
Introduction to Java-Ad

Bryan Carpenter, Guansong Zhang, Geo�rey Fox

Xinying Li, Yuhong Wen

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,zgs,gcf,xli,wengnpac.syr.edu

November 14, 1997

Abstract

We outline an extension to Java for programming with distributed

arrays. The basic programming style is Single Program Multiple Data

(SPMD), but parallel arrays are provided as new language primitives.

Further extensions include three distributed control constructs, the most

important being a data-parallel loop construct. Communications involv-

ing distributed arrays are handled through a standard library of collective

operations. Because the underlying programming model is SPMD pro-

gramming, direct calls to MPI or other communication packages are also

allowed in a Java-Ad program.

1

1 Introduction

The Java-Ad programming model is a exible hybrid of the SPMD1 and data

parallel approaches to parallel programming. It provides HPF-like distributed

arrays as language primitives, and new distributed control constructs to facilitate

access to the local elements of these arrays. In the SPMDmold, the model allows

processors the freedom to independently execute complex procedures on local

elements: it is not restricted by SIMD-style array syntax.

In Java-Ad, all access to non-local array elements must go through library

functions|typically collective communication operations. This puts an extra

onus on the programmer; but making communication explicit encourages the

programmer to write algorithms that exploit locality, and simpli�es the task

of the compiler writer. On the other hand, by providing distributed arrays as

language primitives we are able to simplify error-prone tasks such as converting

between local and global array subscripts and determining which processor holds

a particular element. In the Java-Ad model the programmer never has to deal

explicitly with local array subscripts. As in HPF, it is possible to write programs

at a natural level of abstraction where the meaning is insensitive to the detailed

mapping of elements. Lower-level styles of programming are also possible.

Our Java-Ad compiler will be implemented as a translator to ordinary Java

with calls to a suitable run-time library. At the time of writing the underlying

library is already available, and the interface needed by the Java-Ad translator

is under development. The translator itself is being implemented in a compiler

construction framework developed in the PCRC project.

2 Multidimensional arrays

First we describe a modest extension of Java that would add a class of true multi-

dimensional arrays to the standard Java language. The new arrays allow regular

section subscripting, similar to Fortran 90 arrays. The syntax described in this

section is a subset of the Java-Ad syntax for parallel arrays and algorithms:

the motivation for introducing the sequential subset �rst is just to simplify the

overall presentation.

No attempt is made to integrate the new multidimensional arrays with the

standard Java arrays: they are a new kind of entity that coexists in the language

with ordinary Java arrays. There are good technical reasons for keeping the two

kinds of array separate2.
The type-signatures and constructors of the multidimensional array use dou-

ble brackets to distinguish them from ordinary arrays:

int [[,]] a = new int [[5, 5]] ;

1Single Program, Multiple Data
2The run-time representation of our multi-dimensional arrays includes extra descriptor

information that would simply encumber the large class \non-scienti�c" Java applications.

2

float [[,,]] b = new float [[10, n, 20]] ;

int [[]] c = new int [[100]] ;

a, b and c are respectively 2-, 3- and one- dimensional arrays. Of course c is
very similar in structure to the standard array d, created by

int [] d = new int [100] ;

c and d are not identical, though3.
Accessing individual elements of a multidimensional array goes through a

subscripting operation involving single brackets

for(int i = 0 ; i < 4 ; i++)

a [i, i + 1] = i + c [i] ;

For reasons that will become clearer in later sections, this style of subscripting is

called local subscripting. In the current sequential context, apart from the fact

that a single pair of brackest may include several comma-separated subscripts,

this kind of subscripting behaves just like ordinary Java array subscripting.

Subscripts always start at zero, in the ordinary Java or C style (there is no

Fortran-like lower bound).
In general Java-Ad has no idea of Fortran-like array assignments. In

int [[,]] e = new int [[n, m]] ;

...

a = e ;

the assignment simply copies a handle to object referenced by e into a. There
is no element-by-element copy involved. Similarly Java-Ad has no idea of ele-
mental arithmetic or elemental function application. If e and a are arrays, the
expressions

e + a

Math.cos(e)

are type errors.

Java-Ad does import a Fortran-90-like idea of array regular sections. The

syntax for section subscripting is di�erent to the syntax for local subscripting.

Double brackets are used. These brackets can include scalar subscripts or sub-

script triplets.
A section is an object in its own right|its type is that of a suitable multi-

dimensional array. It describes some subset of the elements of the parent array.
This is slightly di�erent to the situation in Fortran, where sections cannot usu-
ally be captured as named entities4.

3For example, c allows section subscripting, whereas d does not.
4Unless a section appears as an actual argument to a procedure, in which case the dummy

argument names that section, or it is the target of a pointer assignment.

3

int [[]] e = a [[2, 2 :]] ;

foo(b [[: , 0, 1 : 10 : 2]]) ;

e becomes an alias for the 3rd row of elements of a. The procedure foo accepts a

two-dimensional array as argument. It can read or write to the set of elements of

b selected by the section. As in Fortran, upper or lower bounds can be omitted

in triplets, defaulting to the actual bound of the parent array, and the stride

entry of the triplet is optional. Note that the subscripts of e, like any other

array, start at 0, although the �rst element is identi�ed with a [2, 2].

In Java-Ad, unlike Fortran, it is not allowed to use vectors of integers as

subscripts. The only sections recognized are regular sections de�ned through

scalar and triplet subscripts.
Java-Ad provides a library of functions for manipulating its arrays, closely

analogous to the array transformational intrinsic functions of Fortran 90:

int [[,]] f = new int [[5, 5]] ;

Adlib.shift(f, a, -1, 0, CYCL) ;

float g = Adlib.sum(b) ;

int [[]] h = new int [[100]] ;

Adlib.copy(h, c) ;

The shift operation with shift-mode CYCL executes a cyclic shift on the data

in its second argument, copying the result to its �rst argument|an array of the

same shape. In the example the shift amount is -1, and the shift is performed in

dimension 0 of the array|ie, the �rst of its two dimensions. The sum operation

simply adds all elements of its argument array. The copy operation copies

the elements of its second argument to its �rst|it is something like an array

assignment. These functions may have to be overloaded to apply to some �nite

set of array types, eg they may be de�ned for arrays with elements of any

suitable Java primitive type, up to some maximum rank of array. Alternatively

the type-hierarchy for arrays may be de�ned in a way that allows these functions

to be more polymorphic.

3 Process arrays

Java-Ad adds class libraries and some additional syntax for dealing with dis-

tributed arrays. These arrays are viewed coherent global entities, but their

elements are divided across a set of cooperating processes. As a pre-requisite

to introducing distributed arrays we discuss the process arrays over which their

elements are scattered.
An abstract base class Procs has subclasses Procs1, Procs2, . . . , repre-

senting one-dimensional process arrays, two-dimensional process arrays, and so
on.

4

Procs2 p = new Procs2(2, 2) ;

Procs1 q = new Procs1(4) ;

These declarations set p to represent a 2 by 2 process array and q to represent a

4-element, one-dimensional process array. In either case the object created de-

scribes a group of 4 processes. At the time the Procs constructors are executed

the program should be executing on four or more processes. Either construc-

tor selects four processes from this set and identi�es them as members of the

constructed group5.
Procs has a member function called member, returning a boolean value. This

is true if the local process is a member of the group, false otherwise.

if(p.member()) {

...

}

The code inside the if is executed only if the local process is a member p. We

will say that inside this construct the active process group is restricted to p.
The multi-dimensional structure of a process array is reected in its set of

process dimensions. An object is associated with each dimension. These objects
are accessed through the inquiry member dim:

Dimension x = p.dim(0) ;

Dimension y = p.dim(1) ;

Dimension z = q.dim(0) ;

The object returned by the dim inquiry has class Dimension. The members
of this class include the inquiry crd. This returns the coordinate of the local
process with respect to the process dimension. The result is only well-de�ned if
the local process is a member of the parent process array. The inner body code
in

if(p.member())

if(x.crd() == 0)

if(y.crd() == 0) {

...

}

will only execute on the �rst process from p, with coordinates (0; 0).

4 Distributed arrays

Some or all of the dimensions of a multi-dimensional array can be declared

to be distributed ranges. In general a distributed range is represented by an

5There is no cooperation between the two constructor calls for p and q, so an individual

physical process might occur in both groups or in neither. As an option not illustrated here,
vectors of ids can be passed to the Procs constructors to specify exactly which processes are

included in a particular group.

5

object of class Range. A Range object de�nes a range of integer subscripts,

and de�nes how they are mapped into a process array dimension. In fact the

Dimension class introduced in the previous section is a subclass of Range. In this

case the integer range is just the range of coordinate values associated with the

dimension. Each value in the range is mapped, of course, to the process (or slice

of processes) with that coordinate. This kind of range is also called a primitive

range. More complex subclasses of Range implement more elaborate maps from

integer ranges to process dimensions. Some of these will be introduced in later

sections. For now we concentrate on arrays constructed with Dimension objects

as their distributed ranges.

The syntax of section 2 is extended in the following way to support dis-

tributed arrays

� A distributed range object may appear in place of an integer extent in the

\constructor" of the array (the expression following the new keyword).

� If a particular dimension of the array has a distributed range, the corre-

sponding slot in the type signature of the array should include a # symbol.

� In general the constructor of the distributed array must be followed by an

on clause, specifying the process group over which the array is distributed.

Distributed ranges of the array must be distributed over distinct dimen-

sions of this group6.

Assume p, x and y are declared as in the previous section, then

float [[#,#,]] a = new float [[x, y, 100]] on p ;

de�nes a as a 2 by 2 by 100 array of oating point numbers. Because the

�rst two dimensions of the array are distributed ranges|dimensions of p|a is

actually realized as four segments of 100 elements, one in each of the processes

of p. The process in p with coordinates i, j holds the section a [[i, j, :]].
The distribute array a is equivalent in terms of storage to four local arrays

de�ned by

float [] b = new float [100] ;

But because a is declared as a collective object we can apply collective opera-
tions to it. The Adlib functions introduced in section 2 apply equally well to
distributed arrays, but now they imply inter-processor communication.

float [[#,#,]] a = new float [[x, y, 100]] on p,

b = new float [[x, y, 100]] on p ;

Adlib.shift(a, b, -1, 0, CYCL) ;

6The on clause can be omitted in some circumstances|see section 5.

6

The shift operation causes the local values of a is overwritten with the values

of b from a processor adjacent in the x dimension.
There is a catch in this. When subscripting the distributed dimensions of an

array it is simply disallowed to use subscripts that refer to o�-processor elements.
While this:

int i = x.crd(), j = y.crd() ;

a [i, j, 20] = a [i, j, 21] ;

is allowed, this:

int i = x.crd(), j = y.crd() ;

a [i, j, 20] = b [(i + 1) % 2, j, 20] ;

is forbidden. The second example could apparently be implemented using a

nearest neighbour communication, quite similar to the shift example above.

But Java-Ad imposes an strict policy distinguishing it from many data parallel

languages: while library functions may introduce communications, language

primitives such as array subscripting never imply communication.

If subscripting distributed dimensions is so restricted, why are the i, j sub-

scripts on the arrays needed at all? In the examples of this section these sub-

scripts are only allowed one value on each processor. Well, the inconvience

of specifying the subscripts will be reduced by language constructs introduced

later, and the fact that only one subscript value is local is a special feature of

the primitive ranges used here. The higher level distributed ranges introduced

later map multiple elements to individual processes. Subscripting will no longer

look so redundant.

We �nish this section with a fairly complex example using the notation

established so far. The algorithm of �gure 1 implements multiplication of two

N � N matrices. One dimension of each of the two matrices is block-distributed

over the P processors of p, so N is equal to P � B where B is the (constant) local

block size.

The matrices are represented as three dimensional arrays, with their dis-

tributed dimensions explicitly split into a distributed range of extent P and a

local sequential range of extent B. In later sections we will see how to represent

this distribution format with a single block-distributed Range object. Even with

that facility available, the representation used here may still be more natural

for algorithms like the current one, where the block structure is an integral to

the algorithm. The undistributed dimensions of the matrices are just sequential

ranges of extent N. The operation of the algorithm for P = 2 is visualized in

�gure 2. There are two phases. Between the phases the data in b is exchanged

by the shift operation7.

7In fact it is neccessary to use a shift and copy operation because the source and destina-

7

Procs1 p = new Procs1(P) ;

if(p.member()) {

Range x = p.dim(0) ;

float a [[#,,]] = new float [[x, B, N]] on p ;

float b [[#,,]] = new float [[x, N, B]] on p ;

... initialize `a', `b'

float c [[#,,]] = new float [[x, B, N]] on p ;

for(int s = 0 ; s < P ; s++) {

const int ip = x.crd() ;

const int base = B * ((ip + s) % P) ;

// c [[ip, :, base : ...]] =

// a [[ip, :, :]] * b' [[(ip + s) % P, :, :]] ...

for(int ib = 0 ; ib < B ; ib++)

for(int kb = 0 ; kb < B ; kb++) {

float sum = 0 ;

for(int j = 0 ; j < N ; j++)

sum += a [ip, ib, j] * b [ip, j, kb] ;

c [ip, ib, base + kb] = sum ;

}

float tmp [[#,,]] = new float [[x, N, B]] on p ;

Adlib.shift(tmp, b, 1, 0, CYCL) ;

Adlib.copy(b, tmp) ;

}

}

Figure 1: A parallel matrix multiplication program.

8

a b

= *stage s = 0

cc a b

= *

stage s = 1

processor ip = 0 processor ip = 1

c a b

= **

c a b

=

Figure 2: Operation of the program in �gure 1 for P = 2.

5 The on construct and the active process group

In the last two section the idiom

if(p.member()) {

...

}

has appeared. Our language provides a short way of writing this construct

on(p) {

...

}

In fact the on construct provides some extra value. Informally we said in sec-

tion 3 that the active process group is restricted to p inside the body of the

p.member() conditional construct. As part of the language, Java-Ad includes a

more formal idea of an active process group (APG). At any point of execution

some process group is singled out as the APG. An on(p) construct speci�cally

changes the value of the APG to p. On exit from the construct, the APG is

restored to its value on entry.
Elevating the active process group to a part of the language allows some

simpli�cations. For example, it provides a natural default for the on clause in
array constructors. In the matrix multiplication program of the previous section
the code

if(p.member()) {

...

float a [[#,,]] = new float [[x, B, N]] on p ;

tion arguments of shift must be distinct arrays. In the comment explaining the inner block

matrix multiplication, by the way, the symbol b' means the original unshifted value of the

array b.

9

float b [[#,,]] = new float [[x, N, B]] on p ;

...

}

can be simpli�ed to

on(p) {

...

float a [[#,,]] = new float [[x, B, N]] ;

float b [[#,,]] = new float [[x, N, B]] ;

...

}

More importantly, formally de�ning the active process group will simplify the

statement of various rules about what operations are legal inside distributed

control constructs like on.

6 Higher-level ranges and locations

The class BlockRange is a subclass of Range which describes a simple block-
distributed range of subscripts. Like BLOCK distribution format in HPF, it maps
blocks of contiguous subscripts to each element of its target process dimension8.
The constructor of BlockRange usually takes two arguments: the extent of the
range and a Dimension object de�ning the process dimension over which the
new range is distributed.

Procs2 p = new Procs2(3, 2) ;

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[#,#]] a = new float [[x, y]] on p ;

a is created as a 100 � 200 array, block-distributed in over the 6 processes in p.
The fragment is essentially equivalent to the HPF declarations

!HPF$ PROCESSORS p(3, 2)

REAL a(100, 200)

!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO p

Subscripting distributed arrays with non-primitive ranges introduces some new
problems. An array access such as

a [17, 23] = 13 ;

8Other higher-level ranges include CyclicRange, which produces the equivalent of CYCLIC

distribution formation in HPF.

10

. . .

Global subscripts0 1 2 3

Locations

. N-1

Figure 3: A range regarded as a set of locations, or slots.

is perfectly legal if the local process holds the element in question. But deteri-

mining whether an element is local is not so easy any more. When arrays had

only primitive distributed ranges, it was straightforward to check that accesses

were local|the subscript simply had to be equal to the local coordinate. With

higher-level ranges, that simple condition no longer holds.
In practise it is unusual to use integer values directly as local subscripts.

Instead the idea of a location is introduced. A location can be viewed as an
abstract element, or \slot", of a distributed range. Conversely, a range can be
thought of as a set of locations. This model of a range is visualized in �gure 3.
An individual location is described by an object of the class Location. Each
Location element is mapped to a particular slice of a process grid. In general
two locations are identical only if they come from the same position in the same
range. A subscripting syntax is used to represent location n in range x:

Location i = x [n]

This is an important idea in HPJava. By working in terms of abstract

locations|elements of distributed ranges|on can usually respect locality of

reference without resorting explicitly to low-level local subscripts and process

ids. In fact the location can be viewed as an abstract data type incorporating

these lower-level o�sets.
Publically accessible �elds of Location include dim and crd. The �rst is

the process dimension of the parent range. The second is coordinate in that
dimension to which the element is mapped. So the access to element a [17,

23] could now be guarded by conditionals as follows:

Location i = x [17], j = y [23] ;

if(i.crd == i.dim.crd())

if(j.crd == j.dim.crd())

a [17, 23] = 13 ;

This is still quite clumsy and error-prone. The language provides a second
distributed control construct (analogous to on) to deal with this common situa-
tion. The new construct is called at, and takes a location as its argument. The
fragment above can be replaced with

Location i = x [17], j = y [23] ;

at(i)

at(j)

11

a [17, 23] = 13 ;

This is more concise, but still involves some redundancy because the subscripts
17 and 23 appear twice. A natural extension is to allow locations to be used
directly as array subscripts:

Location i = x [17], j = y [23] ;

at(i)

at(j)

a [i, j] = 13 ;

Locations used as array subscripts must be elements of the corresponding ranges

of the array.
The range class has a member function

int Range.idx(Location i)

which can be used to recover the integer subscript, given a location in the range.

There is a restriction that an at(i) construct should only appear at a point

of execution where i.dim is a dimension of the active process group. In the ex-

amples of this section this means that an at(i) construct, say, should normally

be nested directly or indirectly inside an on(p) construct.

7 Distributed loops

As a matter of observation, good parallel algorithms don't usually expend many

lines of code assigning to isolated elements of distributed arrays. Sequential

access to elements of parallel arrays is best avoided. The at mechanism of the

previous section is sometimes useful, but a more pressing need is an idiom for

parallel access to distributed array elements.
The last and most important distributed control construct in Java-Ad is

called over. It implements a distributed parallel loop. Conceptually it is quite
similar to the FORALL construct of Fortran, except that the over construct spec-
i�es exactly where its parallel iterations are to be performed. The argument
of over is a member of the special class Index. An index is associated with
a particular range, which appears in the constructor of the object. The class
Index is a subclass of Location, so it is syntactically correct to use an index as
an array subscript9. Here is an example of a pair of nested over loops:

float [[#,#]] a = new float [[x, y]],

b = new float [[x, y]] ;

...

Index i = new Index(x), j = new Index(y) ;

over(i)

9But the e�ect of such subscripting is only well-de�ned inside an over construct

parametrised by the index in question.

12

over(j)

a [i, j] = 2 * b [i, j] ;

The body of an over construct executes, conceptually in parallel, for every loca-

tion in the range of its index. An individual \iteration" executes on just those

processors holding the location associated with the iteration. In a particular

iteration, the location component of the index (the base class object) is equal to

that location. The net e�ect of the example above should be reasonably clear.

It assigns twice the value of each element of b to the corresponding element of

a. Because of the rules about where an individual iteration iterates, the body

of an over can usually only usually combine elements of arrays that have some

simple alignment relation relative to one another.
The idx member of range can be used in parallel updates to give expressions

that depend on global index values, as in

Index i = new Index(x), j = new Index(y) ;

over(i)

over(j)

a [i, j] = x.idx(i) + y.idx(j) ;

With the over construct we can give some more useful examples of parallel

programs. Figure 4 is the famous Jacobi iteration for a two dimensionsional

Laplace equation. We have used cyclic shift to implement nearest neighbour

communications10.

Copying whole arrays into temporaries is not an e�cient way of accessing

nearest neighbours in an array. Because this is such a common pattern of

communication, Java-Ad supports ghost regions. Distributed arrays can be

created in such a way that the segment stored locally is extended with some

halo. This halo caches values stored in the segments of adjacent processes.

The cached values are explicitly bought up to date by the library operation

writeHalo.

An optimized version of the Jacobi program is give in �gure 5. This version

only involves a singe array temporary. A new constructor for BlockRange is

provided. This allows the width of the ghost extensions to be speci�ed. The

arguments of writeHalo itself are an array with suitable extensions and two vec-

tors. The �rst de�nes in each dimension the width of the halo that must actually

be updated, and the second de�nes the treatment at the ends of the range|in

this case the ghost edges are updated with cyclic wraparound. The new con-

structor and new writeHalo function are simply standard library extensions.

One new piece of syntax is needed: the addition and subtraction operators are

overloaded so that integer o�sets can be added or subtracted to Location ob-

jects, yielding new, shifted, locations. The usual access rules apply|this kind

10Laplace's equation with cyclic boundary conditions is not particularly useful, but it illus-

trates the language features. More interesting boundary conditions can easily be incorporated
later. Incidentally, this is a suitable place to mention that the array arguments of shift must

be aligned arrays|they must have identical distributed ranges.

13

Procs2 p = new Procs2(2, 2) ;

on(p) {

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

int [[#,#]] u = new int [[x, y]] ;

// ... some code to initialise `u'

int [[#,#]] unx = new int [[x, y]], upx = new int [[x, y]],

uny = new int [[x, y]], upy = new int [[x, y]] ;

Adlib.shift(unx, u, 1, 0, CYCL) ;

Adlib.shift(upx, u, -1, 0, CYCL) ;

Adlib.shift(uny, u, 1, 1, CYCL) ;

Adlib.shift(upy, u, -1, 1, CYCL) ;

Index i = new Index(x), j = new Index(y) ;

over(i)

over(j)

u [i, j] = 0.25 * (unx [i, j] + upx [i, j] +

uny [i, j] + upy [i, j]) ;

}

Figure 4: Jacobi iteration using shift.

14

Procs2 p(2, 2) ;

on(p) {

Range x = new BlockRange(100, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(200, p.dim(1), 1) ; // ghost width 1

int [[#,#]] u = new int [[x, y]] ;

// ... some code to initialise `u'

int [] widths = {1, 1} ; // Widths actually updated

Mode [] modes = {CYCL, CYCL} ; // Wraparound at ends.

Adlib.writeHalo(u, widths, modes) ;

int [[#,#]] v = new int [[x, y]] ;

Index i = new Index(x), j = new Index(y) ;

over(i)

over(j)

v [i, j] = 0.25 * (u [i + 1, j] + u [i - 1, j] +

u [i, j + 1] + u [i, j + 1]) ;

Adlib.copy(u, v) ;

}

Figure 5: Jacobi iteration using writeHalo.

of shifted access is illegal if it implies access to o�-processor data. It only works

if the subscripted array has suitable ghost extensions.

8 Subranges

A subrange is a section of a range, parametrized by a subscript triplet. Logically

a subrange can be viewed as a subset of the locations of the original range.

Subranges are members of the class Range. Because locations in a subrange are

locations of the parent range, subranges retain an alignment relation to their

parent range. Note that the integer subscripts for a subrange are in the range

0; : : : ; N � 1 where N is the extent of the subrange. See �gure 6.

A triplet-subscripting syntax is used for creation of subranges: if x is a

range, then x [0 : 49] is a contiguous subrange and x [1 : 98 : 2] is a

strided subrange.

As a �rst application of subranges, we can uses strided subranges to trans-

15

. . .

0 1 2

4 5 6 7 . . .

.

M-1

N-1

Locations

(subrange)

Global subscripts (parent)3210

Global subscripts

. . .

Figure 6: Locations of a subrange (shaded slots).

form the Jacobi update of the previous section to a more e�cient red-black

form. The result is shown in �gure 7. The iteration is split into two phases, the

�rst with parity = 0 and the second with parity = 1. The range of the inner

over construct is either y [0 : : 2] or y [1 : : 2], according to whether the

global x index of the outer loop has the same or di�erent parity (odd/even) as

the current phase. This version eliminates all temporary arrays11

As a second application involving subranges, �gure 8 is a parallel version of

Cholesky decomposition. In pseudocode the algorithm is

l11 = a

1=2
11

For k = 1 to n� 1

For s = k + 1 to n

lsk = ask=lkk

For j = k + 1 to n

For i = j to n

aij = aij � likljk

lk+1;k+1 = a

1=2
k+1;k+1

The array is distributed by columns, using cyclic distribution to improve load

balancing. The collective communication function remap is used to broadcast

updated columns. The remap function is one of the more powerful functions

in the communication library. Like copy, its e�ect is to copy data from one

distributed array to another of the same shape and type. But copy (like shift)

has a restriction that its array arguments must be aligned|copy never intro-

duces communication. With remap there is no such restriction|the mapping

of the two arrays can be unrelated. One common application of remap is to

broadcast data. If the target array has no ranges distributed over a dimension

of the process group on which it lives, remap assumes that the result is to be

stored in a replicated fashion. It therefore implements a broadcast. In the cur-

rent example remap actually implements something more sophisticated than a

simple broadcast. In MPI terms it executes a gather-to-all operation.

11Incidentally, subranges, and particularly strided subranges, introduce an ambiguity in the

de�nition of the shift operators + and - on locations. Is the numeric shift measured terms

of subscript relative to the subrange or of the parent range? As a matter of de�nition, the

shift is always in terms of subscript in the template range|the ultimate parent from which a
subrange is derived (by zero or more stages of triplet subscripting).

16

Procs2 p(2, 2) ;

on(p) {

Range x = new BlockRange(100, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(200, p.dim(1), 1) ; // ghost width 1

int [[#,#]] u = new int [[x, y]] ;

// ... some code to initialise `u'

int [] widths = {1, 1} ; // Widths actually updated

Mode [] modes = {CYCL, CYCL} ; // Wraparound at ends.

for(int parity = 0 ; parity < 2 ; parity++) {

Adlib.writeHalo(u, widths, modes) ;

Index i = new Index(x) ;

over(i) {

Index j = new Index(y [(x.idx(i) + parity) % 2 : : 2]) ;

over(j)

u [i, j] = 0.25 * (u [i + 1, j] + u [i - 1, j] +

u [i, j + 1] + u [i, j - 1]) ;

}

}

}

Figure 7: Red-black iteration.

17

Procs1 p = new Procs1(P) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[,#]] a = new float [[N, x]] ;

float [[]] b = new float [[N]] ; // buffer

Location l = x [0] ;

at(l)

a [0, l] = sqrt(a [0, l]) ;

for(int k = 0 ; k < N - 1 ; k++) {

at(l)

for(int s = k + 1 ; s < N ; s++)

a [s, l] /= a [k, l] ;

Adlib.remap(b [[k + 1 :]], a [[k, k + 1 :]]);

Index m = new Index(x [k + 1 :]) ;

over(m)

for(int i = x.idx(m) ; i < N ; i++)

a [i, m] -= b [i] * b [x.idx(m)] ;

l = x [k + 1] ;

at(l)

a [k + 1, l] = sqrt(a [k + 1, l]) ;

}

}

Figure 8: Choleksy decomposition.

18

Some �nal comments on subranges. Creating a triplet subscripted section
of a distributed array implicitly creates subranges of the ranges in the parent
array. Also, arrays can be created directly with subranges, as in

Range xs = x [0 : 50] ;

Range ys = y [1 : 198 : 2] ;

int [[#,#]] e = new int [[xs, ys]] ;

In HPF terms, e has a non-trivial linear alignment to the template spanned by

x and y. By allowing subranges (and subgroups, see section 9) to appear in

array constructors we reproduce the two-level alignment model of HPF in full

generality, at little cost in terms of syntax extensions.

9 Subgroups

A subgroup is some slice of a process array, formed by restricting the process

coordinates in one or more dimensions to single values. Process arrays (class

Procs) and subgroups have a common base class, Group. In general the argu-

ment of an on construct and the on clause in an array constructor is a member

of Group. This implies that the active process group or the group over which

an array is distributed may be just some a slice of a complete process array.
By de�nition, any group has a parent process array and a dimension set. In

general the dimension set is some subset of the dimensions of the parent array.
The restriction operation on a group takes a slice in a particular dimension. It
is quite natural and convenient to express this restriction procedure is in terms
of a location. If i is a location in a range distributed over a dimension of p, then

p / i

represents a subgroup of p|the slice of p to which location i is mapped.

Using the / operator on groups explicitly is fairly unusual practise. But

subgroups are occur naturally in two ways:

� If an array a is distributed over p, a section of a will generally be dis-

tributed over some subgroup of p. For example, if the only scalar sub-

script in the section subscript list was location i, the section would be

distributed over the subgroup p / i. Triplet subscripts don't change the

group|only scalar subscripts.

� The distributed control constructs over and at change the active process
group in a way that has not been described so far. Assume the current
active process group is p, and i is a location. Then inside the construct

at(i) {

...

}

19

the active process group is equal to p / i. If the current active process
group is p, and i is an index, then inside the construct

over(i) {

...

}

the active process group is equal to p / i. This case is slightly more

subtle, because in di�erent parallel \iterations" of the loop the location

component of i has di�erent values. In other words, the over construct

partitions the original active process group into several subgroups (slices)

operating independently.

To illustrate how subgroups can be used|in particular how the e�ect of

over on the active process group can be exploited|we return to the matrix

multiplication example of �gure 1. As a preliminary step, �gure 9 is transcribes

that program using the distributed control constructs developed over the last

few sections. The changes are very minor. Because the active process group is

formally changed to p, the on p clauses can be omitted from the array construc-

tors. Use of the crd inquiry to obtain the integer subscript in the x range is

replaced by use of an over construct. Now we want to change from distribution

over a one-dimensional process array to a two-dimensional grid.

The result is given in �gure 10. Inside the over(ip) construct there are P

independent active process groups corresponding to the rows of the original grid.

The temporary array tmp is replicated over these rows. The remap operation,

working independently in the P separate groups, implements a broadcast of the

array section representing the block of the a stored on process (ip + s) % P

within each group.

The freedom to embed calls to collective communication functions inside

distributed control constructs is a distinctive feature of Java-Ad. There are a

few restrictions on what operations are allowed. In general the requirement is

that all array arguments of a collective operation should be accessible at the

point of call. An array is accesible if it is distributed over a group contained in

the active process group.

10 Class libraries or syntax extensions?

We have presented the Java-Ad language using a fairly liberal number of syntax

extensions. The main extensions are:

� the syntax for distributed array type signatures,

� the syntax for the distributed array constructors,

� the syntax for local subscripting of distributed arrays,

20

Procs1 p = new Procs1(P) ;

on(p) {

Range x = p.dim(0) ;

float a [[#,,]] = new float [[x, B, N]] ;

float b [[#,,]] = new float [[x, N, B]] ;

... initialize `a', `b'

float c [[#,,]] = new float [[x, B, N]] ;

for(int s = 0 ; s < P ; s++) {

Index ip = new Index(x) ;

over(ip) {

const int base = B * ((x.idx(ip) + s) % P) ;

// c [[ip, :, base : ...]] =

// a [[ip, :, :]] * b' [[(ip + s) % P, :, :]] ...

for(int ib = 0 ; ib < B ; ib++)

for(int kb = 0 ; kb < B ; kb++) {

float sum = 0 ;

for(int j = 0 ; j < N ; j++)

sum += a [ip, ib, j] * b [ip, j, kb] ;

c [ip, ib, base + kb] = sum ;

}

}

float tmp [[#,,]] = new float [[x, N, B]] ;

Adlib.shift(tmp, b, 1, 0, CYCL) ;

Adlib.copy(b, tmp) ;

}

}

Figure 9: Matrix multiplication program using distributed control constructs.

21

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = p.dim(0), y = p.dim(1) ;

float a [[#,#,,]] = new float [[x, y, B, B]] ;

float b [[#,#,,]] = new float [[x, y, B, B]] ;

... initialize `a', `b'

float c [[#,#,,]] = new float [[x, y, B, B]] ;

for(int s = 0 ; s < P ; s++) {

Index ip = new Index(x), jp = new Index(y) ;

over(ip) {

// Broadcast a [[ip, (ip + s) % P, :, :]]...

float [[,]] tmp = new float [[,]] ;

Adlib.remap(tmp, a [[ip, (x.idx(ip) + s) % P, :, :]]) ;

over(jp) {

// c [[ip, jp, :, :]] +=

// a [[ip, (ip + s) % P, :, :]] *

// b' [[(ip + s) % P, jp, :, :]] ...

for(int ib = 0 ; ib < B ; ib++)

for(int kb = 0 ; kb < B ; kb++) {

float sum = 0 ;

for(int jb = 0 ; jb < B ; jb++)

sum += tmp [ib, jb] * b [ip, jp, jb, kb] ;

c [ip, jb, ib, kb] += sum ;

}

}

}

float tmp [[#,#,,]] = new float [[x, y, B, B]] ;

Adlib.shift(tmp, b, 1, 0, CYCL) ;

Adlib.copy(b, tmp) ;

}

}

Figure 10: Matrix multiplication on a grid of processors.

22

� the syntax for section subscripting of distributed arrays,

� the syntax for the three distributed control constructs,

� the range subscripting syntax for creating locations and subranges,

� the overloaded division operator for creating subgroups, and the over-

loaded + and - operators for shifting locations.

Besides distributed arrays, we introduced four base classes that have a special

signi�cance in the context of the above syntax extensions:

� Group

� Range

� Location

� Index

Some of the syntax extensions are less important than others. The special
syntax for creating locations, subranges and subgroups could be relaced by
members of Range and Group:

Location Range.loc(int i)

Range Range.subrng(int lb, int ub, int stride)

Group Group.subgrp(Location i)

without much inconvenience to the programmer.

It would be possible to replace the special type signatures and constructors

for distributed arrays with a series of ordinary class types,

Array1int

Array2int

...

Array1float

Array2float

...

...

and associated constructors. Array1int represents a the class of one-

dimensional arrays of int, Array2int represents the class of two-dimensional

arrays of int, and so on. The set of classes has to be quite large, and we must

�x a �nite limit on the rank of an array, and the set of array elements supported.

Unless we allow the number of distinct array classes to grow exponentially, it

becomes impractical to distinguish between distributed and sequential dimen-

sions in the static type signature of an object. If an array is passed to a function

23

(probably most arrays are) it is di�cult for the compiler to deduce that a partic-

ular dimension is a sequential dimension. The compiler may end up generating

code for global to local address conversion, even in sequential dimensions. This

is probably a serious problem for e�ciency, because sequential dimensions tend

to be subscripted in an irregular way, not in uniform over loops. This prob-

lem could probably be overcome by requiring the subscripting operations for

sequential and distributed dimensions explicitly di�er (somehow) in the user's

program. But that seems to complicate the language.

The syntax for the distributed control constructs and local subscripting

seems more di�cult to eliminate. In particular, the special syntax for over

is critical. A Java-Ad translator will do the simple but tedious code transfor-

mations needed to replace distributed loops involving distributed arrays by local

sequential loops involving local arrays, subscripted by expressions linear in the

local loop indices. Unless the translator does this work, data-parallel program-

ming becomes much less appealing. From our point of view this functionality is

central to the SPMD data parallel model.

24

