
HPJava: data parallel extensions to Java

Bryan Carpenter, Guansong Zhang, Geo�rey Fox

Xinying Li, Yuhong Wen

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,zgs,gcf,xli,weng@npac.syr.edu

December 7, 1997

Abstract

We outline an extension of Java for programming with distributed

arrays. The basic programming style is Single Program Multiple Data

(SPMD), but parallel arrays are provided as new language primitives.

Further extensions include three distributed control constructs, the most

important being a data-parallel loop construct. Communications involv-

ing distributed arrays are handled through a standard library of collective

operations. Because the underlying programming model is SPMD pro-

gramming, direct calls to MPI or other communication packages are also

allowed in an HPJava program.

1 Introduction

The idea that Java may enable new programming environments, combining at-

tractive user interfaces with high performance computation, is gaining increas-

ing attention amongst computational scientists. Java boasts a direct simplicity

reminiscent of Fortran, but also incorporates many of the important ideas of

modern object-oriented programming. Of course it comes with an established

track-record in the domains of Web and Internet programming.

This article will focus speci�cally on the potential of Java as a language

for scienti�c parallel programming. We envisage a framework called HPJava.

This would be a general environment for parallel computation. Ultimately it

should combine tools, class libraries, and language extensions to support vari-

ous established paradigms for parallel computation, including shared memory

programming, explicit message-passing, and array-parallel programming. Other

paradigms (for example, Linda or coarse-grained data-ow) may come later, to-

1

gether with bindings to higher-level libraries and application-speci�c libraries

such as CHAOS [7], ScaLAPACK [1], Global Arrays [8] or DAGH [9].

This is a large vision, and the current article only discusses some �rst steps

towards a general framework. In particular we will make speci�c proposals for

the sector of HPJava most directly related to its namesake: High Performance

Fortran. We will be concentrating on array-parallel programming.

For now we do not propose to import the full HPF programming model to

Java. After several years of e�ort by various compiler groups, HPF compilers

are still quite immature. It seems di�cult justify a comparable e�ort for Java

before success has been convincingly demonstrated in Fortran. In any case there

are features of the HPF model that make it less attractive in the context of the

integrated parallel programming environment we envisage. Although an HPF

program can interoperate with modules written in other parallel programming

styles through the HPF extrinsic procedure interface, that mechanism is quite

awkward. Rather than follow the HPF model directly, we propose introducing

some of the characteristic ideas of HPF|speci�cally its distributed array model

and array intrinsic functions and libraries|into a basically SPMD programming

model. Because the programming model is SPMD, direct calls to MPI [2] or

other communication packages are allowed from the HPJava program.

The language outlined here provides HPF-like distributed arrays as language

primitives, and new distributed control constructs to facilitate access to the local

elements of these arrays. In the SPMD mold, the model allows processors the

freedom to independently execute complex procedures on local elements: it is

not limited by SIMD-style array syntax. All access to non-local array elements

must go through library functions|typically collective communication opera-

tions. This puts an extra onus on the programmer; but making communication

explicit encourages the programmer to write algorithms that exploit locality,

and simpli�es the task of the compiler writer. On the other hand, by providing

distributed arrays as language primitives we are able to simplify error-prone

tasks such as converting between local and global array subscripts and deter-

mining which processor holds a particular element. As in HPF, it is possible to

write programs at a natural level of abstraction where the meaning is insensitive

to the detailed mapping of elements. Lower-level styles of programming are also

possible.

Our compiler will be implemented as a translator to ordinary Java with

calls to a suitable run-time library. At the time of writing the underlying li-

brary is already available [5], and the Java interface needed by the translator

is under development. The translator itself is being implemented in a compiler

construction framework developed in the PCRC project [6, 12].

2

2 Multidimensional arrays

First we describe a modest extension to Java that adds a class of true multi-

dimensional arrays to the standard Java language. The new arrays allow regular

section subscripting, similar to Fortran 90 arrays. The syntax described in

this section is a subset of the syntax introduced later for parallel arrays and

algorithms: the only motivation for discussing the sequential subset �rst is to

simplify the overall presentation. No attempt is made to integrate the new

multidimensional arrays with the standard Java arrays: they are a new kind of

entity that coexists in the language with ordinary Java arrays. There are good

technical reasons for keeping the two kinds of array separate1.
The type-signatures and constructors of the multidimensional array use dou-

ble brackets to distinguish them from ordinary arrays:

int [[,]] a = new int [[5, 5]] ;

float [[,,]] b = new float [[10, n, 20]] ;

int [[]] c = new int [[100]] ;

a, b and c are respectively 2-, 3- and one- dimensional arrays. Of course c is
very similar in structure to the standard array d, created by

int [] d = new int [100] ;

c and d are not identical, though2.
Access to individual elements of a multidimensional array goes through a

subscripting operation involving single brackets, for example

for(int i = 0 ; i < 4 ; i++)

a [i, i + 1] = i + c [i] ;

For reasons that will become clearer in later sections, this style of subscript-

ing is called local subscripting. In the current sequential context, apart from

the fact that a single pair of brackest may include several comma-separated

subscripts, this kind of subscripting works just like ordinary Java array sub-

scripting. Subscripts always start at zero, in the ordinary Java or C style (there

is no Fortran-like lower bound).
In general our language has no idea of Fortran-like array assignments. In

int [[,]] e = new int [[n, m]] ;

...

a = e ;

1The run-time representation of our multi-dimensional arrays includes extra descriptor

information that would simply encumber the large class \non-scienti�c" Java applications.
2For example, c allows section subscripting, whereas d does not.

3

the assignment simply copies a handle to object referenced by e into a. There
is no element-by-element copy involved. Similarly we introduce no idea of ele-
mental arithmetic or elemental function application. If e and a are arrays, the
expressions

e + a

Math.cos(e)

are type errors.

Our HPJava does import a Fortran-90-like idea of array regular sections.

The syntax for section subscripting is di�erent to the syntax for local subscript-

ing. Double brackets are used. These brackets can include scalar subscripts or

subscript triplets.
A section is an object in its own right|its type is that of a suitable multi-

dimensional array. It describes some subset of the elements of the parent array.
This is slightly di�erent to the situation in Fortran, where sections cannot usu-
ally be captured as named entities3.

int [[]] e = a [[2, 2 :]] ;

foo(b [[: , 0, 1 : 10 : 2]]) ;

e becomes an alias for the 3rd row of elements of a. The procedure foo should

expect a two-dimensional array as argument. It can read or write to the set of

elements of b selected by the section. As in Fortran, upper or lower bounds can

be omitted in triplets, defaulting to the actual bound of the parent array, and

the stride entry of the triplet is optional. The subscripts of e, like any other

array, start at 0, although the �rst element is identi�ed with a [2, 2].

In our language, unlike Fortran, it is not allowed to use vectors of integers

as subscripts. The only sections recognized are regular sections de�ned through

scalar and triplet subscripts.
The language provides a library of functions for manipulating its arrays,

closely analogous to the array transformational intrinsic functions of Fortran
90:

int [[,]] f = new int [[5, 5]] ;

HPJlib.shift(f, a, -1, 0, CYCL) ;

float g = HPJlib.sum(b) ;

int [[]] h = new int [[100]] ;

HPJlib.copy(h, c) ;

The shift operation with shift-mode CYCL executes a cyclic shift on the data

in its second argument, copying the result to its �rst argument|an array of the

same shape. In the example the shift amount is -1, and the shift is performed

3Unless a section appears as an actual argument to a procedure, in which case the dummy

argument names that section, or it is the target of a pointer assignment.

4

in dimension 0 of the array|the �rst of its two dimensions. The sum operation

simply adds all elements of its argument array. The copy operation copies

the elements of its second argument to its �rst|it is something like an array

assignment. These functions may have to be overloaded to apply to some �nite

set of array types, eg they may be de�ned for arrays with elements of any

suitable Java primitive type, up to some maximum rank of array. Alternatively

the type-hierarchy for arrays can be de�ned in a way that allows these functions

to be more polymorphic.

3 Process arrays

HPJava adds class libraries and some additional syntax for dealing with dis-

tributed arrays. These arrays are viewed as coherent global entities, but their

elements are divided across a set of cooperating processes. As a pre-requisite

to introducing distributed arrays we discuss the process arrays over which their

elements are scattered.
An abstract base class Procs has subclasses Procs1, Procs2, . . . , repre-

senting one-dimensional process arrays, two-dimensional process arrays, and so
on.

Procs2 p = new Procs2(2, 2) ;

Procs1 q = new Procs1(4) ;

These declarations set p to represent a 2 by 2 process array and q to represent a

4-element, one-dimensional process array. In either case the object created de-

scribes a group of 4 processes. At the time the Procs constructors are executed

the program should be executing on four or more processes. Either construc-

tor selects four processes from this set and identi�es them as members of the

constructed group4.
Procs has a member function called member, returning a boolean value. This

is true if the local process is a member of the group, false otherwise.

if(p.member()) {

...

}

The code inside the if is executed only if the local process is a member p. We

will say that inside this construct the active process group is restricted to p.
The multi-dimensional structure of a process array is reected in its set of

process dimensions. An object is associated with each dimension. These objects
are accessed through the inquiry member dim:

4There is no cooperation between the two constructor calls for p and q, so an individual

physical process might occur in both groups or in neither. As an option not illustrated here,

vectors of ids can be passed to the Procs constructors to specify exactly which processes are

included in a particular group.

5

Dimension x = p.dim(0) ;

Dimension y = p.dim(1) ;

Dimension z = q.dim(0) ;

The object returned by the dim inquiry has class Dimension. The members
of this class include the inquiry crd. This returns the coordinate of the local
process with respect to the process dimension. The result is only well-de�ned if
the local process is a member of the parent process array. The inner body code
in

if(p.member())

if(x.crd() == 0)

if(y.crd() == 0) {

...

}

will only execute on the �rst process from p, with coordinates (0; 0).

4 Distributed arrays

Some or all of the dimensions of a multi-dimensional array can be declared

to be distributed ranges. In general a distributed range is represented by an

object of class Range. A Range object de�nes a range of integer subscripts,

and de�nes how they are mapped into a process array dimension. In fact the

Dimension class introduced in the previous section is a subclass of Range. In this

case the integer range is just the range of coordinate values associated with the

dimension. Each value in the range is mapped, of course, to the process (or slice

of processes) with that coordinate. This kind of range is also called a primitive

range. More complex subclasses of Range implement more elaborate maps from

integer ranges to process dimensions. Some of these will be introduced in later

sections. For now we concentrate on arrays constructed with Dimension objects

as their distributed ranges.

The syntax of section 2 is extended in the following way to support dis-

tributed arrays

� A distributed range object may appear in place of an integer extent in the

\constructor" of the array (the expression following the new keyword).

� If a particular dimension of the array has a distributed range, the corre-

sponding slot in the type signature of the array should include a # symbol.

� In general the constructor of the distributed array must be followed by an

on clause, specifying the process group over which the array is distributed.

Distributed ranges of the array must be distributed over distinct dimen-

sions of this group5.

5The on clause can be omitted in some circumstances|see section 5.

6

Assume p, x and y are declared as in the previous section, then

float [[#,#,]] a = new float [[x, y, 100]] on p ;

de�nes a as a 2 by 2 by 100 array of oating point numbers. Because the

�rst two dimensions of the array are distributed ranges|dimensions of p|a is

actually realized as four segments of 100 elements, one in each of the processes

of p. The process in p with coordinates i, j holds the section a [[i, j, :]].
The distributed array a is equivalent in terms of storage to four local arrays

de�ned by

float [] b = new float [100] ;

But because a is declared as a collective object we can apply collective opera-
tions to it. The HPJlib functions introduced in section 2 apply equally well to
distributed arrays, but now they imply inter-processor communication.

float [[#,#,]] a = new float [[x, y, 100]] on p,

b = new float [[x, y, 100]] on p ;

HPJlib.shift(a, b, -1, 0, CYCL) ;

The shift operation causes the local values of a to be overwritten with values

of b from a processor adjacent in the x dimension.
There is a catch in this. When subscripting the distributed dimensions of an

array it is simply disallowed to use subscripts that refer to o�-processor elements.
While this:

int i = x.crd(), j = y.crd() ;

a [i, j, 20] = a [i, j, 21] ;

is allowed, this:

int i = x.crd(), j = y.crd() ;

a [i, j, 20] = b [(i + 1) % 2, j, 20] ;

is forbidden. The second example could apparently be implemented using a

nearest neighbour communication, quite similar to the shift example above.

But our language imposes an strict policy distinguishing it from most data paral-

lel languages: while library functions may introduce communications, language

primitives such as array subscripting never imply communication.

If subscripting distributed dimensions is so restricted, why are the i, j sub-

scripts on the arrays needed at all? In the examples of this section these sub-

scripts are only allowed one value on each processor. Well, the inconvience

of specifying the subscripts will be reduced by language constructs introduced

later, and the fact that only one subscript value is local is a special feature of

the primitive ranges used here. The higher level distributed ranges introduced

later map multiple elements to individual processes. Subscripting will no longer

look so redundant.

7

5 The on construct and the active process group

In the section 3 the idiom

if(p.member()) {

...

}

appeared. Our language provides a short way of writing this construct

on(p) {

...

}

In fact the on construct provides some extra value. Informally we said in sec-

tion 3 that the active process group is restricted to p inside the body of the

p.member() conditional construct. The language incorporates a more formal

idea of an active process group (APG). At any point of execution some process

group is singled out as the APG. An on(p) construct speci�cally changes the

value of the APG to p. On exit from the construct, the APG is restored to its

value on entry.

Elevating the active process group to a part of the language allows some

simpli�cations. For example, it provides a natural default for the on clause

in array constructors. More importantly, formally de�ning the active process

group simpli�es the statement of various rules about what operations are legal

inside distributed control constructs like on.

6 Higher-level ranges and locations

The class BlockRange is a subclass of Range which describes a simple block-
distributed range of subscripts. Like BLOCK distribution format in HPF, it maps
blocks of contiguous subscripts to each element of its target process dimension6.
The constructor of BlockRange usually takes two arguments: the extent of the
range and a Dimension object de�ning the process dimension over which the
new range is distributed.

Procs2 p = new Procs2(3, 2) ;

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[#,#]] a = new float [[x, y]] on p ;

a is created as a 100 � 200 array, block-distributed over the 6 processes in p.
The fragment is essentially equivalent to the HPF declarations

6Other higher-level ranges include CyclicRange, which produces the equivalent of CYCLIC

distribution format in HPF.

8

. . .

Global subscripts0 1 2 3

Locations

. N-1

Figure 1: A range regarded as a set of locations, or slots.

!HPF$ PROCESSORS p(3, 2)

REAL a(100, 200)

!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO p

Subscripting distributed arrays with non-primitive ranges introduces some new
problems. An array access such as

a [17, 23] = 13 ;

is perfectly legal if the local process holds the element in question. But de-

terimining whether an element is local is no longer so easy. When arrays had

only primitive distributed ranges, it was straightforward to check that accesses

were local|the subscript simply had to be equal to the local coordinate. With

higher-level ranges, that simple condition no longer holds.
In practise it is unusual to use integer values directly as local subscripts in

distributed array dimensions. Instead the idea of a location is introduced. A
location can be viewed as an abstract element, or \slot", of a distributed range.
Conversely, a range can be thought of as a set of locations. This model of a
range is visualized in �gure 1. An individual location is described by an object
of the class Location. Each Location element is mapped to a particular slice
of a process grid. In general two locations are identical only if they come from
the same position in the same range. A subscripting syntax is used to represent
location n in range x:

Location i = x [n]

This is an important idea in HPJava. By working in terms of abstract

locations|elements of distributed ranges|one can usually respect locality of

reference without resorting explicitly to low-level local subscripts and process

ids. In fact the location can be viewed as an abstract data type incorporating

these lower-level o�sets.
Publically accessible �elds of Location include dim and crd. The �rst is

the process dimension of the parent range. The second is coordinate in that
dimension to which the element is mapped. So the access to element a [17,

23] could now be guarded by conditionals as follows:

Location i = x [17], j = y [23] ;

if(i.crd == i.dim.crd())

9

if(j.crd == j.dim.crd())

a [17, 23] = 13 ;

This is still quite verbose and error-prone. The language provides a second
distributed control construct (analogous to on) to deal with this common situa-
tion. The new construct is called at, and takes a location as its argument. The
fragment above can be replaced with

Location i = x [17], j = y [23] ;

at(i)

at(j)

a [17, 23] = 13 ;

This is more concise, but still involves some redundancy because the subscripts
17 and 23 appear twice. A natural extension is to allow locations to be used
directly as array subscripts:

Location i = x [17], j = y [23] ;

at(i)

at(j)

a [i, j] = 13 ;

Locations used as array subscripts must be elements of the corresponding ranges

of the array.
The range class has a member function

int Range.idx(Location i)

which can be used to recover the integer subscript, given a location in the range.

There is a restriction that an at(i) construct should only appear at a point

of execution where i.dim is a dimension of the active process group. In the ex-

amples of this section this means that an at(i) construct, say, should normally

be nested directly or indirectly inside an on(p) construct.

7 Distributed loops

Good parallel algorithms don't usually expend many lines of code assigning to
isolated elements of distributed arrays. The atmechanism of the previous section
is often useful, but a more pressing need is a mechanism for parallel access to
distributed array elements. The last and most important distributed control
construct in the language is called over. It implements a distributed parallel
loop. Conceptually it is quite similar to the FORALL construct of Fortran, except
that the over construct speci�es exactly where its parallel iterations are to be
performed. The argument of over is a member of the special class Index. The
class Index is a subclass of Location, so it is syntactically correct to use an
index as an array subscript7. Here is an example of a pair of nested over loops:

7But the e�ect of such subscripting is only well-de�ned inside an over construct

parametrised by the index in question.

10

float [[#,#]] a = new float [[x, y]],

b = new float [[x, y]] ;

...

Index i, j ;

over(i = x | :)

over(j = y | :)

a [i, j] = 2 * b [i, j] ;

The body of an over construct executes, conceptually in parallel, for every

location in the range of its index (or some subrange if a non-trivial triplet is

speci�ed)8. An individual \iteration" executes on just those processors holding

the location associated with the iteration. In a particular iteration, the location

component of the index (the base class object) is equal to that location. The net

e�ect of the example above should be reasonably clear. It assigns twice the value

of each element of b to the corresponding element of a. Because of the rules

about where an individual iteration iterates, the body of an over can usually only

combine elements of arrays that have some simple alignment relation relative to

one another. The idx member of range can be used in parallel updates to give

expressions that depend on global index values.

With the over construct we can give some useful examples of parallel pro-

grams. Figure 2 is the famous Jacobi iteration for a two dimensionsional

Laplace equation. We have used cyclic shift to implement nearest neighbour

communications9.

Copying whole arrays into temporaries is not an e�cient way of accessing

nearest neighbours in an array. Because this is such a common pattern of

communication, the standard library supports ghost regions. Distributed arrays

can be created in such a way that the segment stored locally is extended with

some halo. This halo caches values stored in the segments of adjacent processes.

The cached values are explicitly bought up to date by the library operation

writeHalo.

An optimized version of the Jacobi program is give in �gure 3. This version

only involves a singe array temporary. A new constructor for BlockRange is

provided. This allows the width of the ghost extensions to be speci�ed. The

arguments of writeHalo itself are an array with suitable extensions and two vec-

tors. The �rst de�nes in each dimension the width of the halo that must actually

be updated, and the second de�nes the treatment at the ends of the range|in

this case the ghost edges are updated with cyclic wraparound. The new con-

structor and new writeHalo function are simply standard library extensions.

One new piece of syntax is needed: the addition and subtraction operators are

8Formally | is being used here as an operator that combines a range and a triplet to return

an object of the iterator class Index.
9Laplace's equation with cyclic boundary conditions is not particularly useful, but it illus-

trates the language features. More interesting boundary conditions can easily be incorporated

later. Incidentally, this is a suitable place to mention that the array arguments of shift must

be aligned arrays|they must have identical distributed ranges.

11

Procs2 p = new Procs2(2, 2) ;

on(p) {

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[#,#]] u = new float [[x, y]] ;

// ... some code to initialise `u'

float [[#,#]] unx = new float [[x, y]], upx = new float [[x, y]],

uny = new float [[x, y]], upy = new float [[x, y]] ;

HPJlib.shift(unx, u, 1, 0, CYCL) ;

HPJlib.shift(upx, u, -1, 0, CYCL) ;

HPJlib.shift(uny, u, 1, 1, CYCL) ;

HPJlib.shift(upy, u, -1, 1, CYCL) ;

Index i, j ;

over(i = x | :)

over(j = y | :)

u [i, j] = 0.25 * (unx [i, j] + upx [i, j] +

uny [i, j] + upy [i, j]) ;

}

Figure 2: Jacobi iteration using shift.

12

Procs2 p(2, 2) ;

on(p) {

Range x = new BlockRange(100, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(200, p.dim(1), 1) ; // ghost width 1

float [[#,#]] u = new float [[x, y]] ;

// ... some code to initialise `u'

int [] widths = {1, 1} ; // Widths actually updated

Mode [] modes = {CYCL, CYCL} ; // Wraparound at ends.

HPJlib.writeHalo(u, widths, modes) ;

float [[#,#]] v = new float [[x, y]] ;

Index i, j ;

over(i = x | :)

over(j = y | :)

v [i, j] = 0.25 * (u [i + 1, j] + u [i - 1, j] +

u [i, j + 1] + u [i, j + 1]) ;

HPJlib.copy(u, v) ;

}

Figure 3: Jacobi iteration using writeHalo.

overloaded so that integer o�sets can be added or subtracted to Location ob-

jects, yielding new, shifted, locations. The usual access rules apply|this kind

of shifted access is illegal if it implies access to o�-processor data. It only works

if the subscripted array has suitable ghost extensions.

8 Other features

We have already described most of the important language features we propose

to implement. Two additional features that are quite important in practice but

have not been discussed are subranges and subgroups. A subrange is simply a

range which is a regular section of some other range, created by syntax like

x [0 : 49]. Subranges are created tacitly when a distributed array is sub-

scripted with a triplet, and they can also be used directly to create distributed

arrays with general HPF-like alignments. A subgroup is some slice of a process

array, formed by restricting process coordinates in one or more dimensions to

13

single values. Again they may be created implicitly by section subscripting, this

time using a scalar subscript. They also formally describe the state of the active

process group inside at and over constructs.

The framework described is much more powerful than space allows us to

demonstrate in this paper. This power comes in part from the exibility to

add features by extending the libraries associated with the language. We have

only illustrated the simplest kinds of distribution format. But any HPF 1.0 ar-

ray distribution format, plus various others, can be incorporated by extending

the Range hierarchy in the run-time library. We have only illustrated shift

and writeHalo operations from the communication library, but the library also

includes much more powerful operations for remapping arrays and performing

irregular data accesses. Our intention is to provide minimal language support

for distributed arrays, just enough to facilitate further extension through con-

struction of new libraries.

For a more complete description of a slightly earlier version of the proposed

language, see [4].

9 Discussion and related work

We have described a conservative set of extensions to Java. In the context

of an explicitly SPMD programming environment with a good communication

library, we claim these extensions provide much of the concise expressiveness

of HPF, without relying on very sophisticated compiler analysis. The object-

oriented features of Java are exploited to give an elegant parameterization of

the distributed arrays of the extended language. Because of the relatively low-

level programming model, interfacing to other parallel-programming paradigms

is more natural than in HPF. With suitable care, it is possible to make direct

calls to, say, MPI from within the data parallel program. In [3] we suggest a

concrete Java binding for MPI.

We will mention two related projects. Spar [11] is a Java-based language for

array-parallel programming. Like our language it introduces multi-dimensional

arrays, array sections, and a parallel loop. There are some similarities in syntax,

but semantically Spar is very di�erent to our language. Spar expresses paral-

lelism but not explicit data placement or communication|it is a higher level

language. ZPL [10] is a new programming language for scienti�c computations.

Like Spar, it is an array language. It has an idea of performing computations

over a region, or set of indices. Within a compound statement pre�xed by a

region speci�er, aligned elements of arrays distributed over the same region can

be accessed. This idea has certain similarities to our over construct. Com-

munication is more explicit than Spar, but not as explicit as in the language

discussed in this article.

14

References

[1] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley. ScaLAPACK User's Guide. SIAM, 1997.

[2] Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xi-

aoming Li. Experiments with HPJava. Concurrency: Practice and Experi-

ence, 9(6):633, 1997.

[3] Bryan Carpenter, Geo�rey

Fox, Xinying Li, and Guansong Zhang. A draft Java binding for MPI.

URL: http://www.npac.syr.edu/projects/pcrc/July97/doc.html.

[4] Bryan Carpenter, Guansong Zhang,

Geo�rey Fox, Xinying Li, and Yuhong Wen. Introduction to Java-Ad.

URL: http://www.npac.syr.edu/projects/pcrc/July97/doc.html.

[5] Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRC

Runtime Kernel De�nition, 1997. In preparation. For current draft, see

http://www.npac.syr.edu/projects/pcrc/July97/doc.html.

[6] Parallel Compiler Runtime Consortium. Common runtime support for

high-performance parallel languages. In Supercomputing `93. IEEE Com-

puter Society Press, 1993.

[7] R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communication optimiza-

tions for irregular scienti�c computations on distributed memory archi-

tectures. Journal of Parallel and Distributed Computing, 22(3):462{479,

September 1994.

[8] J. Nieplocha, R.J. Harrison, and R.J. Little�eld. The Global Array: Non-

uniform-memory-access programming model for high-performance comput-

ers. The Journal of Supercomputing, 10:197{220, 1996.

[9] Manish Parashar and J.C. Browne. Systems engineering for high perfor-

mance computing software: The HDDA/DAGH infrastructure for imple-

mentation of parallel structured adaptive mesh. In Structured Adaptive

Mesh Re�nement Grid Methods, IMA Volumes in Mathematics and its Ap-

plications. Springer-Verlag.

[10] Lawrence Snyder.

A ZPL programming guide. Technical report, University of Washington,

May 1997. URL: http://www.cs.washington.edu/research/projects/zpl/.

[11] Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar:

A programming language for semi-automatic compilation of parallel pro-

grams. Concurrency: Practice and Experience, 9(11):1193{1205, 1997.

15

[12] Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li,

and Yuhong Wen. PCRC-based HPF compilation. In 10th International

Workshop on Languages and Compilers for Parallel Computing, 1997. To

appear in Lecture Notes in Computer Science.

16

