivalent of

CYCLIC distribution format in HPF.

float [[#,#]] b = new float [[x, y]] on p ;

HPJlib.shift(a, b, -1, 0, CYCL) ;

At the edges of the local segment of a the shift operation causes the local

values of a to be overwritten with values of b from a processor adjacent in the x

dimension.

Subscripting operations on distributed arrays are subject to a strict restric-
tion. As already emphasized, the HPJava model is explicitly SPMD. An array
access such as

a [17, 23] = 13 ;

is legal, but only if the local process holds the element in question. The language

provides several distributed control constructs to alleviate the inconvenience of

this restriction.

4 The on Construct and the Active Process Group

The class Group (of which the process array classes are special cases) has a
member function called local. This returns a boolean value which is true if the
local process is a member of the group, false otherwise. In

if(p.local()) {

...

}

the code inside the conditional is executed only if the local process is a member

p. We can say that inside this construct the active process group is restricted to

p.

Our language provides a short way of writing this construct

on(p) {

...

}

The on construct provides some extra value. The language incorporates a formal

idea of the active process group (APG). At any point of execution some process

group is singled out as the APG. An on(p) construct speci�cally changes the

value of the APG to p. On exit from the construct, the APG is restored to its

value on entry.

Elevating the active process group to a part of the language allows some

simpli�cations. For example, it provides a natural default for the on clause in

array constructors. More importantly, formally de�ning the active process group

simpli�es the statement of various rules about what operations are legal inside

distributed control constructs like on.

5 Locations and the at Construct

Returning to the example at the end of Sect. 3, we need a mechanism to ensure
that the array access

a [17, 23] = 13 ;

is legal, because the local process holds the element in question. In general de-

termining whether an element is local may be a non-trivial task.

In practise it is unusual to use integer values directly as local subscripts in
distributed array dimensions. Instead the idea of a location is introduced. A lo-
cation can be viewed as an abstract element, or \slot", of a distributed range.
Conversely, a range can be thought of as a set of locations. An individual loca-
tion is described by an object of the class Location. Each Location element is
mapped to a particular slice of a process grid. In general two locations are iden-
tical only if they come from the same position in the same range. A subscripting
syntax is used to represent location n in range x:

Location i = x [n]

This is an important idea in HPJava. By working in terms of abstract loca-

tions|elements of distributed ranges|one can usually respect locality of ref-

erence without resorting explicitly to low-level local subscripts and process ids.

In fact the location can be viewed as an abstract data type incorporating these

lower-level o�sets. The data �elds of Location include dim and crd. The �rst is

the process dimension of the parent range. The second is the coordinate in that

dimension to which the element is mapped.

Locations are used to parametrize a new distributed control construct called
the at construct. This is analogous to on, except that its body is executed only
on processes that hold the speci�ed location. Locations can also be used directly
as array subscripts, in place on integers. So the access to element a [17, 23]

could now be safely written as follows:

Location i = x [17], j = y [23] ;

at(i)

at(j)

a [i, j] = 13 ;

Locations used as array subscripts must be elements of the corresponding ranges

of the array.

There is a restriction that an at(i) construct should only appear at a point

of execution where i.dim is a dimension of the active process group. In the

examples of this section this means that an at(i) construct, say, should normally

be nested directly or indirectly inside an on(p) construct.

The range class has a member function idx which can be used to recover the

integer subscript, given a location in the range.

6 Distributed Loops

The at mechanism of the previous section is often useful, but in practice good

parallel algorithms do not spend much time assigning to isolated elements of

distributed arrays. A more urgent requirement is a mechanism for parallel access

to distributed array elements.
The last and most important distributed control construct in the language

is called over. It implements a distributed parallel loop. Conceptually it is quite
similar to the FORALL construct of Fortran, except that the over construct spec-
i�es exactly where its parallel iterations are to be performed. The argument of
over is a member of the special class Index. This class is a subclass of Location,
so it is syntactically correct to use an index as an array subscript (the e�ect of
such subscripting is only well-de�ned inside an over construct parametrised by
the index in question). Here is an example of a pair of nested over loops:

float [[#,#]] a = new float [[x, y]],

b = new float [[x, y]] ;

...

Index i, j ;

over(i = x | :)

over(j = y | :)

a [i, j] = 2 * b [i, j] ;

The body of an over construct executes, conceptually in parallel, for every lo-

cation in the range of its index (or some subrange if a non-trivial triplet is

speci�ed). An individual \iteration" executes on just those processors holding

the location associated with the iteration. The net e�ect of the example above

should be reasonably clear. It assigns twice the value of each element of b to

the corresponding element of a. Because of the rules about where an individ-

ual iteration iterates, the body of an over can usually only combine elements

of arrays that have some simple alignment relation relative to one another. The

idx member of range can be used in parallel updates to yield expressions that

depend on global index values.

With the over construct we can give some useful examples of parallel pro-

grams.

Figure 1 gives a parallel implementation of Cholesky decomposition in the

extended language. The �rst dimension of a is sequential (\collapsed" in HPF

parlance). The second dimension is distributed (cyclically, to improve load-

balancing). This a column-oriented decomposition. The example involves one

new operation from the standard library. The function remap copies the ele-

ments of one distributed array or section to another of the same shape. The two

arrays can have any, unrelated decompositions. In the current example remap is

used to implement a broadcast. Because b has no range distributed over p, it

implicitly has replicated mapping; remap accordingly copies identical values to all

processors. This example also illustrates construction of sections of distributed

arrays, and use of non-trivial triplets in the over construct.

Figure 2 gives a parallel implementation of red-black relaxation in the ex-

tended language. To support this important stencil-update paradigm, ghost re-

Procs1 p = new Procs1(P) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[,#]] a = new float [[N, x]] ;

float [[]] b = new float [[N]] ; // buffer

// ... some code to initialise `a'

Location l ;

Index m ;

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x [k]) {

float d = Math.sqrt(a [k, l]) ;

a [k, l] = d ;

for(int s = k + 1 ; s < N ; s++)

a [s, l] /= d ;

}

HPJlib.remap(b [[k + 1 :]], a [[k + 1 : , k]]);

over(m = x | k + 1 :)

for(int i = x.idx(m) ; i < N ; i++)

a [i, m] -= b [i] * b [x.idx(m)] ;

}

at(l = x [N - 1])

a [N - 1, l] = Math.sqrt(a [N - 1, l]) ;

}

Fig. 1. Choleksy decomposition.

gions are allowed on distributed arrays. Ghost regions are extensions of the

locally held block of a distributed array, used to cache values of elements held

on adjacent processors. In our case the width of these regions is speci�ed in

a special form of the BlockRange constructor. The ghost regions are explicitly

brought up to date using the library function writeHalo. Its arguments are an

array with suitable extensions and a vector de�ning in each dimension the width

of the halo that must actually be updated.

Note that the new range constructor and writeHalo function are library

features, not new language extensions. One new piece of syntax is needed: the

addition and subtraction operators are overloaded so that integer o�sets can be

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new BlockRange(N, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(N, p.dim(1), 1) ; // ghost width 1

float [[#,#]] u = new float [[x, y]] ;

int [] widths = {1, 1} ; // Widths updated by `writeHalo'

// ... some code to initialise `u'

for(int iter = 0 ; iter < NITER ; iter++) {

for(int parity = 0 ; parity < 2 ; parity++) {

HPJlib.writeHalo(u, widths) ;

Index i, j ;

over(i = x | 1 : N - 2)

over(j = y | 1 + (x.idx(i) + parity) % 2 : N - 2 : 2)

u [i, j] = 0.25 * (u [i - 1, j] + u [i + 1, j] +

u [i, j - 1] + u [i, j + 1]) ;

}

}

}

Fig. 2. Red-black iteration using writeHalo.

added or subtracted to locations, yielding new, shifted, locations. This kind of

shifted access is illegal if it implies access to o�-processor data. It only works if

the subscripted array has suitable ghost extensions.

We have covered most of the important language features we propose to im-

plement. Two additional features that are quite important in practice but have

not been discussed are subranges and subgroups. A subrange is simply a range

which is a regular section of some other range, created by syntax like x [0 : 49].

Subranges can be used to create distributed arrays with general HPF-like align-

ments. A subgroup is some slice of a process array, formed by restricting process

coordinates in one or more dimensions to single values. Subgroups formally de-

scribe the state of the active process group inside at and over constructs. For a

more complete description of a slightly earlier version of the proposed language,

see [3].

7 Discussion

We have described a conservative set of extensions to Java. In the context of an

explicitly SPMD programming environment with a good communication library,

we claim these extensions provide much of the concise expressiveness of HPF,

without relying on very sophisticated compiler analysis. The object-oriented fea-

tures of Java are exploited to give an elegant parameterization of the distributed

arrays in the extended language. Because of the relatively low-level programming

model, interfacing to other parallel-programming paradigms is more natural than

in HPF. With suitable care, it is possible to make direct calls to, say, MPI from

within the data parallel program (in [2] we suggest a concrete Java binding for

MPI).

The language extensions described were devised partly to provide a conve-

nient interface to a distributed-array library developed in the PCRC project

[5, 4]. Hence most of the run-time technology needed to implement the language

is available \o�-the-shelf". The existing library includes the run-time descriptor

for distributed arrays and a comprehensive array communication library. The

HPJava compiler itself is being implemented initially as a translator to ordinary

Java, through a compiler construction framework also developed in the PCRC

project [12].

The distributed arrays of the extended language will appear in the emitted

code as a pair|an ordinary Java array of local elements and a Distributed Array

Descriptor object (DAD). Details of the distribution format, including non-trivial

details of global-to-local translation of the subscripts, are managed in the run-

time library. Acceptable performance should nevertheless be achievable, because

we expect that in useful parallel algorithms most work on distributed arrays

will occur inside over constructs. In normal usage, the formulae for address

translation can then be linearized. The non-trivial aspects of address translation

(including array bounds checking) can be absorbed into the startup overheads of

the loop. Since distributed arrays are usually large, the loop ranges are typically

large, and the startup overheads (including all the run-time calls associated with

address translation) can be amortized. This approach to translation of parallel

loops is discussed in detail in [4].

Note that if array accesses are genuinely irregular, the necessary subscripting

cannot usually be directly expressed in our language, because subscripts can-

not be computed randomly in parallel loops without violating the fundamental

SPMD restriction that all accesses be local. This is not regarded as a shortcom-

ing: on the contrary it forces explicit use of an appropriate library package for

handling irregular accesses (such as CHAOS [6]). Of course a suitable binding

of such a package is needed in our language.

A complementary approach to communication in a distributed array envi-

ronment is the one-sided-communication model of Global Arrays (GA) [9]. For

task-parallel problems this approach is often more convenient than the schedule-

oriented communication of CHAOS (say). Again, the language model we ad-

vocate here appears quite compatible with GA approach|there is no obvious

reason why a binding to a version of GA could not be straightforwardly inte-

grated with the the distributed array extensions of the language described here.

Finally we mention two language projects that have some similarities. Spar

[11] is a Java-based language for array-parallel programming. There are some

similarities in syntax, but semantically Spar is very di�erent to our language.

Spar expresses parallelism but not explicit data placement or communication|it

is a higher level language. ZPL [10] is a new programming language for scienti�c

computations. Like Spar, it is an array language. It has an idea of performing

computations over a region, or set of indices. Within a compound statement

pre�xed by a region speci�er, aligned elements of arrays distributed over the same

region can be accessed. This idea has certain similarities to our over construct.

References

1. Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xiaoming Li.

Experiments with HPJava. Concurrency: Practice and Experience, 9(6):633, 1997.

2. Bryan Carpenter, Geo�rey Fox, Xinying Li, and Guansong Zhang. A draft Java

binding for MPI. http://www.npac.syr.edu/projects/pcrc/doc.

3. Bryan Carpenter, Guansong Zhang, Geo�rey Fox, Xinying Li, and Yuhong Wen.

Introduction to Java-Ad. http://www.npac.syr.edu/projects/pcrc/doc.

4. Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC run-

time kernel de�nition. Technical Report CRPC-TR97726, Center for Re-

search on Parallel Computation, 1997. Up-to-date version maintained at

http://www.npac.syr.edu/projects/pcrc/doc.

5. Parallel Compiler Runtime Consortium. Common runtime support for high-

performance parallel languages. In Supercomputing `93. IEEE Computer Society

Press, 1993.

6. R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communication optimizations for

irregular scienti�c computations on distributed memory architectures. Journal of

Parallel and Distributed Computing, 22(3):462{479, September 1994.

7. Geo�rey C. Fox, editor. Java for Computational Science and Engineering|

Simulation and Modelling, volume 9(6) of Concurrency: Practice and Experience,

June 1997.

8. Geo�rey C. Fox, editor. Java for Computational Science and Engineering|

Simulation and Modelling II, volume 9(11) of Concurrency: Practice and Expe-

rience, November 1997.

9. J. Nieplocha, R.J. Harrison, and R.J. Little�eld. The Global Array: Non-uniform-

memory-access programming model for high-performance computers. The Journal

of Supercomputing, 10:197{220, 1996.

10. Lawrence Snyder. A ZPL programming guide. Technical report, University of

Washington, May 1997. http://www.cs.washington.edu/research/projects/zpl/.

11. Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar: A program-

ming language for semi-automatic compilation of parallel programs. Concurrency:

Practice and Experience, 9(11):1193{1205, 1997.

12. Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li, and

Yuhong Wen. PCRC-based HPF compilation. In 10th International Workshop

on Languages and Compilers for Parallel Computing, 1997. To appear in Lecture

Notes in Computer Science.

This article was processed using the LATEX macro package with LLNCS style

