
NPAC PCRC Runtime Kernel (Adlib)

De�nition

[DRAFT]

Bryan Carpenter, Guansong Zhang and Yuhong Wen

Northeast Parallel Architectures Centre,

Syracuse University,

111 College Place,

Syracuse, New York 13244-410

October 9, 1998



Contents

1 Introduction 7

2 Process Groups 9

2.1 General De�nitions . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 class Procs . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Constructors and destructors . . . . . . . . . . . . . 12

2.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 class Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Constructors and destructors . . . . . . . . . . . . . 16

2.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Implementation notes . . . . . . . . . . . . . . . . . 17

2.4 class DimensionSet . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Constructors and destructors . . . . . . . . . . . . . 18

2.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.5 Implementation notes . . . . . . . . . . . . . . . . . 20

2.5 struct Coord . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Constructors and destructors . . . . . . . . . . . . . 22

2.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.4 Related functions . . . . . . . . . . . . . . . . . . . . 25

2.6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.6 Implementation notes . . . . . . . . . . . . . . . . . 25

2.7 Group apg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



3 Ranges 31

3.1 General De�nitions . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 struct Location . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Public data �elds . . . . . . . . . . . . . . . . . . . . 35

3.3 struct Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Public data �elds . . . . . . . . . . . . . . . . . . . . 36

3.4 class Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Constructors and destructors . . . . . . . . . . . . . 37

3.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 class CollapsedRange . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 43

3.6 class DimRange . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 44

3.7 class BlockRange . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 45

3.8 class CyclicRange . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 46

3.9 class BlockCyclicRange . . . . . . . . . . . . . . . . . . . . 47

3.9.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 47

3.10 class IrregRange . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10.1 Constructors . . . . . . . . . . . . . . . . . . . . . . 48

4 Arrays 49

4.1 struct Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Constructors and destructors . . . . . . . . . . . . . 50

4.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 struct DAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Public data �elds . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Constructors . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Array shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Alignment and value-alignment . . . . . . . . . . . . . . . . 57

4.6 Accessibility and value-accessibility . . . . . . . . . . . . . . 58

5 Communication schedules 59

5.1 General features of schedules . . . . . . . . . . . . . . . . . 59

5.1.1 Value restrictions . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Type restrictions . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Shape restrictions . . . . . . . . . . . . . . . . . . . 61

5.1.4 Alignment restrictions . . . . . . . . . . . . . . . . . 61

2



5.1.5 Accessibility restrictions . . . . . . . . . . . . . . . . 62

5.1.6 Argument persistence . . . . . . . . . . . . . . . . . 62

5.1.7 E�ect . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.8 Replicated data . . . . . . . . . . . . . . . . . . . . . 62

5.1.9 Overlap restrictions . . . . . . . . . . . . . . . . . . 63

5.2 class Remap . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 class Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 class Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 class MultiShift . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 class WriteHalo . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 class Gather . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 class Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 79

5.8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 class VecGather . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 82

5.9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 class VecGatherMsk . . . . . . . . . . . . . . . . . . . . . . 84

5.10.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 84

5.10.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 class VecScatter . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 87

5.11.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 class VecScatterMsk . . . . . . . . . . . . . . . . . . . . . . 90

5.12.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 90

5.12.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.13 class ScatterComb . . . . . . . . . . . . . . . . . . . . . . . 93

5.14 class Reshape . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.15 class Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.15.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 94

3



5.15.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 class SumMsk . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.16.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 96

5.16.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.17 class Product . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.17.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 98

5.17.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.18 class ProductMsk . . . . . . . . . . . . . . . . . . . . . . . . 100

5.18.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 100

5.18.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.19 class Maxval . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.19.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 102

5.19.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.20 class MaxvalMsk . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.20.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 104

5.20.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.21 class Minval . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.21.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 106

5.21.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.22 class MinvalMsk . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.22.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 108

5.22.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.23 class All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.23.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 110

5.23.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.24 class Any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.24.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 112

5.24.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.25 class Count . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.25.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 114

5.25.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.26 class DotProduct . . . . . . . . . . . . . . . . . . . . . . . . 116

5.26.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 116

5.26.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.27 class BoolDotProduct . . . . . . . . . . . . . . . . . . . . . 118

5.27.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 118

5.27.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.28 class Maxloc . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.28.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 120

5.28.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.29 class MaxlocMsk . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.29.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 122

4



5.29.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.30 class Minloc . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.30.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 124

5.30.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.31 class MinlocMsk . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.31.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 126

5.31.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.32 class SumDim . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.32.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 128

5.32.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.33 class SumDimMsk . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.33.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 130

5.33.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.34 class ProductDim . . . . . . . . . . . . . . . . . . . . . . . . 133

5.34.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 133

5.34.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.35 class ProductDimMsk . . . . . . . . . . . . . . . . . . . . . . 135

5.35.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 135

5.35.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.36 class MaxvalDim . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.36.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 138

5.36.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.37 class MaxvalDimMsk . . . . . . . . . . . . . . . . . . . . . . 140

5.37.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 140

5.37.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.38 class MinvalDim . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.38.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 143

5.38.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.39 class MinvalDimMsk . . . . . . . . . . . . . . . . . . . . . . 145

5.39.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 145

5.39.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.40 class AllDim . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.40.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 148

5.40.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.41 class AnyDim . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.41.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 150

5.41.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.42 class CountDim . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.42.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 152

5.42.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.43 class MaxlocDim . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.43.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 154

5



5.43.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.44 class MaxlocDimMsk . . . . . . . . . . . . . . . . . . . . . . 157

5.44.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 157

5.44.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.45 class MinlocDim . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.45.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 160

5.45.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.46 class MinlocDimMsk . . . . . . . . . . . . . . . . . . . . . . 163

5.46.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 163

5.46.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 164

6 The ad++ interface 167

7 Distributed loops 169

7.1 class Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.3 Translation of overall construct by macro expansion 172

7.2 class LocBlocksIndex . . . . . . . . . . . . . . . . . . . . . 173

7.2.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 173

7.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2.3 Translation of overall construct using LocBlocksIndex174

7.3 Translation using the kernel range . . . . . . . . . . . . . . 183

7.4 Translation using the subkernel range . . . . . . . . . . . . 191

7.5 Access to ghost regions . . . . . . . . . . . . . . . . . . . . . 194

7.6 class AllBlocksIndex . . . . . . . . . . . . . . . . . . . . . 196

7.6.1 Constructor . . . . . . . . . . . . . . . . . . . . . . . 196

7.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.6.3 Use of AllBlocksIndex in the communication library 197

8 Implementation of the communication schedules 199

6



Chapter 1

Introduction

The library de�ned in this document is designed as a common runtime

kernel for manipulating HPF-style regular distributed arrays. It is not

expected that the kernel interface described here will be used directly by an

application programmer. It may not even appear directly in code generated

by a compiler. Additonal interface code, built on top of the kernel, will

probably be needed.

One example of a user-level interface to the kernel is the ad++ inter-

face. This is a set of C++ header �les which de�ne type-secure template

classes|container classes|representing distributed arrays, various macros

implementing distributed control constructs, and template functions for per-

forming transformations on distributed arrays. The latter functions ful�l a

role something like the array transformational intrinsics of Fortran 90. In

particular, they abstract communication.

Compiler-level interfaces, on the other hand, provide any additional

run-time structure assumed by the distributed array model of the source

language, and make the kernel callable from the target language of the

compiler. In principle this target language could be machine code, but

historically the library has been used by source-to-source translators tar-

getting Fortran 77 or Fortran 90. So existing \compiler-level" interfaces to

the kernel are actually Fortran bindings. A Java interface is under devel-

opment.

The kernel itself provides:

� A distributed array descriptor (DAD), implemented as a series of

C++ classes.

� A large set of communication schedules implementing Fortran-90 like

7



array transformational functions and other basic communication op-

erations.

� As part of the DAD|support for \distributed control". In practise

what this means is support for \distributed loops": support for trans-

lation of parallel loops whose index range is distributed over some

processor set.

This document is not supposed to be read in isolation. The underlying

model of data distribution should be understood, for example by learning

the user-level interface to the library, before attempting direct use of the

kernel.

The next three chapters de�ne the components of the Adlib array

descriptor|groups, ranges, then the array descriptor record itself. Chapter

5 describes the communication library. This will followed by a chapter on

the ad++ interface, then a chapter about using the Adlib descriptor tech-

nology in translation of distributed loops. A �nal chapter will discuss the

implementation of the communication schedules.

8



Chapter 2

Process Groups

The Adlib idea of a process group is analogous to the MPI idea of group.

The Adlib version is more specialized. Adlib groups are frequently cre-

ated and modi�ed in the runtime. For e�ciency it is important to provide

a specialized lightweight representation|one cannot a�ord to import the

general group technology of MPI. For example, Adlib needs the structure

of multi-dimensional grids without the overheads involved in building an

MPI Cartesian communicator.

The most direct analogue of the MPI Cartesian communicator is the

Adlib process array, represented by a Procs object. Even in Adlib, con-

structing a process array is a relatively expensive procedure. It involves

initializing several sub-structures. The general group object of Adlib|class

Group|has a much more streamlined implementation. Group is essentially

a handle class. Its objects contain a pointer to a parent Procs object plus

a few extra words de�ning a subset of that Cartesian grid. Group objects

are created, copied, changed, and discarded freely within the library code.

They can be handled with similarly free rein in user code.

2.1 General De�nitions

Initial process group: The set processes on which an Adlib program is

initiated.

Active process group: The set of processes notionally sharing the local

thread of control. This may be the initial process group or it may

be an arbitrary subset of the initial process group. When an Adlib

program starts the active process group is the initial process group.

9



The logical active process group may be changed by operations that

cause some processors to skip a block of code (leaving the remaining

processors active for that block), or cause the current active process

group to be partitioned into a set of smaller groups, with each group

acting independently for some time.

Every process executing an Adlib program must maintain a static

data structure, apg, describing the current active process group. This

variable is read by collective functions in the library to determine

which processes are cooperating in the operation. If the logical active

process group changes, the variable apg must be updated (see section

2.7) before invoking a collective operation. During the library initial-

ization procedure, apg is set to a value describing the initial process

group.

Collective object: A collection of similar objects, one in every process from

a particular group, which can also be viewed as a single logical entity.

Collective operation: An operation executed cooperatively by all members

of the active process group. Typically this will take the form of a

call to the same function with the same arguments. In this context

two arguments are \the same" if they are simple expressions with

the same value, or are references to local components of the same

collective object.

A collective operation may or may not involve synchronization be-

tween members of the active process group. In general the program-

mer should work on the (worst case) assumption that synchronization

is implied. If any member of the active process group fails to engage

in a collective operation that others are executing, or executes col-

lective operations in a di�erent order to other members of the group,

the program is liable to fail.

Examples of collective operations are constructors for collective ob-

jects and collective communication operations.

Process array: Some subset of the initial process group, organized in a

Cartesian grid.

Coordinate: Dimensions of a process array are labelled by coordinates.

Process group: In general, either a process array, or some slice of a process

array de�ned by uniquely �xing the coordinate in one or more of its

dimensions.

10



Process id: An identi�er relative to a particular process group1. If the

size of the group is P , the id is in the range 0 : : : P � 1. Relative to

a one-dimensional process array, the value of the process id coincides

with the value of the unique coordinate. The id relative to the initial

process group is also called the absolute process id.

1Called a rank in MPI. Following Fortran, we will reserve \rank" for the dimension-

ality of arrays or process arrays.

11



2.2 class Procs

A process array is a set of processes organized in a multi-dimensional grid.
A process array is described by a collective object [?] with local components
of class Procs. The public interface of the Procs class is

class Dimension ;

class DimensionSet ;

class Coord ;

class Group ;

class Procs {

public :

Procs(const int _rank, int* _n, int* subIds = 0) ;

~Procs() ;

int rnk() const ;

Dimension dim(const int r) const ;

DimensionSet dims() const ;

int member() const ;

int size() const ;

int id() const ;

int id_abs(const int id) const ;

int lead_abs() const ;

Group operator/(const Coord& i) const ;

private :

Procs() ;

Procs(const Procs& p) ;

...

} ;

2.2.1 Constructors and destructors

Procs(const int _rank, int* _shape, int* ids = 0)

The normal constructor. Initializes a Procs object describing a process grid

of rank rank and shape shape. The rank is a non-negative integer. If it

12



is zero the new group is a scalar \grid" containing a single process. The

shape is a vector of rank positive integer extents. The size, P , of the new

grid is the product of the elements of shape. This must be less than or

equal to the size of the active process group.

If the optional argument ids is speci�ed, this should be a vector of P

distinct values, each in the range 0; : : : ; A � 1. A is the size of the group

de�ned by the current value of apg. It de�nes a mapping of the new process

group into the active process group. If the ids argument is omitted, the

library selects an arbitrary mapping. In either case if P is less than A, some

members of the active process group are not identi�ed with any member

of the new grid. At most one member of the new grid may be mapped to

each process of the active group.

This constructor is a collective operation, and calls to it should obey

the normal rules for collective operations.

Procs()

The default constructor is private. Creating an uninitialized Procs object

is not allowed in normal code.

Procs(const Procs& p)

The copy constructor is private. Copying a Procs object is not allowed in

normal code.

~Procs()

Destructor.

2.2.2 Methods

rnk()

An inquiry function returning the rank (dimensionality) of the grid.

dim(const int r)

An inquiry function returning an object that describes the rth dimension

of the grid. The argument r is in the range 0; : : : ; R � 1 where R is the

rank of the grid.

dims()

An inquiry function returning an object that describes the complete set of

dimensions of the grid.

13



member()

An inquiry function which returns 1 if a process from the grid is mapped

to the local process, and 0 if not. In other words, a boolean function that

returns true i� this process is a member of the grid.

size()

An inquiry function returning the total number of processes, P , in the grid.

id()

An inquiry function that returns the id of the local process relative to this

grid. Its value is de�ned if and only if the local process is a member of the

grid, in which case the result is in the range 0; : : : P � 1.

id_abs(const int id)

A conversion function from id relative to this grid to id relative to the initial

process group|ie, to absolute process id.

lead_abs()

The absolute id of the lead process of the grid|equivalent to id abs(0).

operator/(const Coord& i)

See section 2.6.

2.2.3 Examples

int shp [1] = {4} ;

Procs p(1, shp) ;

Creates a one-dimensional process array representing a linear set of 4 pro-

cesses. The active process group must contain at least 4 processes when

the declaration of p is encountered.

int shp [4] = {2, 2, 2, 2} ;

Procs h(4, shp) ;

Creates a process array representing a 4-dimensional binary hypercube.

The active process group must contain at least 16 processes when the dec-

laration of h is encountered.

14



int shp [2] = {2, 3}, ids [6] = {0, 1, 3, 6, 10, 15} ;

Procs q(2, shp, ids) ;

Creates a process array representing a 2 by 3 grid with a user-de�ned map-

ping to members of the active process group. The active process group

must contain at least 16 processes when the declaration of q is encountered

(because ids includes values up to 15).

Procs s(0, 0) ;

Creates scalar process grid containing a single process.

15



2.3 class Dimension

A process dimension is a dimension of a process array. A process dimension
is described by a collective object with local components of class Dimension.
The public interface of the Dimension class is

class Coord ;

class Dimension {

public :

Dimension() ;

int size() const ;

int crd() const ;

operator int() ;

int str_prc() const ;

operator int() const ;

private :

...

} ;

2.3.1 Constructors and destructors

Dimension()

The default constructor. Initializes a Dimension object describing a col-

lapsed dimension. This is a degenerate, \internal" dimension, not associ-

ated with a process array.

2.3.2 Methods

size()

An inquiry function returning the extent, N , of the dimension. For a di-

mension of a process array, this is the extent speci�ed in the shape vector

for that array. For a collapsed dimension, N de�ned to be 1.

crd()

An inquiry function returning an integer coordinate for the local process

relative to this process dimension. For a process array dimension the result

16



value is only de�ned if the local process is a member of the parent array. It

is then in the range 0; : : : ; N � 1, where N is the extent of the dimension.

For a collapsed dimension, the result is 0.

str_prc()

An inquiry function de�ning the stride in process id (relative to the par-

ent array) associated with this dimension. For a collapsed dimension the

function is ill-de�ned.

2.3.3 Operators

operator int()

Returns a non-zero value if the dimension belongs to a process array. Re-

turns 0 if the dimension is collapsed. [Replace this with a dims mem-

ber? In any case, more consistent with Range to provide conversion to

DimensionRep*]

2.3.4 Examples

int shp [2] = {2, 3} ;

Procs p(2, shp) ;

Dimension d = p.dim(0), e = p.dim(1) ;

Dimension f ;

Create a process array p representing a 2 by 3 grid. The active process group

must contain at least 6 processes when the declaration of p is encountered.

Set d to represent the �rst dimension of p and e to represent the second.

Set f to a collapsed dimension.

The inquiries d.size(), e.size() and f.size() return 2, 3 and 1

respectively. The inquiries d.crd() and e.crd() will return values in the

ranges f0; 1g and f0; 1; 2g respectively if the inquiry p.member() returns

value 1. They return unspeci�ed values if p.member() returns 0. The

inquiry f.crd() will return 0.

2.3.5 Implementation notes

Dimension is currently implemented as a simple, non-reference-counting

handle class. If it is a process array dimension it contains a pointer to an

object of type DimensionRep associated with the parent Procs structure.

If it is collapsed dimension it contains a null pointer.

17



2.4 class DimensionSet

A dimension set is some subset of the dimensions of a particular process
array. A dimension set is described by a collective object [?] with local com-
ponents of class DimensionSet. The public interface of the DimensionSet
class is

class Dimension ;

class DimensionSet {

public :

DimensionSet() ;

int member(Dimension d) const ;

int contains(DimensionSet ds) const ;

operator int() const ;

DimensionSet operator+(DimensionSet ds) const ;

DimensionSet operator-(DimensionSet ds) const ;

DimensionSet& operator+=(DimensionSet ds) ;

DimensionSet& operator-=(DimensionSet ds) ;

DimensionSet operator+(Dimension d) const ;

DimensionSet operator-(Dimension d) const ;

DimensionSet& operator+=(Dimension d) ;

DimensionSet& operator-=(Dimension d) ;

private :

...

} ;

2.4.1 Constructors and destructors

DimensionSet()

The default constructor. Initializes a DimensionSet object to an empty

set.

2.4.2 Methods

member(Dimension d)

18



Inquiry function. Returns a non-zero result if d is a member of this set,

and 0 if it is not.

contains(DimensionSet ds)

Returns a non-zero result if this set contains ds and 0 if it does not.

2.4.3 Operators

operator int()

Returns a non-zero value if the set is non-empty, or 0 if it is empty.

operator+(DimensionSet ds)

Create a new set containing the union of this set with ds. If both input

sets are non-empty, they must contain dimensions from the same process

array.

operator-(DimensionSet ds)

Create a new set by subtracting ds from this set. If both input sets are

non-empty, they must contain dimensions from the same process array.

operator+=(DimensionSet ds)

Replace this set by its union with ds. If both input sets are non-empty,

they must contain dimensions from the same process array.

operator-=(DimensionSet ds)

Subtract ds from this set. If both input sets are non-empty, they must

contain dimensions from the same process array.

operator+(Dimension d)

Create a new set by adding a dimension to this set. If the set is non-empty

before this operation d must be collapsed or a dimension from the same

process array as the current elements. Adding a collapsed dimension, or

one already in the set, does not change the set.

operator-(Dimension d)

Create a new set by removing d from this set. If the set is non-empty before

this operation d must be collapsed or a dimension from the same process

array as the current elements. Removing a collapsed dimension, or one not

in the set, does not change the set.

19



operator+=(Dimension d)

Add a dimension to this set. If the set is non-empty before this operation

d must be collapsed or a dimension from the same process array as the

current elements. Adding a collapsed dimension, or one already in the set,

does not change the set.

operator-=(Dimension d)

Remove a dimension from this set. If the set is non-empty before this

operation d must be collapsed or a dimension from the same process array

as the current elements. Removing a collapsed dimension, or one not in the

set, does not change the set.

2.4.4 Examples

int shp [3] = {2, 2, 2} ;

Procs p(3, shp) ;

DimensionSet ds ;

ds += p.dim(0) ;

ds += p.dim(2) ;

Create a process array p representing a 3 dimensional binary hypercube.

Create ds as an empty dimension set, then add the �rst and third dimension

of p to it.

2.4.5 Implementation notes

DimensionSet is currently realized as a simple, one-word record contain-

ing a long integer used as a bitmask. All the members can be imple-

mented as short inline functions using bitwise operations|this class is very

lightweight.

This implementation imposes the Adlib kernel's only limitation on

dimensionality|the number of process dimensions in a process array should

normally be less than the number of bits in a long integer. Unless, for

unknown reasons, an application involves a process array with many di-

mensions of unit extent, this constraint is not really stronger than the tacit

assumption that all processes can be distinctly labelled by a single inte-

ger. On a 32-bit computer, for example, this implementation theoretically

supports binary hypercubes of up to about 4 billion processors. . .

20



2.5 struct Coord

A record that bundles together a process dimension and a coordinate value
in that dimension. The de�nition of the Coord struct is

class Dimension ;

struct Coord {

Dimension dim ;

int crd ;

} ;

21



2.6 class Group

A process group is described by a collective object [?] with local compo-
nents of class Group. The public interface of the Group class is

class Procs ;

class DimensionSet ;

class Coord ;

class Group {

public :

Group() ;

Group(const Procs& p) ;

const Procs* prc() const ;

DimensionSet dims() const ;

int member() const ;

int size() const ;

int id() const ;

int id_prc(const int id) const ;

int id_abs(const int id) const ;

int lead_prc() const ;

int lead_abs() const ;

void restrict(Dimension d, const int coord) ;

void restrict(Dimension d) ;

void restrict(DimensionSet ds) ;

inline Group operator/(const Coord& i) const ;

inline Group& operator/=(const Coord& i) ;

private :

...

} ;

2.6.1 Constructors and destructors

Group()

The default constructor. Creates an uninitialized Group object.

22



Group(const Proc& p)

Conversion constructor. Initializes a Group object representing all processes

in process array p. By de�nition p is the parent process array of the con-

structed group. The new group object can subsequently be reduced to a

subset of p by using the restrict members below.

2.6.2 Methods

prc()

An inquiry function returning a pointer to the local Procs object associated

with the parent process array.

dims()

An inquiry function returning the e�ective dimension set of this group.

This is a subset of the dimensions of the parent process array,

member()

An inquiry function that returns a non-zero value if the local process is a

member of the group, and 0 if not.

size()

An inquiry function returning the total number of processes, P , in the

group.

id()

An inquiry function that returns the id of the local process relative to this

group. Its value is de�ned if and only if the local process is a member of

the group, in which case it is in the range 0; : : : P � 1.

id_prc(const int id)

A conversion function from id relative to this group to id relative to the

parent process array.

id_abs(const int id)

A conversion function from id relative to this group to id relative to

the initial process group|ie, to absolute process id. Equivalent to

prc()->id abs(id prc(id))

23



lead_prc()

The id relative to the parent process array of the lead process of this group|

equivalent to id prc(0).

lead_abs()

The absolute id of the lead process of the group|equivalent to id abs(0).

restrict(Dimension d, const int coord)

Reduce the process group by restricting the coordinate in d to the value

coord. The operation removes d from dims(). It is ill-de�ned if d is not a

member of dims() beforehand. It is a null operation if d is collapsed.

restrict(Dimension d)

Reduce the process group by restricting the coordinate in d to the value

associate with the local process, equivalent to restrict(d, d.crd()). The

operation is ill-de�ned if the local process is not a member of the parent

process array, or if d is not a member of dims() beforehand. It is a null

operation if d is collapsed.

restrict(DimensionSet ds)

Reduce the process group by restricting the coordinate in all dimensions

from ds to the values associate with the local process. Equivalent to apply-

ing restrict(d) for every member, d, of ds. The operation is ill-de�ned

if the local process is not a member of the parent process array, or if ds is

not a subset of dims() beforehand.

2.6.3 Operators

operator/(const Coord& i)

Create a new group formed by restricting this group by i. The inline
de�nition is

Group operator/(const Coord& i) const {

Group result(*this) ;

result.restrict(i.dim, i.crd) ;

return result ;

}

operator/=(const Coord& i)

24



Restrict this group by i. The inline de�nition is

inline Group& operator/=(const Coord& i) {

restrict(i.dim, i.crd) ;

return *this ;

}

2.6.4 Related functions

Procs :: operator/(const Coord& i)

Create a new group formed by restricting this process array by i. The
inline de�nition is

Group Procs :: operator/(const Coord& i) const {

Group result(*this) ;

result.restrict(i.dim, i.crd) ;

return result ;

}

2.6.5 Examples

int shp [2] = {2, 2} ;

Procs p(2, shp) ;

Coord c(p.dim(0), 0), d(p.dim(1), 1) ;

Group q = p / c ;

Group r = q / d ;

These groups are illustrated in �gure 2.1. The dimension set of q contains

just p.dim(1), and dimension set of r is empty.

2.6.6 Implementation notes

Group can be realized as a simple three-word record containing a pointer

to the parent Procs object, a DimensionSet (one word) representing the

set of e�ective dimensions, and an integer specifying the id relative to the

parent process array of the lead process of the group. These are the values

returned by prc, dims and lead prc respectively.

25



r

q

p

p1

p2

Figure 2.1: Examples of process groups. The square boxes represent the 4

processes in the process array p. The dashed lines embrace groups p, q and

r.

26



2.7 Group apg

The static variable apg is accessed by most of the collective operations in
the library. Its value should re
ect the currently e�ective active progress

group. Its declaration is

extern Group apg ;

When an Adlib program starts the value of apg represents the initial process

group. If collective operations are to function properly there is an onus on

the programmer to maintain the value of apg consistently. In this section

three common idiomatic ways of modifying the active process group are

discussed.
The �rst idiom involves a conditional construct which restricts the set of

processes performing a block of code to some group, p. Membership of the
local process in this group is determined by calling p.member(), as follows:

if(p.member()) {

...

}

If it is necessary to invoke collective library operations inside the construct,
apg must be reset appropriately. Assuming the construct appears at the
point where p is a subset of the active process group, the logical active
process group inside the construct will be the whole of p. Appropriate
manipulations of apg are

Group apgSave = apg ;

if(p.member()) {

apg = p ;

...

}

apg = apgSave ;

The only subtlety is the need to save the old value of apg so that it can
be restored on completion of the construct. With these manipulations of
the apg variable we can safely invoke collective operations before, during
and after the conditional construct. This idiom will sometimes be called an
on construct. In the ad++ interface to Adlib macros ON/NO are de�ned to
allow the whole of the fragment above to be written as

ON(p) {

...

} NO(p) ;

A second common idiom for modi�ying apg occurs when the logical
active process group is partitioned by breaking up one of its process di-
mensions. Suppose the current active process group is a multi-dimensional

27



array of processes. One of its process dimensions is d. Suppose we need
to perform operations collectively across dimensions orthogonal to d, but
independently for each value of the d coordinate. In this case the value of
apg should be temporarily changed as follows

Group apgSave = apg ;

apg.restrict(d) ;

...

apg = apgSave ;

In the ad++ interface, for example, this kind of manipulation of apg occurs

in the AT/TA construct and OVERALL/ALLOVER distributed loop.
The preceding idiom allows for regular partitioning of the active pro-

cess group across one of its dimensions. A di�erent technique can be used
to achieve arbitrary partitioning. Suppose each of A1; : : : ; An is a set of
processes, and together they partition the current active process group, A.
For each i in 1; : : : ; n, ai is a vector of ids (relative to A) for the processes
in Ai, and ri and si de�ne a rank and a shape for a grid of size jAij. Now,
if the local process is a member of Al, the following constructor call

Procs p(rl, sl, al)

creates n logically distinct collective objects representing non-overlapping
process arrays. An on construct using p will now partition the active process
group as required. For example, suppose the current active process group
has 5 processes. We can partition these temporarily into groups of 2 and 3
as follows

int shp [1], *ids ;

if(apg.id() < 2) {

shp [0] = 2 ;

ids = {0, 1} ;

}

else {

shp [0] = 3 ;

ids = {2, 3, 4} ;

}

Procs p(1, shp, ids) ;

Group apgSave = apg ;

if(p.member()) {

apg = p ;

...

}

apg = apgSave ;

28



This use of the Procs constructor departs slightly from usual rules for

collective operations, because when the constructor is called the value of

apg is the original active process group, but its arguments take di�erent

values in sectors of that group which will later be in separate partitions.

Notice that the idioms we have introduced in this section can be nested

freely. As usual, the only subtlety is in ensuring that old values of the

active process group are restored properly when the constructs complete.

This can be achieved either by using a suitable series of automatic variables

(like apgSave), or by using an explicit stack of group objects.

29



30



Chapter 3

Ranges

An Adlib range is a map from an integer interval 0; : : : ; N � 1 into a pro-

cess dimension. Each value, or global subscript, in the interval is mapped

to a particular process coordinate. While the library does not support

completely general, irregular mappings from global subscript to process co-

ordinate, it does provide many of the most popular options (block, cyclic,

block-cyclic, etc). In particular the allowed mappings support all distribu-

tion formats and intra-dimensional alignments of HPF 1.0, and the irregular

block distribution format of HPF 2.0.

Adlib currently supports three kinds of range, distinguished by an in-

teger called the level of the range. The simplest distribution formats of

HPF (including simple block and simple cyclic distribution) are described

by level 1 ranges. Block-cyclic distribution format is described by a level

2 range. For completeness, Adlib adds level 0 ranges. These are ranges

that describe an unadorned process dimension, or a subrange of a process

dimension.

3.1 General De�nitions

Level: A non-negative integer, characteristic of any range.

Primitive range: The range of a process dimension. The global subscripts

are simply the coordinates of the process dimension.

A primitive range has level 0.

Subrange: A range de�ned as a (strided) subinterval of some parent range.

A subrange retains an alignment relation to the parent range|the

mapping of a subrange element to the process dimension is the same

31



as that of the corresponding element of the parent range. Subranges

can be used to implement the general alignment options of HPF.

The level of a subrange is the same as the level of the parent range.

Template range: A range that is not a subrange of any range except it-

self. Template ranges thus include primitive ranges, block-distributed

ranges with (in HPF terms) identity alignment, and cyclic-distributed

ranges with identity alignment.

Template ranges can be used to represent the dimensions of an HPF

template.

Parent template range: Any range is a subrange of its unique parent tem-

plate.

Kernel range: Any range of level higher than 0 is distributed over some

kernel range.

The level of a range's kernel one less than range's own level. For

example, the kernel of a range with HPF-like block distribution or

simple cyclic distribution is a primitive range|a process-dimension

range. The kernel of a range with HPF-like block-cyclic distribution,

on the other hand, is a range with simple cyclic distribution.

Global subscript: The primary subscript associated with a range. A value

from the interval 0; : : : ;size()�1. Sometimes just called the sub-

script.

Template subscript: For any element of a range, the associated global

subscript in the parent template range.

Kernel subscript: For any element of a range, the associated global sub-

script in the kernel range (for level 1 ranges this is the process coor-

dinate).

Block: The section of a range associated with a particular �xed value of the

kernel subscript (for level 1 ranges, the section of the range mapped

to a particular process coordinate). Any element of the range lies

in a particular block. Note that elements of a block need not have

contiguous global subscripts|in cyclic distribution format, adjacent

elements of the block have template subscript di�ering by the extent

of the kernel.

Shell subscript: For any element of a range, a subscript identifying the

position of the element within its own block. In general there is

32



6

8

1

2

3

4

2

4

5

7

9

10

3

5

0 8

9

10

12

13

23

17

18

19

20

21

22

1

a) global subscript

0

14

0

1 1 1

2 2

0

32

1

2

3

0

3

0 0

1 1

0

d) shell subscript

2

3

2

3 3 3

2

4

0

0

0

1

1 4

0

16

6

7 11 15

b) template subscript

4

2

2

2

3

3

31 4

5

5

5

5

c) kernel subscript

1

Figure 3.1: Illustration of various subscripts for a block-distributed sub-

range.

a one-to-one mapping between between legal kernel-subscript/shell-

subscript pairs and legal template subscripts.

33



0

0

0

2

2

a) global subscript

4

5 6 7

8 9

2

4

5

5

4

5

5

1 2

4

4

0 1

1

3

0 1

2

1

2

1 1

2

0 0

3

9

22

b) template subscript

1

2

3

0

3 3

22 2

d) shell subscript

3

0 0

1 1 1

3

7

4

6

12 14 16

18

2

c) kernel subscript

3

3

3

3

0

20

13 15 17

19 21 23

118 10

0 1 3 5

Figure 3.2: Illustration of various subscripts for a cyclic-distributed sub-

range with stride 2.

34



3.2 struct Location

A record that bundles together a process dimension, a coordinate, a tem-

plate subscript, and any shell subscripts implied by a particular global

subscript value in a particular range.
The interface of the Location struct is

struct Location : public Coord {

int tem ;

int sub ;

int blk ;

} ;

The Location record does not include the global subscript itself. This

means that a Location record constructed from a subrange is identical to

a Location record representing the aligned element of the parent range,

although global subscript relative to the two ranges are generally di�erent.

3.2.1 Public data �elds

Coord

The dim and crd �elds of the base class should de�ne the process dimension

of the parent range, and the associated coordinate of processes holding the

location.

tem

The template subscript associated with the location.

sub

The shell subscript associated with the location. Unde�ned if the range has

level 0.

blk

Used only for level 2 ranges. This �eld speci�es the block that contains the

location. Technically it is a shell subscript in the immediate kernel of the

parent range (that kernel being a level 1 range).

35



3.3 struct Block

A record parametrizing an individual block of a range. It includes size

(count) of the block, together with global, template and shell subscript

bases and steps.
The interface of the Block struct is

struct Block {

int count ;

int glb_bas, glb_stp ;

int tem_bas, tem_stp ;

int sub_bas, sub_stp ;

} ;

3.3.1 Public data �elds

count

The number of elements in the block.

glb_bas

The global subscript of the �rst element in the block.

glb_stp

The increment of the global subscript between adjacent elements in the

block.

tem_bas

The template subscript of the �rst element in the block.

tem_stp

The increment of the template subscript between adjacent elements in the

block.

sub_bas

The shell subscript of the �rst element in the block.

sub_stp

The increment of the shell subscript between adjacent elements in the block.

36



3.4 class Range

A range is a mapping from an integer interval to a process dimension. A

range is described by a collective object with local components of class

Range. The public interface of the Range class is given in �gure 3.3.

The constructors of the Range class itself do not implement any speci�c

distribution formats. These are provided by the constructors for a series of

derived classes.

3.4.1 Constructors and destructors

Range()

The default constructor. Creates a null (uninitialized) range object. The

only members that can legally be applied to such an object are the assign-

ment operator=(const Range& x) and the copy constructor.

Range(const Range& x)

Copy constructor. Range is implemented as a reference-counted handle class

to an object of type RangeRep. The copy constructor copies the reference

and increments the reference count in the representation object.

~Range()

Destructor. If the range is non-null, the representation object's reference

count is decremented. If this reduces the count to 0, the representation

object is deleted.

3.4.2 Methods

size()

An inquiry function returning the extent of the range.

dim()

An inquiry function returning the underlying process dimension. For a

collapsed range this is a collapsed dimension.

tem()

An inquiry function returning the parent template range.

bas()

37



class Range {

public :

Range() ;

Range(const Range& x) ;

~Range() ;

Range& operator=(const Range& x) ;

int size() const ;

Dimension dim() const ;

Range tem() const ;

int bas() const ;

int str() const ;

int lev() const ;

Range ker() const ;

Range shell() const ;

Format format() const ;

Range subrng(const int extent,

const int base = 0, const int stride = 1) const ;

void location(Location* loc, const int glb) const ;

void block(Block* blk, const int ker_glb) const ;

int local(int* glb) const ;

Range subker() const ;

int volume() const ;

int offset(const Location& loc) const ;

int disp(const int sub) const ;

int step(const int sub_stp) const ;

Location operator()(const int k) ;

int idx(const Location& loc) const ;

} ;

Figure 3.3: Public interface of the Range class.

38



An inquiry function returning the alignment base of this range in the parent

template range. Element 0 of this range corresponds to element bas() in

the template range.

str()

An inquiry function returning the alignment stride of this range relative

to the parent template range. Adjacent elements of this range correspond

to elements separated by str() in the template range. The result may be

positive or negative (not zero).

lev()

An inquiry function returning the level of this range. Zero for (a range

describing) a process dimension or subrange of a process dimension, positive

for any other range.

ker()

An inquiry function returning the kernel range. In general this is a range

of level one lower than this range. Result is unde�ned for level 0 ranges.

shell()

An inquiry function returning the shell range. This is a collapsed range

large enough to describe any block of the parent template range. Result is

unde�ned for level 0 ranges.

format()

An inquiry function returning a code de�ning the distribution format of
this range. The result is a member of the enumeration type:

enum Format {DIST_PRIMITIVE, DIST_COLLAPSED,

DIST_BLOCK, DIST_CYCLIC, DIST_IRREG, ...} ;

subrng(const int extent, const int base, const int stride)

Returns a Range object representing a subrange of this range. The size of
the subrange is extent and its elements are labelled 0; : : : ;extent�1. The
subrange includes elements

base, base + stride, base + 2 * stride, ...,

base + (extent - 1) * stride

39



from the parent. The elements of the subrange are mapped to the under-

lying process dimension in the same way as the corresponding elements of

the parent range (they are aligned with the corresponding elements of the

parent). The value of stride must be positive or negative (not zero). The

values of base and base + (extent - 1) * stride must be in the range

0; : : : ;size()�1. If the stride actual argument is omitted, it defaults to

1. If the base actual argument is also omitted, it defaults to 0.

If this range (the parent) is itself a subrange, the alignment parameters

base and stride for the new subrange are composed with those of the

parent, to give a simple map to the common template range.

location(Location* loc, const int glb)

Overwrites *loc with a location record corresponding to the element of the

range with global subscript glb.

block(Block* blk, const int ker_glb)

This function is de�ned only for ranges with level higher than 0. Given

a kernel subscript value, ker glb, writes the parameters of the associated

block in *blk. Used in translation of parallel loops|see section 7 for ex-

amples.

The value written to blk->glb bas is the smallest value of the global

subscript contained in the block. The corresponding values of the template

subscript and shell subscript overwrite blk->tem bas and blk->sub bas

respectively. The number of active elements in the block overwrites

blk->count.

The di�erence in the values of global, template and shell subscripts

between adjacent active elements in the block overwrite blk->glb stp,

blk->tem stp and blk->sub stp respectively.

local(int* glb)

This function is de�ned only for level 0 ranges, and then only if the local

process is a member of the process array to which dim() belongs. It returns

the value 1 if the local process holds an element of the range and zero

otherwise. If the range is primitive|a complete process dimension, the

result is always non-zero. For a subrange it may be zero. Used in translation

of parallel loops|see section 7 for examples.

If the result is non-zero, the value of the global subscript of the local

process with respect to the range overwrites *glb. If the range is primi-

tive, the global subscript is value of the local coordinate. For a subrange

of a primitive range it is (crd - bas()) / str() where crd is the local

coordinate.

40



subker()

A subrange of the kernel, including all elements of the kernel for which the

function block de�nes a non-empty block. Used to optimize the procedure

for enumerating all blocks of a range|see section 7. Result is unde�ned

for level 0 ranges.

volume()

A bound on the number of elements associated with any single process for

an array allocated with this range. This member is used directly to control

the allocation of memory for elements of distributed arrays.

offset(const Location& loc)

Returns the total o�set for the location loc. For any legal value of loc the
inequality

offset(loc) < volume()

holds.

disp(const int sub)

Translation from shell subscript, sub, to an o�set (displacement) in a local

array segment. This function is de�ned only for rangeswith level higher than

0. It is often the identity function (returning the value of its argument), but

may, for example add an o�set if the range has ghost regions, or implement

some more complicated packing function for arrays with strided alignment.
For a level 1 range the identity

offset(i) = disp(i.sub)

holds. Especially for collapsed ranges this formula provides a simple way to
compute the o�set without introducing a Location record. Note that for
any range with level higher than zero we have the identity

disp(sub) = shell().disp(sub)

so for any legal value of sub the inequality

disp(sub) < shell().volume()

holds.
For level 2 ranges, the result of disp does not include the contribu-

tion to the total o�set arising from the displacement of the block base
(parametrized by the blk �eld int the location record). However a com-
plete identity in the level 2 case is

41



offset(i) = disp(i.sub) +

shell().volume() * ker().disp(i.blk)

step(const int sub_stp)

This function returns the di�erence in the value of disp between two points

in the same block of the range separated in shell subscript by sub stp. This

member normally implements the identity function (returning the value of

its argument), but it may divide by a scaling factor if the range implements

a non-trivial packing scheme for arrays with strided alignment.

idx(const Location& loc)

Returns global subscript in this range associated with location loc. Equiv-
alent to

int idx(const Location& loc) const {

return (loc.tem - bas()) / str() ;

}

3.4.3 Operators

operator()(const int glb)

Returns a Location object associated with global subscript value glb.

Equivalent to

Location operator()(const int glb) {

Location res;

location(&res, glb) ;

return res ;

}

operator=(const Range& x)

Assignment operator. Copies the reference in handle x and increments

the reference count in the representation object. Decrements the reference

count of (and deletes, if necessary) any representation object referenced by

the assignment variable prior to the assignment.

42



3.5 class CollapsedRange

The class CollapsedRange is a subclass of Range describing collapsed

(sequential) ranges. The format inquiry returns DIST COLLAPSED for a

CollapsedRange or any subrange.
The public interface of the CollapsedRange class is

class CollapsedRange : public Range {

public :

CollapsedRange(const int extent) ;

}

3.5.1 Constructors

CollapsedRange(const int extent)

Creates a collapsed template range. This is a range of size extent mapped

entirely to the local process. The dim() inquiry applied to a collapsed

range returns a collapsed dimension. The level of a collapsed range is 1.

The ker() inquiry will return a primitive range representing a collapsed

dimension1.

1This is di�erent to a null range.

43



3.6 class DimRange

The class DimRange is a subclass of Range describing primitive ranges. The

format inquiry returns DIST PRIMITIVE for a DimRange or any subrange.
The public interface of the DimRange class is

class DimRange : public Range {

public :

DimRange(Dimension dim) ;

}

3.6.1 Constructors

DimRange(Dimension dim)

Creates a level 0 template range (a primitive range) describing dim. The size

of this range is dim.size(). The dim() inquiry applied to the constructed

range returns the constructor argument. The ker() inquiry is unde�ned.

44



3.7 class BlockRange

The class BlockRange is a subclass of Range describing uniform block-

distributed ranges. The format inquiry returns DIST BLOCK for a

BlockRange or any subrange.
The public interface of the BlockRange class is

class BlockRange : public Range {

public :

BlockRange(const int extent, Dimension dim) ;

BlockRange(const int extent, Dimension dim,

const int wlo, const int whi) ;

}

3.7.1 Constructors

BlockRange(const int extent, Dimension dim)

Creates a block-distributed range of extent extent and kernel dim. The
block size is

(extent + dim.size() - 1) / dim.size()

The constructed range is a template range.

BlockRange(const int extent, Dimension dim,

const int wlo, const int whi)

Similar to the constructor above, but arrays constructed with this range

(or its subranges) have ghost regions of width wlo, whi at the upper and

lower edges of each block of the range.

45



3.8 class CyclicRange

The class CyclicRange is a subclass of Range describing cyclically-

distributed ranges. The format inquiry returns DIST CYCLIC for a

CyclicRange or any subrange.
The public interface of the CyclicRange class is

class CyclicRange : public Range {

public :

CyclicRange(const int extent, Dimension dim) ;

}

3.8.1 Constructors

CyclicRange(const int extent, Dimension dim)

Creates a cyclically-distributed range of extent extent and kernel dim. The
number of cycles is

(extent + dim.size() - 1) / dim.size()

The constructed range is a template range.

46



3.9 class BlockCyclicRange

The class BlockCyclicRange is a subclass of Range describing block-

cyclically-distributed ranges. The format inquiry returns DIST BLOCK for

a BlockCyclicRange (or any subrange). The lev inquiry returns the value

2.
The public interface of the BlockCyclicRange class is

class BlockCyclicRange : public Range {

public :

BlockCyclicRange(const int extent, Dimension dim,

const int blockSize) ;

}

3.9.1 Constructors

BlockCyclicRange(const int extent, Dimension dim,

const int blockSize)

Creates a block-cyclically-distributed range of extent extent distributed
cyclically over dimension dim with block-size blockSize. The constructed
block-cyclic range is a template range. The number of blocks is

numBlocks = (extent + blockSize - 1) / blockSize

The kernel of the range is a simple cyclically-distributed template range
with number of cycles given by

numCycles = (numBlocks + dim.size() - 1) / dim.size()

The extent of the kernel range is thus

numCycles * dim.size().

The detailed structure of a block-cyclic range can be discovered with

the aid of the lev and ker inquiries.

47



3.10 class IrregRange

The class IrregRange is a subclass of Range describing irregular block-

distributed ranges. The format inquiry returns DIST IRREG for an

IrregRange or any subrange.
The public interface of the IrregRange class is

class IrregRange : public Range {

public :

IrregRange(Dimension dim, int* blocks) ;

} ;

3.10.1 Constructors

IrregRange(Dimension dim, int blocks [])

Creates a irregular block-distributed with kernel dim. The array blocks

should have dim.size() elements containing non-negative integers. These
de�ne the block size associated with each process. The extent of the range
is

dim.size()X

i=0

blocks [i]

The constructed range is a template range.

48



Chapter 4

Arrays

An Adlib array is a rectangular distributed array of any rank, whose ele-

ments are partioned or replicated across some set of processes. The layout

of the array is described by an object of type DAD which contains

� The rank, R of the array (ie, its number of dimensions). R is greater

than or equal to zero.

� The process group over which the elements of the array are distributed.

� A vector of R dimension map objects, describing the shape of the

array, and the mapping of its index space into the dimensions of of

the process group, and the memory strides in the locally-held segment

of the array.

The de�nition of the array is completed by a local array, or a pointer to a

base address in the memory of each process, where the elements are actually

stored. The type of the array elements is determined by the type of the

local array segment|the DAD itself is blind to element type.

Note that the Adlib kernel makes no intrinsic assumptions about the

ordering of array elements in local memory. For example, when a new dis-

tributed array is created, the dimension map vectors can set up to describe

the situation where the �rst or the last dimension is \most rapidly vary-

ing" in memory1. Similarly, no assumption is made that array elements

�ll a contiguous region of memory. In Fortran 90 terms, a DAD record can

describe an arbitrary regular section of some parent array.

1There is a caveat|although all functions in the library will operate correctly regard-
less of majority, many of them are optimized to perform best on the assumption of �rst

dimension most rapidly varying|the Fortran convention.

49



4.1 struct Map

A dimension map is part of a distributed array descriptor. It is a map

from a Location to an o�set in a local data segment. Dimension maps are

associated with particular parent ranges. They also incorporate a memory

stride.
The public interface of the Map class is

struct Map {

Map() ;

Map(Range _range, const int _stride) ;

Map ker() const ;

Map shell() const ;

Range rng() const ;

int str() const ;

int offset(const Location& i) const ;

int disp(const int sub) const ;

int step(const int sub_stp) const ;

Range range ;

int stride ;

} ;

4.1.1 Constructors and destructors

Map()

The default constructor. Creates a null (uninitialized) dimension map ob-

ject.

Map(Range _range, const int _stride)

Create a dimension map with parent range range and memory stride

stride.

4.1.2 Methods

ker()

An inquiry function returning the kernel dimension map. This is a dimen-

sion map associated with the kernel of the parent range. Unde�ned for

dimension maps with level 0 parent ranges.

50



Equivalent to

Map ker() const {

return Map(range.ker(), range.shell().volume() * stride) ;

}

shell()

An inquiry function returning the shell dimension map. This is a dimension

map associated with the shell of the parent range. Unde�ned for dimension

maps with level 0 parent ranges.
Equivalent to

Map shell() const {

return Map(range.shell(), stride) ;

}

str()

An inquiry function returning the stride used in creation of this dimension

map. To avoid confusion, note well that this is a memory stride, and this

concept is completely unrelated to the alignment stride, returned by the

str member of Range.

offset(const Location& i)

Returns the o�set in local array segment produced by location i.
Equivalent to

int offset(const Location& i) const {

return stride * range.offset(i) ;

}

disp(const int sub)

Returns the o�set in local array segment produced by shell subscript sub.
Equivalent to

int disp(const int sub) const {

return stride * range.disp(sub) ;

}

step(const int sub_stp)

The di�erence in the value of offset|the local segment o�set|between

two points in the same block of the range di�ering in shell subscript by an

amount sub stp.
Equivalent to

int step(const int sub_stp) const {

return stride * range.step(sub_stp) ;

}

51



4.2 struct DAD

A distributed array descriptor describes the layout of the elements of a
distributed array. An array descriptor is represented by a collective object
with local components of class DAD. The public interface of the DAD class is

struct DAD {

DAD(const int _rank, const Group& _group, Map* _maps) ;

DAD(const int _rank, const Group& _group) ;

DAD() ;

int rnk() const ;

const Group &grp() const ;

const Range rng(const int r) const ;

int str(const int r) const ;

const Map &map(const int r) const ;

DimensionSet sig() const ;

int rank ;

Group group ;

Map* maps ;

} ;

4.2.1 Public data �elds

rank

The rank, R, of the array. Greater than or equal to zero.

group

The group over which the array is distributed.

maps

The vector of dimension maps of the array. Size of the vector should be

R. Distributed ranges in the maps held in this vector should be distributed

over distinct (orthogonal) dimensions of group.

52



4.2.2 Constructors

DAD(const int _rank, const Group& _group, Map* _maps)

The normal constructor. Initializes all �elds of the DAD object, simply

copying the values passed as arguments. The constructor does not allocate

any new vector internally. The maps pointer is simply copied. It is the

caller's responsibility to ensure that associated vector persists as long as

the constructed DAD record.

DAD(const int _rank, const Group& _group)

Simpli�ed constructor. The maps �eld is left unde�ned. Since it is publically

accessibly, it can be initialized later.

DAD()

Default constructor. All �elds are left unde�ned.

4.2.3 Methods

rnk()

An inquiry function returning the rank of the array (the value of rank).

grp()

An inquiry function returning the group over which the array is distributed

(the value of group).

rng(const int r)

An inquiry function returning the rth range of the array|the value of

map(r).rng().

str(const int r)

An inquiry function returning the rth memory stride of the array|the

value of map(r).str().

map(const int r)

An inquiry function returning the rth dimension map of the array|the

value of maps [r].

DimensionSet sig()

53



Return the signature of the array. The signature is the set of process di-
mensions over which the ranges of the array are distributed. Equivalent
to

DimensionSet sig() const {

DimensionSet signature ;

for(int r = 0 ; r < rank ; r++)

signature += rng(r).dim() ;

return signature ;

}

One common use for the sig member is to compute the set of process
dimensions over which the array is replicated. This is given by

grp().dims() - sig()

54



4.3 Examples

Suppose p is a group and x and y are ranges distributed over dimensions
of this group. We want to create a new distributed array of 
oating point
numbers described by these parameters. A typical procedure would be

Map [2] a_maps ;

int size = 1 ;

a_maps [0] = Map(x, size) ;

size *= x.volume() ;

a_maps [1] = Map(y, size) ;

size *= y.volume() ;

DAD a_frm(2, p, a_maps) ;

float* a_dat = new float [size] ;

New dimension maps are created in the vector maps. This code implements

an array with �rst dimension \most-rapidly-varying" in memory2. After

the two multiplications by Range :: volume the value accumulated in

size is the total volume of the local array segment. The group and map

vector are installed in a frm and the local data segment is allocated in

a dat.
Now suppose i and j are Location objects with parent ranges x and

y respectively. We want to access the array element associated with these
subscripts. A typical procedure would be

Location i(x(l1)), j(y(l2)) ;

...

if(i.dim.crd() == i.crd)

if(j.dim.crd() == j.crd) {

...

a_dat [a_frm.map(0).offset(i) + a_frm.map(1).offset(j)]

...

}

First we test if the element is held on the local process by looking at the co-

ordinate �eld in the subscript objects3, then the offset member is applied

to the map objects to �nd the o�sets in the local data segment. Com-

pared with the sort of address computations involved in accessing elements

of sequential arrays, free use of calls to member functions incurs a large,

2To implement an array with last dimension most-rapidly varying one would simply

reverse the order of construction of the dimension maps.
3An outer test may be needed, to see if the local process is a member of p (ie, of

a frm.grp())

55



frequently intolerable, performance penalty. General techniques for elimi-

nating these penalties are discussed in section 7.
Suppose we want to set up a description of a two-dimensional section of

a, with subranges of x and y (something like a(l1:u1, l2:u2) in Fortran).

Map [2] b_maps ;

b_maps [0] = Map(x.subrng(n1, l1), a.str(0)) ;

b_maps [1] = Map(y.subrng(n2, l2), a.str(1)) ;

DAD b_frm(2, p, b_maps) ;

float* b_dat = a_dat ;

The memory strides and local data segment are copied from the original

array. (Here n1 is u1 - l1 + 1 and n2 is u2 - l2 + 1.)
If, instead, we wanted to set up a description of a one dimensional

section of a, with global subscript l1 in the �rst dimension, retaining the
whole of the second dimension (something like a(l1, :) in Fortran) we
could write

Map [1] c_maps ;

c_maps [0] = a.map(1) ;

Location i(x(l1)) ;

DAD c_frm(1, p / i, c_maps) ;

float* c_dat = a_dat + a_frm.map(0).offset(i) ;

No new map objects need be created: the dimension map of the unsub-
scripted dimension is copied from the original array descriptor. The pro-
cess group over which the section is distributed is p / i. The o�set for the
�rst dimension is added to the base address of the original array4. One can
access element j of the section c by

if(c_frm.grp().member())

if(j.dim.crd() == j.crd) {

...

c_dat [c_frm.map(0).offset(j)]

...

}

The two examples given above easily generalize to allow construction any

Fortran-90 style regular section of any distributed array.

4The o�set pointer value is only valid on processes that hold part of the section, but
it does no harm to do the addition on other processes. The value b dat should never be

used on processes where it is not valid|ie on processes outside the group p / i.

56



4.4 Array shape

As in Fortran, the shape of an array, a, is de�ned as the vector of extents

of its ranges, ie (a.rng(0).size(); : : : ; a.rng(R-1).size()), where R is

the rank of the array.

4.5 Alignment and value-alignment

An array, a is aligned with an array b if they are distributed over the

equivalent process groups and their ranges are all equivalent:

a.grp() � b.grp()

a.rng(0) � b.rng(0)

...

a.rng(R-1) � b.rng(R-1)

We omit full formal de�nition of alignment equivalence between groups

and ranges. Informally, two groups or two ranges are equivalent if they are

structurally equivalent
5. The informal meaning of array alignment is that

corresponding elements of the two arrays are stored on the same process,

or replicated over the same group of processes.

An array, a is value-aligned with an array b if their ranges are all

equivalent and a.grp() contains b.grp(). The informal meaning of value-

alignment is that every process that holds a copy of an element of b holds

a copy of the corresponding element of a (although the converse may not

be true, because a can be replicated over a larger process group).

Note that for value-alignment it is required that ranges are equivalent.

A common mistake is to assume if a particular range of b is collapsed, but a

has replicated alignment with respect to the corresponding range of b, the

arrays satisfy the criteria for value-alignment. Informally this situtation

seems to meet the requirements for value-alignment. Unfortunately it does

not satisfy the strict de�nition, and in general functions that assume value-

alignment will not work unless the strict de�nition is adhered to.

The array, a is aligned with b with replicated-alignment in some dimen-

sions if the groups are equivalent, and the ranges of a can be paired with

equivalent ranges of b by omitting the ranges of b associated with the spec-

i�ed dimensions. Value-alignment with replication in speci�ed dimensions

is de�ned similarly.

5A special feature is that alignment equivalence of ranges does not imply that the
ranges must have the same layout options. So, for example, two arrays may be aligned

even if one has ghost extensions and the other doesn't.

57



4.6 Accessibility and value-accessibility

An array, a, is accessible at a particular point in program execution if it is

distributed over a group contained in the active process group:

a.grp() � apg

Informally this means that all copies of all elements of the array are available

within the set of processes sharing the current thread of control.

The de�nition of value-accessibility is slightly more complicated. An

array, a, is value-accessible at a particular point if it is accessible or if the

dimension set of the intersection of a.grp() with the active process group6

contains all process dimensions in a.sig(). This is a clumsy way of saying

that a.grp() may have dimensions outside the active process group, but

the array must be replicated over those dimensions. A su�cient condition

for value-accessibility is that a be value-aligned to an accessible array.

Informally the meaning of value-accessibility is that at least one copy

of every element of the array is available within the set of process sharing

the current thread of control.

6This intersection is only well-de�ned if a.grp() and apg have the same parent process

array.

58



Chapter 5

Communication schedules

This chapter de�nes the Adlib communication library. Currently all com-

munication functions in Adlib take the form of collective transformations on

distributed arrays. These transformations are implemented in terms com-

munication schedules. Each kind of transformation has an associated class

of schedules. Speci�c instances of these schedules, involving particular data

arrays and particular parameters, are created as objects from the classes

concerned. Executing a schedule initiates the communications required to

implement the transformation. A single schedule may be executed many

times, repeating the same communication pattern.

Future versions of Adlib may support other communication paradigms.

A convenient extension would allow primitives for one-sided communica-

tion. These would permit direct read or write access to remote patches of

distributed arrays.

5.1 General features of schedules

Typically the communication schedules described in this chapter have only

three public members: a constructor, a destructor, and an execute mem-

ber.

Usually the constructor is passed all the detailed information describing

how the input and output data is organized and how it is to be transformed.

This includes the array descriptors and any parameters of the transforma-

tion. The constructor may perform extensive processing on these arguments

to convert them into a simpli�ed list of data movements. In some cases

this processing may involve exchange of information|ie, communication|

between the active processes. A schedule constructor should always be

59



treated as a collective operation. As usual with arguments of collective

operations, every member of the active process group must pass consistent

arguments to the schedule constructor call. In particular this means that

any simple value passed to a schedule constructor (any argument that is

not a local component of a collective object such as a DAD, or a vector of

local array elements associated with a DAD) must have identical values in

every process.

Local segment addresses of input and output arrays|the vectors where

individual array elements are stored|are usually not passed to the sched-

ule constructor. Instead these addresses are passed to the execute mem-

ber. One practical reason for not storing the data pointers in the sched-

ule itself is that these vectors are typically allocated by the user, outside

control of the library. The user's program may be written in a program-

ming language other than C++. Cacheing pointers to memory allocated

and managed outside the library itself can cause problems in some pro-

gramming environments|especially in garbage-collected languages such as

Java. Another advantage of specifying the data pointers at execution time

rather than schedule construction time is that in principle it allows the

same schedule to be used with di�erent arrays, providing corresponding

arrays have identical DADs.

The execute member nearly always involves communication. It should

of course be treated as a collective operation, executed by all members of

the active process group.

Most schedule constructors will access the apg variable. The state of

this variable should accurately describe the set of processes involved in

creating the schedule. The active process group at the point of execution

of a schedule should be the same as the active process group at its point of

creation.

The following sections describe the interfaces of the schedule classes.

The choice of transformations in the current schedule library has been

strongly in
uenced by HPF. Apart from a handful of generic operations

like Remap, Gather, Scatter and WriteHalo, most of the schedules are

designed to support the speci�c array syntax and array transformational

intrinsics of Fortran 901. Focussing on Fortran provides a concrete standard

with respect to which some kind of completeness can be achieved.

In the interfaces given in the following sections, only the constructor and

the execute members will be exhibited. Base classes (public or otherwise),

members of base classes, destructors, etc, will be suppressed. Subsections

describing the constructors detail any restrictions the arguments must sat-

1An exception is the MultiShift schedule, which was actually introduced to support

the array syntax of C*.

60



isfy. Subsections describing the execute members specify the e�ects of

the schedules. Below we brie
y discuss various terms and notations used,

following the subheadings used in the schedule de�nitions.

5.1.1 Value restrictions

These are simply restrictions on the input values of data, such as constraints

ensuring values used as subscripts are in the required bounds.

5.1.2 Type restrictions

These are restrictions on the types of array elements. Typically if an array's

elements are to be communicated, they must have POD type. The idea of a

POD type is de�ned in the ANSI C++ standard. Informally it is any type

that can be copied to a byte array by standard operations such as memcpy.

Schedules that perform arithmetic operations or comparisions will im-

pose further restrictions on the types of the array elements. In the current

library all such schedules are template classes, parametrized by the ele-

ment type. The template argument can only be instantiated to a type that

supports a suitable set of arithmetic operations.

5.1.3 Shape restrictions

Restrictions on the shape of the array arguments, such as the requirement

that a particular pair of arrays passed to the constructor should have the

same shape.

5.1.4 Alignment restrictions

Many of the schedules in the library assume some alignment relations (see

section 4.5) between their array arguments. Although these are usually

natural restrictions from the point of view of the parallel implementation,

they can sometimes take programmers by surprise, or appear unnecessarily

complex.

For example, it is required that the source array for a Shift is aligned

with the destination array. This sometimes surprises people, although it

probably shouldn't. Historically, an essential feature of the shift operation

is that it can be implemented very e�ciently by simple nearest neighbour

communications. The library could easily have been de�ned to implement

shift without the alignment constraint, but then implementation would be

essentially the same as the more complex Remap operation. In some sense

the whole point of Shift is that it is a simpler, lighter-weight operation. If

61



versions of the library functions without alignment restrictions are needed,

they can always be constructed by combining the constrained operation

with Remap operations.

Because the alignment constraints implied by particular implementa-

tions of the schedules can be quite complex, the restrictions are sometimes

simpli�ed slightly in the following sections. The conditions given are always

su�cient, but sometimes weaker conditions would have been adequate. For

simplicity, we restrict ourselves to the vocabularly de�ned in section 4.5.

5.1.5 Accessibility restrictions

Accessibility restrictions are needed to ensure that copies of array elements

are available inside the group of processes that execute a schedule. Access

to elements stored outside the active process group is unnatural in the

context of the collective communication paradigm currently implemented

by Adlib.

5.1.6 Argument persistence

This usually refers to the situation where a pointer to a DAD is passed to

a schedule constructor. To avoid the overhead of copying the DAD, the

schedule often saves a reference to the existing DAD object. The program-

mer must then ensure that the DAD is not deleted during the lifetime of

the schedule.

Deleting a DAD before completing communications involving the as-

sociated array would be unusual practise, so these argument persistence

restrictions are not expected to be troublesome.

5.1.7 E�ect

In describing the e�ect of schedules, array subscripting notation will often

be used informally. In this context, the subscripting should always be

understood in terms of global subscripts to abstract global arrays, without

reference to the distributed nature of the actual arrays.

5.1.8 Replicated data

By de�nition, an array is replicated over a particular process dimension if

the dimension appears in its process group but not its signature (ie, the

array has no range distributed over the dimension concerned).

As a rule it is good practise for programmers to maintain the same

values in all copies of an element of a replicated array. If all arrays input to

62



the communication schedules meet this requirement, it is guaranteed that

those output do. This is not an absolute requirement on arrays passed

to schedules, and the sections on individual schedules discuss the e�ect of

defaulting on this rule.

5.1.9 Overlap restrictions

In general the library does not allow in-place updates. No array written by a

communication schedule should overlap with an array read by the schedule.

The sections on individual to schedules give the speci�c restrictions.

63



5.2 class Remap

A remap schedule is a communication schedule for copying the elements of

one distributed array to another. The source and destination must have the

same shape and same element-type, but no relation between the mapping

of the two arrays is required. If the target array has a replicated mapping,

the remap operation implements a broadcast.
A remap schedule is described by a collective object with local compo-

nents of class Remap. The public interface of the Remap class is

class DAD ;

class Remap {

public :

Remap(const DAD* dst, const DAD* src, const int len) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.2.1 Constructor

Remap(const DAD* dst, const DAD* src, const int len)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes.

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: The source and destination array must have the

same shape (see section 4.4).

Accessibility restrictions: The source array must be value-accessible

and the destination array must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

64



5.2.2 Method

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: Copy the elements of the source array to the corresponding ele-

ments of the destination array.

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of the element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

65



5.3 class Shift

A shift schedule is a communication schedule for shifting the elements of a

distributed array along one of its dimensions, placing the result in another

array. The source and destination have the same shape and same element-

type, and they must have a certain alignment relation.
A shift schedule is described by a collective object with local components

of class Shift. The public interface of the Shift class is

class DAD ;

enum Mode {CYCL, EDGE, NONE} ;

class Shift {

public :

Shift(const DAD* dst, const DAD* src, const int len,

const int shift, const int dim, const Mode mode) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.3.1 Constructor

Shift(const DAD* dst, const DAD* src, const int len,

const int shift, const int dim, const Mode mode)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The shift amount, which may be negative, is given by shift. The

dim argument selects the array dimension in which the shift occurs. The


ag mode speci�es the type of shift. It takes one of the values CYCL, EDGE

or NONE.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: The source and destination array must have the

same shape (see section 4.4).

66



Alignment restrictions: The source array must be value-aligned with

the destination array (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the destination array must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.3.2 Method

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: On exit, if mode is CYCL, the value of

dst [x0; : : : ; xdim; : : : ; xR�1]

is

src [x0; : : : ; xdim + shift mod N; : : : ; xR�1]

where N is the extent of dimension dim. If mode is EDGE, the exit value of
the dst element is

src [x0; : : : ; xdim + shift; : : : ; xR�1]

if xdim + shift is in the range 0; : : : ; N � 1, or unchanged from the entry

value, if not. If mode is NONE executing the schedule has no e�ect.

Replicated data: If the arrays have replicated mapping, values for indi-

vidual copies of the destination are generally taken from the nearest copy of

the corresponding source array element. The de�nition of \nearest" is im-

plementation dependent. This schedule does not implement a broadcast|

consistent replication of copies in the destination array relies on consistency

of copies of the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

67



5.4 class Skew

A skew schedule is a communication schedule for performing a skewed

shift|a shift where the shift amount is itself an array|in a particular

dimension of a distributed array placing the result in another array. The

source and destination must have the same shape and same element-type,

and they must have a certain alignment relation.

A skew schedule is described by a collective object with local compo-
nents of class Skew. The public interface of the Skew class is

class DAD ;

enum Mode {CYCL, EDGE, NONE} ;

class Skew {

public :

Skew(const DAD* dst, const DAD* src, const int len,

const DAD* shf, int* shfDat, const int dim,

const Mode mode) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.4.1 Constructor

Skew(const DAD* dst, const DAD* src, const int len,

const DAD* shf, int* shfDat,

const int dim, const Mode mode)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The array of shift amounts (any of which may be negative), is

described by the DAD shf. The base address for the local segment of this

array is shfDat. The shift-amount array should have rank one less than

the source array. The dim argument selects the array dimension in which

the shift occurs. The 
ag mode speci�es the type of shift. It takes one of

the values CYCL, EDGE or NONE.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

68



Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: The source and destination array must have the

same shape (see section 4.4). The shape of the shift array must be obtained

from the shape of the source array by deleting dimension dim.

Alignment restrictions: The source array must be value-aligned with

the destination array The shift-amount array should be value-aligned with

the destination array, with replicated alignment over dimension dim (see

section 4.5).

Accessibility restrictions: The source array and the shift-amount array

must be value-accessible. The destination array must be accessible (see

section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule. (There are no such requirements for the shift-

amount array).

5.4.2 Method

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: The description of the exit value of dst is identical to the descrip-
tion after execution of a Shift schedule (see section 5.3), except that the
constant shift is replaced by

shf [x0; : : : ; xdim�1; xdim+1; : : : ; xR�1]

Replicated data: If the arrays have replicated mapping, values for indi-

vidual copies of the destination are generally taken from the nearest copy of

the corresponding source array element. The de�nition of \nearest" is im-

plementation dependent. This schedule does not implement a broadcast|

consistent replication of copies in the destination array relies on consistency

of copies of the source array.

69



Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

70



5.5 class MultiShift

A multishift schedule is a communication schedule for shifting the elements

of a distributed array along some or all of its dimensions concurrently, plac-

ing the result in another array. The source and destination must have the

same shape and same element-type, and they must have a certain alignment

relation.

A multishift schedule is described by a collective object with local com-
ponents of class MultiShift. The public interface of the MultiShift class
is

class DAD ;

enum Mode {CYCL, EDGE, NONE} ;

class MultiShift {

public :

MultiShift(const DAD* dst, const DAD* src, const int len,

int shift [], Mode mode []) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.5.1 Constructor

MultiShift(const DAD* dst, const DAD* src, const int len,

int shift [], Mode mode [])

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. Vectors shift and mode have extent R|the rank of the source

array. The shift amount, which may be negative, in dimension r is given

by shift [r]. The 
ag mode [r] speci�es the type of shift: It takes one

of the values CYCL, EDGE or NONE.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

71



Shape restrictions: The source and destination array must have the

same shape (see section 4.4).

Alignment restrictions: The source array must be value-aligned with

the destination array (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the destination array must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.5.2 Method

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: Equivalent in e�ect (not in implementation) to successive execu-
tion of R schedules of the form

Shift(dst, src, len, r, shift [r], mode [r])

for r in the range 0; : : : ; R� 1 (see section 5.3).

Replicated data: If the arrays have replicated mapping, values for indi-

vidual copies of the destination are generally taken from the nearest copy of

the corresponding source array element. The de�nition of \nearest" is im-

plementation dependent. This schedule does not implement a broadcast|

consistent replication of copies in the destination array relies on consistency

of copies of the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

72



5.6 class WriteHalo

A write-halo schedule is a communication schedule for �lling overlap regions

or ghost cells surrounding the local segment of a distributed array. A write-
halo schedule is described by a collective object with local components of
class WriteHalo. The public interface of the WriteHalo class is

class DAD ;

enum Mode {CYCL, EDGE, NONE} ;

class WriteHalo {

public :

WriteHalo(const DAD* src, const int len,

const int wlo [], const int whi [],

const Mode [] mode) ;

void execute(void* srcDat) ;

private :

...

}

5.6.1 Constructor

WriteHalo(const DAD* src, const int len,

const int wlo [], const int whi [],

const Mode [] mode)

The array is described by the DAD *src. len speci�es the size of each array

element, in bytes. The vectors wlo, whi and mode have extent R|the rank

of the array.

Vectors wlo and wlo de�ne the halo of ghost cells updated by the sched-

ule. The upper and lower widths in dimension r are given by wlo [r] and

whi [r]. These values are non-negative, and can only be non-zero if ar-

ray src actually has suitable ghost extensions in the dimension concerned.

More speci�cally, if the array src was created using a range with ghost ex-

tensions wloact, whiact|eg, a range created by by a constructor call such

as BlockRange(N, d,wloact,whiact)|as its rth dimension, it is required

that

whi [r] � whiact

wlo [r] � wloact

The situation is complicated if the array is a section, or some other array

with non-trivial alignment stride. In practise it is unusual to construct

73



WriteHalo schedules for such arrays, but for completeness we describe the

constraints that apply in that case. First, by de�nition, the ghost extensions

of a subrange are those of its template range. Now, suppose the array of

which src is a section has ghost extensions wloact, whiact. If the alignment

stride of src.rng(r) is s, the required constraints are

s� whi [r] � whiact

s� wlo [r] � wloact

The point to note is that the widths de�ned in the WriteHalo construtor

are expressed in terms of the global subscript of the range of the array,

whereas the ghost extensions of the array are measured in units of template

range subscripts.

The vector mode de�nes how ghost cells are updated in each dimension|

including how the cells at the extremes of the array are updated. Its ele-

ments take value CYCL, EDGE or NONE.

Note that (as usual for ordinary data arguments of collective construc-

tors) the vectors wlo, whi and mode must have identical values in all mem-

bers of the active process group.

Type restrictions: The elements of array must be a POD type (see

section 5.1.2) of size len bytes.

Accessibility restrictions: The array must be accessible (see section

4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.6.2 Method

execute(void* srcDat)

Argument is the base addresses for the local segment of the array. It should

point to a vector of the locally held elements.

E�ect: We distinguish between the locally held physical segment of an

array and the surrounding ghost region, which is used to cache local copies

of remote elements. The e�ect of this operation is to overwrite a portion

of the ghost region|a halo of extent de�ned by the wlo, whi vectors of

74



������
������
������
������
������
������

������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

Ghost area written
    by WriteHalo         of array segment

   ‘‘Declared’’ ghost region

����
����
����
����

����
����
����
����

of array
segment
Physical

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���������
���������
���������
���������

���������
���������
���������
���������

Figure 5.1: Illustration of the e�ect of executing a write-halo schedule.

the constructor|with values from processes holding the corresponding ele-

ments in their physical segments. The operation is visualized in �gure 5.1.

Note that, so long as it �ts in the ghost area allocated for the array, there

is no restriction on the width of the halo region. In particular, the width of

the halo region may be larger than the width of the neighbouring physical

segment, in which case values will be fetched from next-nearest neighbours,

and so on.

If the value of the mode element for a dimension is EDGE, ghost cells past

the extreme ends of the array range are not updated by the the write-halo

operation. If the value is CYCL, those cells are updated assuming cyclic

wraparound2. If the value is NONE, there is no updating at all of the ghost

cells associated with this dimension.

Replicated data: If the array has replicated mapping, values for indi-

vidual copies of the ghost cell are generally taken from the nearest copy of

the corresponding physical array element. The de�nition of \nearest" is im-

plementation dependent. This schedule does not implement a broadcast|

2This option may lead to odd e�ects if the source array is actually a section with a
triplet subscript. The updated cells, past the ends of the section, may actually reside in

the physical segment of the parent array.

75



consistent replication of copies in the �nal state of the array relies on con-

sistency of copies in the initial state of the array.

76



5.7 class Gather

A gather schedule is a communication schedule for collecting an arbitrary
set of values from one distributed array (the source array) into the elements
of another (the destination array). The selected set of elements is de�ned
by a vector of subscript arrays, with an optional mask array. A gather
schedule is described by a collective object with local components of class
Gather. The public interface of the Gather class is

class DAD ;

class Gather {

public :

Gather(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.7.1 Constructor

Gather(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat)

The source array is described by the DAD *src and the destination array is

described by the DAD *dst. len speci�es the size of each array element, in

bytes. The vectors subs and subsDat have extent R|the rank of the source

array. The subscript arrays are de�ned by the pairs *subs [r], subsDat

[r]. If msk is non-null, the pair *msk, mskDat de�nes a mask array.

Value restrictions: All elements of the rth subscript array must be in

the range 0; : : : ; N � 1 where N is the extent of the source array in its rth

dimension.

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: The destination array, all subscript arrays, and the

mask array, if de�ned, must have the same shape (see section 4.4).

77



Alignment restrictions: All subscript arrays and the mask array, if

de�ned, must be value-aligned with the destination array (see section 4.5).

Accessibility restrictions: The source and subscript arrays, and the

mask array, if de�ned, must be value-accessible. The destination array

must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript and mask arrays).

5.7.2 Methods

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

dst [x0; : : : ; xS�1]

is

src [subs0 [x0; : : : ; xS�1], ..., subsR�1 [x0; : : : ; xS�1]]

unless the mask array is de�ned and

msk [x0; : : : ; xS�1]

was zero, in which case the exit value of the dst element is unchanged from

the entry value. Here subsr denotest the rth subscript array and S is the

rank of the destination array.

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

78



5.8 class Scatter

A scatter schedule is a communication schedule for scattering values from
one distributed array (the source array) into elements of another another
(the destination array) in an arbitrary way. The target set of elements is
de�ned by a vector of subscript arrays, with an optional mask array. A
scatter schedule is described by a collective object with local components
of class Scatter. The public interface of the Scatter class is

class DAD ;

class Scatter {

public :

Scatter(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat) ;

void execute(void* srcDat, void* dstDat) ;

private :

...

} ;

5.8.1 Constructor

Scatter(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The vectors subs and subsDat have extent R|the rank of the

destination array. The subscript arrays are de�ned by the pairs *subs

[r], subsDat [r]. If msk is non-null, the pair *msk, mskDat de�nes a mask

array.

Note well that the source and destination arguments of Scatter mem-

bers are reversed relative to the conventions for other communication sched-

ules. This is to emphasize the symmetry with Gather.

Value restrictions: All elements of the rth subscript array must be in

the range 0; : : : ; N � 1 where N is the extent of the destination array in its

rth dimension.

79



Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: The source array, all subscript arrays, and the mask

array, if de�ned, must have the same shape (see section 4.4).

Alignment restrictions: All subscript arrays and the mask array, if

de�ned, must be value-aligned with the source array (see section 4.5).

Accessibility restrictions: The source and subscript arrays, and the

mask array, if de�ned, must be value-accessible. The destination array

must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript and mask arrays).

5.8.2 Methods

execute(void* srcDat, void* dstDat)

Arguments are the base addresses for local segments of the source and des-

tination arrays. They should point to vectors of the locally held elements.

E�ect: If msk was non-null, the e�ect is like executing the conditional
assignment

if(msk [x0; : : : ; xS�1])

dst [subs0 [x0; : : : ; xS�1], ..., subsR�1 [x0; : : : ; xS�1]] =

src [x0; : : : ; xS�1]

for every tuple (x0; : : : ; xS�1) of global subscripts of the source array. These

assignments are executed in an unde�ned order. If msk is a null pointer, the

assignment is unconditional. Here subsr denotest the rth subscript array.

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

80



Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

81



5.9 class VecGather

A vector-subscript gather schedule is a communication schedule for collect-
ing a set of values from one distributed array (the source array) into the
elements of another array of the same rank (the destination array). The
selected set of elements is de�ned by a vector of rank-1 arrays|the sub-

script arrays. This schedule can be regarded as an optimized special case
of the general gather schedule of section 5.7. It is functionally equiva-
lent to certain Fortran-90 array assignments involving vector subscripts. A
vector-subscript gather schedule is described by a collective object with lo-
cal components of class VecGather. The public interface of the VecGather
class is

class DAD ;

class VecGather {

public :

VecGather(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat []) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.9.1 Constructor

VecGather(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat [])

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The source and destination arrays have the same rank, R. The

vectors subs and subsDat have extent R. If subs [r] is non-null, the pair

*subs [r], subsDat [r] de�nes the rth subscript array.

Value restrictions: If the rth subscript array is de�ned, all its elements

must be in the range 0; : : : ; N �1 where N is the extent of the source array

in its rth dimension.

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

82



Shape restrictions: If the rth subscript array is de�ned it must be rank-

1 and its extent must be M , whereM is the extent of the destination array

in its rth dimension.

If the rth subscript array is unde�ned (because subs [r] is null) the

destination and source arrays must have the same extent in their rth di-

mensions.

Alignment restrictions: If de�ned, the rth subscript array must be

value-aligned to the destination array, with replicated alignment in all di-

mensions except r (see section 4.5).

Accessibility restrictions: The source and subscript arrays must be

value-accessible. The destination array must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript arrays.)

5.9.2 Methods

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

dst [x0; : : : ; xS�1]

is

src [subs0 [x0], ..., subsR�1 [xR�1]]

Here subsr denotest the rth subscript array. If subs [r] is null, the value

of the expression subsr [xr] in this formula is de�ned to be xr (hence if all

subscripts are unde�ned, this operation is equivalent to a Remap operation).

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

83



5.10 class VecGatherMsk

A masked vector-subscript gather schedule is a communication schedule for
collecting a set of values from one distributed array (the source array) into
the elements of another array of the same rank (the destination array).
The selected set of elements is de�ned by a vector of rank-1 arrays|the
subscript arrays|and controlled by a mask array. This schedule can be
regarded as an optimized special case of the general gather schedule of
section 5.7. It is functionally equivalent to certain Fortran-90 array assign-
ments involving vector subscripts and executed inside WHERE statements. A
masked vector-subscript gather schedule is described by a collective object
with local components of class VecGatherMsk. The public interface of the
VecGatherMsk class is

class DAD ;

class VecGatherMsk {

public :

VecGatherMsk(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat) ;

void execute(void* dstDat, void* srcDat) ;

private :

...

} ;

5.10.1 Constructor

VecGatherMsk(const DAD* dst, const DAD* src, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The source and destination arrays have the same rank, R. The

vectors subs and subsDat have extent R. If subs [r] is non-null, the pair

*subs [r], subsDat [r] de�nes the rth subscript array. The pair *msk,

mskDat de�nes a mask array.

Value restrictions: If the rth subscript array is de�ned, all its elements
must be in the range 0; : : : ; N � 1 where N is the extent of the source
array in its rth dimension, unless the subscript element is unused because
of masking. (In other words, this restriction need not apply for elements

84



subsr [xr]

such that

msk [x0; : : : ; xR�1]

is zero for all allowed values of x0; : : : ; xr�1; xr+1; : : : ; xR�1.)

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: If the rth subscript array is de�ned it must be rank-

1 and its extent must be M , whereM is the extent of the destination array

in its rth dimension.

If the rth subscript array is unde�ned (because subs [r] is null) the

destination and source arrays must have the same extent in their rth di-

mensions.

The mask array must have the same shape as the destination array (see

section 4.4).

Alignment restrictions: If de�ned, the rth subscript array must be

value-aligned to the destination array, with replicated alignment in all di-

mensions except r. The mask array must be value-aligned with the destina-

tion array (see section 4.5).

Accessibility restrictions: The source, subscript, and mask arrays must

be value-accessible. The destination array must be accessible (see section

4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript and mask arrays).

5.10.2 Methods

execute(void* dstDat, void* srcDat)

Arguments are the base addresses for local segments of the destination and

source arrays. They should point to vectors of the locally held elements.

85



E�ect: On exit, the value of

dst [x0; : : : ; xS�1]

is

src [subs0 [x0], ..., subsR�1 [xR�1]]

unless

msk [x0; : : : ; xS�1]

was zero, in which case the exit value of the dst element is unchanged from

the entry value. Here subsr denotest the rth subscript array. If subs [r]

is null, the value of the expression subsr [xr] in this formula is de�ned to

be xr (hence if all subscripts are unde�ned, this operation is equivalent to

a Remap operation).

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

86



5.11 class VecScatter

A vector-subscript scatter schedule is a communication schedule for scatter-
ing values from one distributed array (the source array) into elements of
another (the destination array). The target set of elements are de�ned by
a vector of rank-1 arrays|the subscript arrays. This schedule can be re-
garded as an optimized special case of the general scatter schedule of section
5.8. It is functionally similar to certain Fortran-90 array assignments in-
volving vector subscripts|minus the constraints that enforce determinism
in Fortran. A vector-subscript scatter schedule is described by a collective
object with local components of class VecScatter. The public interface of
the VecScatter class is

class DAD ;

class VecScatter {

public :

VecScatter(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat []) ;

void execute(void* srcDat, void* dstDat) ;

private :

...

} ;

5.11.1 Constructor

VecScatter(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat [])

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The source and destination arrays have the same rank, R. The

vectors subs and subsDat have extent R. If subs [r] is non-null, the pair

*subs [r], subsDat [r] de�nes the rth subscript array.

Note well that the source and destination arguments of VecScatter

members are reversed relative to the conventions for other communication

schedules. This is to emphasize the symmetry with VecGather.

Value restrictions: If the rth subscript array is de�ned, all its elements

must be in the range 0; : : : ; N � 1 where N is the extent of the destination

array in its rth dimension.

87



Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: If the rth subscript array is de�ned it must be rank-

1 and its extent must be M , where M is the extent of the source array in

its rth dimension.

If the rth subscript array is unde�ned (because subs [r] is null) the

destination and source arrays must have the same extent in their rth di-

mensions.

Alignment restrictions: If de�ned, the rth subscript array must be

value-aligned to the source array, with replicated alignment in all dimen-

sions except r (see section 4.5).

Accessibility restrictions: The source and subscript arrays must be

value-accessible. The destination array must be accessible (see section 4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript arrays).

5.11.2 Method

execute(void* srcDat, void* dstDat)

Arguments are the base addresses for local segments of the source and des-

tination arrays. They should point to vectors of the locally held elements.

E�ect: The e�ect is like executing the assignment

dst [subs0 [x0], ..., subsR�1 [xR�1]] = src [x0; : : : ; xR�1]

for every tuple, (x0; : : : ; xR�1), of global subscripts of the source array.

These assignments are executed in an unde�ned order. Here subsr de-

notest the rth subscript array. If subs [r] is null, the value of the expres-

sion subsr [xr] in the left-hand-side of the assignment is de�ned to be

xr (hence if all subscripts are unde�ned, this operation is equivalent to a

Remap operation).

88



Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

89



5.12 class VecScatterMsk

A masked vector-subscript scatter schedule is a communication schedule for
scattering values from one distributed array (the source array) into elements
of another (the destination array). The target set of elements are de�ned
by a vector of rank-1 arrays|the subscript arrays. This schedule can be
regarded as an optimized special case of the general scatter schedule of sec-
tion 5.8. It is functionally similar to certain Fortran-90 array assignments
involving vector subscripts and executed inside WHERE statements|minus
the constraints that enforce determinism in Fortran. A vector-subscript
scatter schedule is described by a collective object with local components
of class VecScatterMsk. The public interface of the VecScatterMsk class
is

class DAD ;

class VecScatterMsk {

public :

VecScatterMsk(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat) ;

void execute(void* srcDat, void* dstDat) ;

private :

...

} ;

5.12.1 Constructor

VecScatterMsk(const DAD* src, const DAD* dst, const int len,

const DAD* subs [], const int* subsDat [],

const DAD* msk, const int* mskDat)

The source array is described by the DAD *src and the destination array

is described by the DAD *dst. len speci�es the size of each array element,

in bytes. The source and destination arrays have the same rank, R. The

vectors subs and subsDat have extent R. If subs [r] is non-null, the pair

*subs [r], subsDat [r] de�nes the rth subscript array. The pair *msk,

mskDat de�nes a mask array.

Note: the source and destination arguments of VecScatterMskmembers

are reversed relative to the conventions for most communication schedules.

This is to emphasize the symmetry with VecGatherMsk.

Value restrictions: If the rth subscript array is de�ned, all its elements
must be in the range 0; : : : ; N � 1 where N is the extent of the destination

90



array in its rth dimension, unless the subscript element is unused because
of masking. (In other words, this restriction need not apply for elements

subsr [xr]

such that

msk [x0; : : : ; xR�1]

is zero for all allowed values of x0; : : : ; xr�1; xr+1; : : : ; xR�1.)

Type restrictions: The elements of the source and destination arrays

must have the same type. This must be a POD type (see section 5.1.2) of

size len bytes.

Shape restrictions: If the rth subscript array is de�ned it must be rank-

1 and its extent must be M , where M is the extent of the source array in

its rth dimension.

If the rth subscript array is unde�ned (because subs [r] is null) the

destination and source arrays must have the same extent in their rth di-

mensions.

The mask array must have the same shape as the source array (see

section 4.4).

Alignment restrictions: If de�ned, the rth subscript array must be

value-aligned to the source array, with replicated alignment in all dimen-

sions except r. The mask array must be value-aligned with the source array

(see section 4.5).

Accessibility restrictions: The source, subscript, and mask arrays must

be value-accessible. The destination array must be accessible (see section

4.6).

Argument persistence: The dst and src arguments are stored in the

schedule as references. The associated objects must persist for the life-

time of the constructed schedule. (There are no such requirements for the

subscript and mask arrays).

5.12.2 Method

execute(void* srcDat, void* dstDat)

Arguments are the base addresses for local segments of the source and des-

tination arrays. They should point to vectors of the locally held elements.

91



E�ect: The e�ect is like executing the conditional assignment

if(msk [x0; : : : ; xS�1])

dst [subs0 [x0], ..., subsR�1 [xR�1]] = src [x0; : : : ; xR�1]

for every tuple, (x0; : : : ; xR�1), of global subscripts of the source array.

These assignments are executed in an unde�ned order. Here subsr denotest

the rth subscript array. If subs [r] is null, the value of the expression

subsr [xr] in the left-hand-side of the assignment is de�ned to be xr.

Replicated data: If the source array has replicated mapping, the value

for a particular element is taken from one of its copies. If the destination

array has replicated mapping, identical values are broadcast to every copy

of each element.

Overlap restrictions: In-place updates are not allowed. The pairs *dst,

dstDat and *src, srcDat must de�ne non-overlapping arrays.

92



5.13 class ScatterComb

[There are are existing schedules for combining scatter, but their interface

is under revision.]

5.14 class Reshape

[There are are existing schedules for this F90 intrinsic, but their interface

is under revision.]

93



5.15 class Sum

A sum schedule is a communication schedule for adding together all ele-
ments of a distributed array (the source array). A sum schedule is described
by a collective object with local components of class Sum. The public inter-
face of the Sum class is

class DAD ;

template<class T>

class Sum {

public :

Sum(const DAD* src) ;

void execute(T* res, T* srcDat) ;

private :

...

} ;

5.15.1 Constructor

Sum(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary addition operator, +, must be de�ned for objects of type

T, the assignment operator += must operate in a compatible way, and the

symbol 0 must be convertible to type T, yielding a zero of the addition

operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.15.2 Method

execute(T* res, T* srcDat)

94



The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule adds together all elements of the array in

an unspeci�ed order. The result value, written to *res, is broadcast to all

members of the active process group.

Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

95



5.16 class SumMsk

A masked sum schedule is a communication schedule for adding together
all elements of a distributed array (the source array) under the control of
a mask array. A masked sum schedule is described by a collective object
with local components of class SumMsk. The public interface of the SumMsk
class is

class DAD ;

template<class T>

class SumMsk {

public :

SumMsk(const DAD* src, const DAD* msk) ;

void execute(T* res, T* srcDat, int* mskDat) ;

private :

...

} ;

5.16.1 Constructor

SumMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary addition operator, +, must be de�ned for objects of type

T, the assignment operator += must operate in a compatible way, and the

symbol 0 must be convertible to type T, yielding a zero of the addition

operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

96



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.16.2 Method

execute(T* res, T* srcDat, int* mskDat)

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source and mask arrays.

The latter should point to vectors of the locally held elements.

E�ect: Executing the schedule adds together all elements of the array

for which the corresponding element of the mask array is non-zero. The

addition is performed in an unspeci�ed order. The result value, written to

*res, is broadcast to all members of the active process group.

Replicated data: If the source or mask array has replicated mapping,

values for particular elements are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

97



5.17 class Product

A product schedule is a communication schedule for multiplying together
all elements of a distributed array (the source array). A product schedule
is described by a collective object with local components of class Product.
The public interface of the Product class is

class DAD ;

template<class T>

class Product {

public :

Product(const DAD* src) ;

void execute(T* res, T* srcDat) ;

private :

...

} ;

5.17.1 Constructor

Product(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary multiplication operator, *, must be de�ned for objects of

type T, the assignment operator *= must operate in a compatible way, and

the symbol 1 must be convertible to type T, yielding a unit of the multipli-

cation operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.17.2 Method

execute(T* res, T* srcDat)

98



The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule multiplies together all elements of the ar-

ray in an unspeci�ed order. The result value, written to *res, is broadcast

to all members of the active process group.

Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

99



5.18 class ProductMsk

A masked product schedule is a communication schedule for multiplying
together all elements of a distributed array (the source array) under the
control of a mask array. A masked product schedule is described by a
collective object with local components of class ProductMsk. The public
interface of the ProductMsk class is

class DAD ;

template<class T>

class ProductMsk {

public :

ProductMsk(const DAD* src, const DAD* msk) ;

void execute(T* res, T* srcDat, int* mskDat) ;

private :

...

} ;

5.18.1 Constructor

ProductMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary multiplication operator, *, must be de�ned for objects of

type T, the assignment operator *= must operate in a compatible way, and

the symbol 1 must be convertible to type T, yielding a unit of the multipli-

cation operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

100



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.18.2 Method

execute(T* res, T* srcDat, int* mskDat)

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source and mask arrays.

The latter should point to vectors of the locally held elements.

E�ect: Executing the schedule multiplies together all elements of the ar-

ray for which the corresponding element of the mask array is non-zero.

The mulitplication is performed in an unspeci�ed order. The result value,

written to *res, is broadcast to all members of the active process group.

Replicated data: If the source or mask array has replicated mapping,

values for particular elements are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

101



5.19 class Maxval

A maximum value schedule is a communication schedule for �nding the
largest element of a distributed array (the source array). A maximum
value schedule is described by a collective object with local components of
class Maxval. The public interface of the Maxval class is

class DAD ;

template<class T>

class Maxval {

public :

Maxval(const DAD* src) ;

void execute(T* res, T* srcDat) ;

private :

...

} ;

5.19.1 Constructor

Maxval(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

102



5.19.2 Method

execute(T* res, T* srcDat)

The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule �nds the largest element of the array. The

maximum value, written to *res, is broadcast to all members of the active

process group.

Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

103



5.20 class MaxvalMsk

A masked maximum value schedule is a communication schedule for �nding
the largest element of a distributed array (the source array) under the
control of a mask array. A masked maximum value schedule is described
by a collective object with local components of class MaxvalMsk. The public
interface of the MaxvalMsk class is

class DAD ;

template<class T>

class MaxvalMsk {

public :

MaxvalMsk(const DAD* src, const DAD* msk) ;

void execute(T* res, T* srcDat, int* mskDat) ;

private :

...

} ;

5.20.1 Constructor

MaxvalMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

104



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.20.2 Method

execute(T* res, T* srcDat, int* mskDat)

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source and mask arrays.

The latter should point to vectors of the locally held elements.

E�ect: Executing the schedule �nds the largest element of the array for

which the corresponding element of the mask array is non-zero. The max-

imum value, written to *res, is broadcast to all members of the active

process group.

Replicated data: If the source or mask array has replicated mapping,

values for particular elements are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

105



5.21 class Minval

A minimum value schedule is a communication schedule for �nding the
smallest element of a distributed array (the source array). A minimum
value schedule is described by a collective object with local components of
class Minval. The public interface of the Minval class is

class DAD ;

template<class T>

class Minval {

public :

Minval(const DAD* src) ;

void execute(T* res, T* srcDat) ;

private :

...

} ;

5.21.1 Constructor

Minval(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

106



5.21.2 Method

execute(T* res, T* srcDat)

The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule �nds the smallest element of the array.

The minimum value, written to *res, is broadcast to all members of the

active process group.

Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

107



5.22 class MinvalMsk

A masked minimum schedule is a communication schedule for �nding the
smallest element of a distributed array (the source array) under the control
of a mask array. A masked minimum schedule is described by a collective
object with local components of class MinvalMsk. The public interface of
the MinvalMsk class is

class DAD ;

template<class T>

class MinvalMsk {

public :

MinvalMsk(const DAD* src, const DAD* msk) ;

void execute(T* res, T* srcDat, int* mskDat) ;

private :

...

} ;

5.22.1 Constructor

MinvalMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

108



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.22.2 Method

execute(T* res, T* srcDat, int* mskDat)

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source and mask arrays.

The latter should point to vectors of the locally held elements.

E�ect: Executing the schedule �nds the smallest element of the array

for which the corresponding element of the mask array is non-zero. The

minimum value, written to *res, is broadcast to all members of the active

process group.

Replicated data: If the source or mask array has replicated mapping,

values for particular elements are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

109



5.23 class All

A all schedule is a communication schedule for computing the logical con-
junction of the elements of a distributed array of boolean values (the source
array). An all schedule is described by a collective object with local com-
ponents of class All. The public interface of the All class is

class DAD ;

class All {

public :

All(const DAD* src) ;

void execute(int* res, int* srcDat) ;

private :

...

} ;

5.23.1 Constructor

All(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type int.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.23.2 Method

execute(int* res, int* srcDat)

The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule forms the logical conjunction (boolean

and) of the elements of the array. The result value, written to *res, is

broadcast to all members of the active process group.

110



Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

111



5.24 class Any

A any schedule is a communication schedule for computing the logical dis-
junction of the elements of a distributed array of boolean values (the source
array). An any schedule is described by a collective object with local com-
ponents of class Any. The public interface of the Any class is

class DAD ;

class Any {

public :

Any(const DAD* src) ;

void execute(int* res, int* srcDat) ;

private :

...

} ;

5.24.1 Constructor

Any(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type int.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.24.2 Method

execute(int* res, int* srcDat)

The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule forms the logical disjunction (boolean or)

of the elements of the array. The result value, written to *res, is broadcast

to all members of the active process group.

112



Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

113



5.25 class Count

A count schedule is a communication schedule for counting the number of
true elements in a distributed array of boolean values (the source array).
A count schedule is described by a collective object with local components
of class Count. The public interface of the Count class is

class DAD ;

class Count {

public :

Count(const DAD* src) ;

void execute(int* res, int* srcDat) ;

private :

...

} ;

5.25.1 Constructor

Count(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type int.

Accessibility restrictions: The source array must be value-accessible

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

5.25.2 Method

execute(int* res, int* srcDat)

The arguments are the address to which the result should be written and

the base address of the local segment of the source array. The latter should

point to a vector of the locally held elements.

E�ect: Executing the schedule returns the number of true (non-zero)

elements of the array. The result value, written to *res, is broadcast to all

members of the active process group.

114



Replicated data: If the source array has replicated mapping, values for

particular elements are generally taken from the nearest copy. The de�ni-

tion of \nearest" is implementation dependent.

115



5.26 class DotProduct

A dot product schedule is a communication schedule for computing the
dot product of two distributed arrays (the source arrays). A dot prod-
uct schedule is described by a collective object with local components of
class DotProduct. The public interface of the DotProduct class is

class DAD ;

template<class S, class T, class U>

class DotProduct {

public :

DotProduct(const DAD* src1, const DAD* src2) ;

void execute(S* res, T* src1Dat, U* src2Dat) ;

private :

...

} ;

5.26.1 Constructor

DotProduct(const DAD* src1, const DAD* src2)

The source arrays is described by the DADs *src1 and *src2. They will

have elements of type T and U respectively. The result will have type S.

Type restrictions: S should be a POD type (see section 5.1.2). A con-

ventional binary multiplication operator, *, must be de�ned to multiply

objects of type T with objects of type U. The assignment operator += must

be de�ned on objects of type S. This operator must be able to accept an

RHS operand of type S, and must also be able to accept an operand pro-

duced by multiplying together T and U (if this is has type di�erent to S).

The symbol 0 must be convertible to type S, yielding a unit of the addition

operation.

All standard arithmetic types of C++ satisfy these requirements, pro-

vided the product of a T with a U is convertible to an S.

Shape restrictions: The two source arrays must have the same shape

(see section 4.4).

Alignment restrictions: The source arrays must be aligned with one

another (see section 4.5).

116



Accessibility restrictions: The source arrays must be value-accessible

(see section 4.6).

Argument persistence: The src1 and src2 arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.26.2 Method

void execute(S* res, T* src1Dat, U* src2Dat) ;

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source arrays. The latter

should point to vectors of the locally held elements.

E�ect: Executing the schedule multiplies together corresponding ele-

ments of the source arrays, in pairs, then adds together all pairwise prod-

ucts. The addition occurs in an unspeci�ed order. The result value, written

to *res, is broadcast to all members of the active process group.

Replicated data: If the source arrays have replicated mapping, values

for particular elements are generally taken from the nearest copy. The

de�nition of \nearest" is implementation dependent.

117



5.27 class BoolDotProduct

A boolean dot product schedule is a communication schedule for computing
the boolean dot product of two distributed arrays of boolean values (the
source arrays). A boolean dot product schedule is described by a collec-
tive object with local components of class BoolDotProduct. The public
interface of the BoolDotProduct class is

class DAD ;

class BoolDotProduct {

public :

BoolDotProduct(const DAD* src1, const DAD* src2) ;

void execute(int* res, int* src1Dat, int* src2Dat) ;

private :

...

} ;

5.27.1 Constructor

BoolDotProduct(const DAD* src1, const DAD* src2)

The source arrays is described by the DADs *src1 and *src2.

Shape restrictions: The two source arrays must have the same shape

(see section 4.4).

Alignment restrictions: The source arrays must be aligned with one

another (see section 4.5).

Accessibility restrictions: The source arrays must be value-accessible

(see section 4.6).

Argument persistence: The src1 and src2 arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.27.2 Method

void execute(int* res, int* src1Dat, int* src2Dat) ;

The arguments are the address to which the result should be written and

the base addresses of the local segments of the source arrays. The latter

should point to vectors of the locally held elements.

118



E�ect: Executing the schedule computes logical and of corresponding

elements of the source arrays, in pairs, then computes logical or of all

the pairwise conjunctions. The result value, written to *res, is broadcast

to all members of the active process group.

Replicated data: If the source arrays have replicated mapping, values

for particular elements are generally taken from the nearest copy. The

de�nition of \nearest" is implementation dependent.

119



5.28 class Maxloc

A maximum location schedule is a communication schedule for �nding the
location of the largest element of a distributed array. A maximum location
schedule is described by a collective object with local components of class
Maxloc. The public interface of the Maxloc class is

class DAD ;

template<class T>

class Maxloc {

public :

Maxloc(const DAD* src) ;

void execute(T* val, int pos [], T* srcDat) ;

private :

...

} ;

5.28.1 Constructor

Maxloc(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Accessibility restrictions: The source array must be value-accessible.

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

120



5.28.2 Method

execute(T* val, int pos [], T* srcDat)

The arguments are the addresses to which the result value and location

should be written, and the base address of the local segment of the source

array. The latter should point to a vector of the locally held elements.

The size of the pos vector must be equal to the rank of the source array.

E�ect: The value of largest element in the array is written to *val. The

global subscripts of the �rst occurrence of this element are written to the

vector pos. If the maximum value occurs more than once in the array,

\�rst occurence" is de�ned by ordering the set of global subscripts with

�rst subscript least signi�cant (Fortran-like array-element ordering).

The result values written to *val and pos are broadcast to all members

of the active process group.

Replicated data: If the source array has replicated mapping, values for a

particular element are generally taken from the nearest copy. The de�nition

of \nearest" is implementation dependent.

121



5.29 class MaxlocMsk

A masked maximum location schedule is a communication schedule for �nd-
ing the location of the largest element of a distributed array, under the con-
trol of a mask array. A masked maximum location schedule is described by
a collective object with local components of class MaxlocMsk. The public
interface of the MaxlocMsk class is

class DAD ;

template<class T>

class MaxlocMsk {

public :

Maxloc(const DAD* src, const DAD* msk) ;

void execute(T* val, int pos [], T* srcDat, int* mskDat) ;

private :

...

} ;

5.29.1 Constructor

MaxlocMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

122



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.29.2 Method

execute(T* val, int pos [], T* srcDat, int* mskDat)

The arguments are the addresses to which the result value and location

should be written, and the base addresses of the local segments of the

source and mask arrays. The latter should point to vectors of the locally

held elements.

The size of the pos vector must be equal to the rank of the source array.

E�ect: The value of largest element in the array for which the corre-

sponding element of the mask array is non-zero is written to *val. The

global subscripts of the �rst occurrence of this element are written to the

vector pos. If the maximum value occurs more than once in the unmasked

part of the array, \�rst occurence" is de�ned by ordering the set of global

subscripts with �rst subscript least signi�cant (Fortran-like array-element

ordering).

The result values written to *val and pos are broadcast to all members

of the active process group.

Replicated data: If the source or mask array has replicated mapping,

values for a particular element are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

123



5.30 class Minloc

A minimum location schedule is a communication schedule for �nding the
location of the smallest element of a distributed array. A minimum location
schedule is described by a collective object with local components of class
Minloc. The public interface of the Minloc class is

class DAD ;

template<class T>

class Minloc {

public :

Minloc(const DAD* src) ;

void execute(T* val, int pos [], T* srcDat) ;

private :

...

} ;

5.30.1 Constructor

Minloc(const DAD* src)

The source array is described by the DAD *src. It will have elements of

type T.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Accessibility restrictions: The source array must be value-accessible.

(see section 4.6).

Argument persistence: The src argument is stored in the schedule

as a reference. The associated object must persist for the lifetime of the

constructed schedule.

124



5.30.2 Method

execute(T* val, int pos [], T* srcDat)

The arguments are the addresses to which the result value and location

should be written, and the base address of the local segment of the source

array. The latter should point to a vector of the locally held elements.

The size of the pos vector must be equal to the rank of the source array.

E�ect: The value of smallest element in the array is written to *val.

The global subscripts of the �rst occurrence of this element are written to

the vector pos. If the minimum value occurs more than once in the array,

\�rst occurence" is de�ned by ordering the set of global subscripts with

�rst subscript least signi�cant (Fortran-like array-element ordering).

The result values written to *val and pos are broadcast to all members

of the active process group.

Replicated data: If the source array has replicated mapping, values for a

particular element are generally taken from the nearest copy. The de�nition

of \nearest" is implementation dependent.

125



5.31 class MinlocMsk

A masked minimum location schedule is a communication schedule for �nd-
ing the location of the smallest element of a distributed array, under the
control of a mask array. A masked minimum location schedule is described
by a collective object with local components of class MinlocMsk. The public
interface of the MinlocMsk class is

class DAD ;

template<class T>

class MinlocMsk {

public :

Minloc(const DAD* src, const DAD* msk) ;

void execute(T* val, int pos [], T* srcDat, int* mskDat) ;

private :

...

} ;

5.31.1 Constructor

MinlocMsk(const DAD* src, const DAD* msk)

The source array is described by the DAD *src. It will have elements of

type T. The mask array is described by the DAD *msk.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The mask array must have the same shape as the

source array (see section 4.4).

Alignment restrictions: The mask arraymust be value-aligned with the

source array (see section 4.5).

Accessibility restrictions: The source array and the mask array must

be value-accessible. (see section 4.6).

126



Argument persistence: The src and msk arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.31.2 Method

execute(T* val, int pos [], T* srcDat, int* mskDat)

The arguments are the addresses to which the result value and location

should be written, and the base addresses of the local segments of the

source and mask arrays. The latter should point to vectors of the locally

held elements.

The size of the pos vector must be equal to the rank of the source array.

E�ect: The value of smallest element in the array for which the corre-

sponding element of the mask array is non-zero is written to *val. The

global subscripts of the �rst occurrence of this element are written to the

vector pos. If the minimum value occurs more than once in the unmasked

part of the array, \�rst occurence" is de�ned by ordering the set of global

subscripts with �rst subscript least signi�cant (Fortran-like array-element

ordering).

The result values written to *val and pos are broadcast to all members

of the active process group.

Replicated data: If the source or mask array has replicated mapping,

values for a particular element are generally taken from the nearest copy.

The de�nition of \nearest" is implementation dependent.

127



5.32 class SumDim

A dimension sum schedule is a communication schedule for summing the el-

ements of a distributed array along one of its dimensions, yielding a reduced

array with rank one less than the source.
A dimension sum schedule is described by a collective object with local

components of class SumDim. The public interface of the SumDim class is

class DAD ;

template<class T>

class SumDim {

public :

SumDim(const DAD* res, const DAD* src, const int dim) ;

void execute(T* resDat, T* srcDat) ;

private :

...

} ;

5.32.1 Constructor

SumDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary addition operator, +, must be de�ned for objects of type

T, the assignment operator += must operate in a compatible way, and the

symbol 0 must be convertible to type T, yielding a zero of the addition

operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

128



Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.32.2 Method

execute(T* resDat, T* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is
N�1X

xdim=0

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

where N is the extent of the source array in dimension dim. The sums are

performed in an unspeci�ed order.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the sums are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

129



5.33 class SumDimMsk

A masked dimension sum schedule is a communication schedule for sum-

ming, under the control of mask, the elements of a distributed array along

one of its dimensions, yielding a reduced array with rank one less than the

source.

A masked dimension sum schedule is described by a collective object
with local components of class SumDimMsk. The public interface of the
SumDimMsk class is

class DAD ;

template<class T>

class SumDimMsk {

public :

SumDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk) ;

void execute(T* resDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.33.1 Constructor

SumDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim. The mask array is described by the

DAD *msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary addition operator, +, must be de�ned for objects of type

T, the assignment operator += must operate in a compatible way, and the

symbol 0 must be convertible to type T, yielding a zero of the addition

operation.

All standard arithmetic types of C++ satisfy these requirements for T.

130



Shape restrictions: The mask array must be the same shape as the

source array. The shape of the result array must be obtained from the

shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The mask array must be value-aligned with

the source array. The result array must be aligned to the source array, with

replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result array must be accessible (see section 4.6).

Argument persistence: The res, src and msk arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.33.2 Method

execute(T* resDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result, source

and mask arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is
N�1X

xdim = 0

msk [x0; : : : ; xdim-1; xdim;

xdim+1; : : : ; xR�1] 6= 0

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

where N is the extent of the source array in dimension dim. The sum is

performed in an unspeci�ed order.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the sums are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

131



Overlap restrictions: In-place updates are not allowed. The pair *res,

resDat must de�ne an array that has no overlap with the arrays de�ned

by either of the pairs *src, srcDat and *msk, mskDat

132



5.34 class ProductDim

A dimension product schedule is a communication schedule for multiplying

together the elements of a distributed array along one of its dimensions,

yielding a reduced array with rank one less than the source.
A dimension product schedule is described by a collective object

with local components of class ProductDim. The public interface of the
ProductDim class is

class DAD ;

template<class T>

class ProductDim {

public :

ProductDim(const DAD* res, const DAD* src, const int dim) ;

void execute(T* resDat, T* srcDat) ;

private :

...

} ;

5.34.1 Constructor

ProductDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary multiplication operator, *, must be de�ned for objects of

type T, the assignment operator *= must operate in a compatible way, and

the symbol 1 must be convertible to type T, yielding a unit of the multipli-

cation operation.

All standard arithmetic types of C++ satisfy these requirements for T.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

133



Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.34.2 Method

execute(T* resDat, T* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is
N�1Y

xdim=0

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

where N is the extent of the source array in dimension dim. The product

is computed in an unspeci�ed order.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the product are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

134



5.35 class ProductDimMsk

A masked dimension product schedule is a communication schedule for mul-

tiplying together, under the control of mask, the elements of a distributed

array along one of its dimensions, yielding a reduced array with rank one

less than the source.

A masked dimension product schedule is described by a collective object
with local components of class ProductDimMsk. The public interface of the
ProductDimMsk class is

class DAD ;

template<class T>

class ProductDimMsk {

public :

ProductDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk) ;

void execute(T* resDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.35.1 Constructor

ProductDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim. The mask array is described by the

DAD *msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type (see section 5.1.2). A con-

ventional binary multiplication operator, *, must be de�ned for objects of

type T, the assignment operator *= must operate in a compatible way, and

the symbol 1 must be convertible to type T, yielding a unit of the multipli-

cation operation.

All standard arithmetic types of C++ satisfy these requirements for T.

135



Shape restrictions: The mask array must be the same shape as the

source array. The shape of the result array must be obtained from the

shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The mask array must be value-aligned with

the source array. The result array must be aligned to the source array, with

replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result array must be accessible (see section 4.6).

Argument persistence: The res, src and msk arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.35.2 Method

execute(T* resDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result, source

and mask arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is
N�1Y

xdim = 0

msk [x0; : : : ; xdim-1; xdim;

xdim+1; : : : ; xR�1] 6= 0

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

where N is the extent of the source array in dimension dim. The product

is computed in an unspeci�ed order.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the product are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

136



Overlap restrictions: In-place updates are not allowed. The pair *res,

resDat must de�ne an array that has no overlap with the arrays de�ned

by either of the pairs *src, srcDat and *msk, mskDat

137



5.36 class MaxvalDim

A dimension maximum value schedule is a communication schedule for �nd-

ing the largest elements of a distributed array along one of its dimensions,

yielding a reduced array with rank one less than the source.
A dimension maximum value schedule is described by a collective object

with local components of class MaxvalDim. The public interface of the
MaxvalDim class is

class DAD ;

template<class T>

class MaxvalDim {

public :

MaxvalDim(const DAD* res, const DAD* src, const int dim) ;

void execute(T* resDat, T* srcDat) ;

private :

...

} ;

5.36.1 Constructor

MaxvalDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

138



Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.36.2 Method

execute(T* resDat, T* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the maximum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

across allowed values of xdim.

As implied by the replicated alignment of the result array, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values of

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

139



5.37 class MaxvalDimMsk

A masked dimension maximum value schedule is a communication schedule

for �nding, under the control of mask, the largest elements of a distributed

array along one of its dimensions, yielding a reduced array with rank one

less than the source.
A masked dimension maximum value schedule is described by a col-

lective object with local components of class MaxvalDimMsk. The public
interface of the MaxvalDimMsk class is

class DAD ;

template<class T>

class MaxvalDimMsk {

public :

MaxvalDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk) ;

void execute(T* resDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.37.1 Constructor

MaxvalDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim. The mask array is described by the

DAD *msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

140



Shape restrictions: The mask array must be the same shape as the

source array. The shape of the result array must be obtained from the

shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The mask array must be value-aligned with

the source array. The result array must be aligned to the source array, with

replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result array must be accessible (see section 4.6).

Argument persistence: The res, src and msk arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.37.2 Method

execute(T* resDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result, source

and mask arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the maximum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

for which
msk [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1] 6= 0

over the allowed values of xdim.

As implied by the replicated alignment of the result array, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values for

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

141



Overlap restrictions: In-place updates are not allowed. The pair *res,

resDat must de�ne an array that has no overlap with the arrays de�ned

by either of the pairs *src, srcDat and *msk, mskDat

142



5.38 class MinvalDim

A dimension minimum value schedule is a communication schedule for �nd-

ing the smallest elements of a distributed array along one of its dimensions,

yielding a reduced array with rank one less than the source.
A dimension minimum value schedule is described by a collective object

with local components of class MinvalDim. The public interface of the
MinvalDim class is

class DAD ;

template<class T>

class MinvalDim {

public :

MinvalDim(const DAD* res, const DAD* src, const int dim) ;

void execute(T* resDat, T* srcDat) ;

private :

...

} ;

5.38.1 Constructor

MinvalDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

143



Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

5.38.2 Method

execute(T* resDat, T* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the minimum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

across allowed values of xdim.

As implied by the replicated alignment of the result array, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values of

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

144



5.39 class MinvalDimMsk

A masked dimension minimum value schedule is a communication schedule

for �nding, under the control of mask, the smallest elements of a distributed

array along one of its dimensions, yielding a reduced array with rank one

less than the source.
A masked dimension minimum value schedule is described by a collective

object with local components of class MinvalDimMsk. The public interface
of the MinvalDimMsk class is

class DAD ;

template<class T>

class MinvalDimMsk {

public :

MinvalDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk) ;

void execute(T* resDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.39.1 Constructor

MinvalDimMsk(const DAD* res, const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type T. The

reduction occurs in dimension dim. The mask array is described by the

DAD *msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

145



Shape restrictions: The mask array must be the same shape as the

source array. The shape of the result array must be obtained from the

shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The mask array must be value-aligned with

the source array. The result array must be aligned to the source array, with

replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result array must be accessible (see section 4.6).

Argument persistence: The res, src and msk arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.39.2 Method

execute(T* resDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result, source

and mask arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the minimum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

for which
msk [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1] 6= 0

over the allowed values of xdim.

As implied by the replicated alignment of the result array, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values for

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

146



Overlap restrictions: In-place updates are not allowed. The pair *res,

resDat must de�ne an array that has no overlap with the arrays de�ned

by either of the pairs *src, srcDat and *msk, mskDat

147



5.40 class AllDim

A dimension all schedule is a communication schedule for computing the

logical conjunction of the elements of a distributed array of boolean along

one of its dimensions, yielding a reduced array with rank one less than the

source.
A dimension all schedule is described by a collective object with local

components of class AllDim. The public interface of the AllDim class is

class DAD ;

class AllDim {

public :

AllDim(const DAD* res, const DAD* src, const int dim) ;

void execute(int* resDat, int* srcDat) ;

private :

...

} ;

5.40.1 Constructor

AllDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type int.

The reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

148



5.40.2 Method

execute(int* resDat, int* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is true if

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

is true (non-zero) for all allowed values of xdim.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the conjunctions are generally taken from the

nearest copy of the source element. The de�nition of \nearest" is imple-

mentation dependent. Consistent replication of copies in the result array

relies on consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

149



5.41 class AnyDim

A dimension any schedule is a communication schedule for computing the

logical disjunction of the elements of a distributed array of boolean values

along one of its dimensions, yielding a reduced array with rank one less

than the source.
A dimension any schedule is described by a collective object with local

components of class AnyDim. The public interface of the AnyDim class is

class DAD ;

class AnyDim {

public :

AnyDim(const DAD* res, const DAD* src, const int dim) ;

void execute(int* resDat, int* srcDat) ;

private :

...

} ;

5.41.1 Constructor

AnyDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type int.

The reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

150



5.41.2 Method

execute(int* resDat, int* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is true if

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

is true (non-zero) for any allowed values of xdim.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the disjunctions are generally taken from the

nearest copy of the source element. The de�nition of \nearest" is imple-

mentation dependent. Consistent replication of copies in the result array

relies on consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

151



5.42 class CountDim

A dimension count schedule is a communication schedule for counting the

number of true elements of a distributed array of boolean values along one

of its dimensions, yielding a reduced array with rank one less than the

source.
A dimension count schedule is described by a collective object with local

components of class CountDim. The public interface of the CountDim class
is

class DAD ;

class CountDim {

public :

CountDim(const DAD* res, const DAD* src, const int dim) ;

void execute(int* resDat, int* srcDat) ;

private :

...

} ;

5.42.1 Constructor

CountDim(const DAD* res, const DAD* src, const int dim)

The source array is described by the DAD *src and the result array is

described by the DAD *res. They will both have elements of type int.

The reduction occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from

the shape of the source array by deleting dimension dim (see section 4.4).

Alignment restrictions: The result array must be aligned to the source

array, with replicated alignment in dimension dim (see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result array must be accessible (see section 4.6).

Argument persistence: The res and src arguments are stored in the

schedule as references. The associated objects must persist for the lifetime

of the constructed schedule.

152



5.42.2 Method

execute(int* resDat, int* srcDat)

Arguments are the base addresses for local segments of the result and source

arrays. They should point to vectors of the locally held elements.

E�ect: On exit, the value of

res [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the number of true (non-zero) elements

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

over allowed values of xdim.

As implied by the replicated alignment of the result array, results are

broadcast in the process dimension associated with dimension dim of the

source array.

Replicated data: If the source array has replicated mapping, values for

particular contributions to the count are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. The pairs *res,

resDat and *src, srcDat must de�ne non-overlapping arrays.

153



5.43 class MaxlocDim

A dimension maximum location schedule is a communication schedule for

searching for the largest elements of a distributed array along one of its

dimensions, yielding a reduced array with rank one less than the source.
A dimension maximum location schedule is described by a collective

object with local components of class MaxlocDim. The public interface of
the MaxlocDim class is

class DAD ;

template<class T>

class MaxlocDim {

public :

MaxlocDim(const DAD* val, const DAD* pos,

const DAD* src, const int dim) ;

void execute(T* valDat, int* posDat, T* srcDat) ;

private :

...

} ;

5.43.1 Constructor

MaxlocDim(const DAD* val, const DAD* pos,

const DAD* src, const int dim)

The source array is described by the DAD *src and the array of maximum

values is described by the DAD *val. They will both have elements of type

T. The array of maximum locations is described by the DAD *pos. The

search occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

154



Shape restrictions: The shape of the two result arrays (*val and *pos)

must be must be obtained from the shape of the source array by deleting

dimension dim (see section 4.4).

Alignment restrictions: The two result arrays (*val and *pos) must

be aligned to the source array, with replicated alignment in dimension dim

(see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result arrays must be accessible (see section 4.6).

Argument persistence: The val, loc and src arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.43.2 Method

execute(T* valDat, int* posDat, T* srcDat)

Arguments are the base addresses for local segments of the result value,

result position, and source arrays. They should point to vectors of the

locally held elements.

E�ect: On exit, the value of

val [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the maximum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

across allowed values of xdim. The value of

pos [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the smallest xdim value at which this maximum occurs.

As implied by the replicated alignment of the result arrays, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values of

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

155



Overlap restrictions: In-place updates are not allowed. Neither of the

arrays de�ned by the pairs *val, valDat or *pos, posDat may have any

overlap with the array de�ned by the pair *src, srcDat.

156



5.44 class MaxlocDimMsk

A masked dimension maximum location schedule is a communication sched-

ule for searching, under the control of a mask, for the largest elements of a

distributed array along one of its dimensions, yielding a reduced array with

rank one less than the source.
A masked dimension maximum location schedule is described by a col-

lective object with local components of class MaxlocDimMsk. The public
interface of the MaxlocDimMsk class is

class DAD ;

template<class T>

class MaxlocDimMsk {

public :

MaxlocDimMsk(const DAD* val, const DAD* pos,

const DAD* src, const int dim, const DAD* msk) ;

void execute(T* valDat, int* posDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.44.1 Constructor

MaxlocDimMsk(const DAD* val, const DAD* pos,

const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the array of maximum

values is described by the DAD *val. They will both have elements of type

T. The array of maximum locations is described by the DAD *pos. The

search occurs in dimension dim. The mask array is described by the DAD

*msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostneg must be overloaded with the entry point

void mostneg(T* res) ;

157



which sets *res to the smallest allowed value of type T. The Adlib header

�les de�ne mostneg for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The shape of the two result arrays (*val and *pos)

must be must be obtained from the shape of the source array by deleting

dimension dim. The mask array must be the same shape as the source array

(see section 4.4).

Alignment restrictions: The two result arrays (*val and *pos) must

be aligned to the source array, with replicated alignment in dimension dim.

The mask array must be value-aligned with the source array (see section

4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result arrays must be accessible (see section 4.6).

Argument persistence: The val, loc, src and msk arguments are

stored in the schedule as references. The associated objects must persist

for the lifetime of the constructed schedule.

5.44.2 Method

execute(T* valDat, int* posDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result value,

result position, source, and mask arrays. They should point to vectors of

the locally held elements.

E�ect: On exit, the value of

val [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the maximum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

for which
msk [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1] 6= 0

over the allowed values of xdim. The value of

pos [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

158



is the smallest xdim value at which this maximum occurs.

As implied by the replicated alignment of the result arrays, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values for

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. Neither of the

arrays de�ned by the pairs *val, valDat or *pos, posDat may have any

overlap with either of the arrays de�ned by the pairs *src, srcDat and

*msk, mskDat

159



5.45 class MinlocDim

A dimension minimum location schedule is a communication schedule for

searching for the smallest elements of a distributed array along one of its

dimensions, yielding a reduced array with rank one less than the source.
A dimension minimum location schedule is described by a collective

object with local components of class MinlocDim. The public interface of
the MinlocDim class is

class DAD ;

template<class T>

class MinlocDim {

public :

MinlocDim(const DAD* val, const DAD* pos,

const DAD* src, const int dim) ;

void execute(T* valDat, int* posDat, T* srcDat) ;

private :

...

} ;

5.45.1 Constructor

MinlocDim(const DAD* val, const DAD* pos,

const DAD* src, const int dim)

The source array is described by the DAD *src and the array of minimum

values is described by the DAD *val. They will both have elements of type

T. The array of minimum locations is described by the DAD *pos. The

search occurs in dimension dim.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

160



Shape restrictions: The shape of the two result arrays (*val and *pos)

must be must be obtained from the shape of the source array by deleting

dimension dim (see section 4.4).

Alignment restrictions: The two result arrays (*val and *pos) must

be aligned to the source array, with replicated alignment in dimension dim

(see section 4.5).

Accessibility restrictions: The source array must be value-accessible

and the result arrays must be accessible (see section 4.6).

Argument persistence: The val, loc and src arguments are stored

in the schedule as references. The associated objects must persist for the

lifetime of the constructed schedule.

5.45.2 Method

execute(T* valDat, int* posDat, T* srcDat)

Arguments are the base addresses for local segments of the result value,

result position, and source arrays. They should point to vectors of the

locally held elements.

E�ect: On exit, the value of

val [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the minimum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

across allowed values of xdim. The value of

pos [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the smallest xdim value at which this minimum occurs.

As implied by the replicated alignment of the result arrays, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values of

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

161



Overlap restrictions: In-place updates are not allowed. Neither of the

arrays de�ned by the pairs *val, valDat or *pos, posDat may have any

overlap with the array de�ned by the pair *src, srcDat.

162



5.46 class MinlocDimMsk

A masked dimension minimum location schedule is a communication sched-

ule for searching, under the control of a mask, for the smallest elements of

a distributed array along one of its dimensions, yielding a reduced array

with rank one less than the source.
A masked dimension minimum location schedule is described by a col-

lective object with local components of class MinlocDimMsk. The public
interface of the MinlocDimMsk class is

class DAD ;

template<class T>

class MinlocDimMsk {

public :

MinlocDimMsk(const DAD* val, const DAD* pos,

const DAD* src, const int dim, const DAD* msk) ;

void execute(T* valDat, int* posDat, T* srcDat, int* mskDat) ;

private :

...

} ;

5.46.1 Constructor

MinlocDimMsk(const DAD* val, const DAD* pos,

const DAD* src, const int dim,

const DAD* msk)

The source array is described by the DAD *src and the array of minimum

values is described by the DAD *val. They will both have elements of type

T. The array of minimum locations is described by the DAD *pos. The

search occurs in dimension dim. The mask array is described by the DAD

*msk.

Value restrictions: The value of dim must be in the range 0; : : : ; R� 1

where R is the rank of the source array.

Type restrictions: T should be a POD type. Conventional binary com-
parision operators, > and <, must be de�ned for objects of type T, and a
function mostpos must be overloaded with the entry point

void mostpos(T* res) ;

163



which sets *res to the largest allowed value of type T. The Adlib header

�les de�ne mostpos for all the standard arithmetic types of C++, so these

types satisfy all the requirements for T.

Shape restrictions: The shape of the two result arrays (*val and *pos)

must be must be obtained from the shape of the source array by deleting

dimension dim. The mask array must be the same shape as the source array

(see section 4.4).

Alignment restrictions: The two result arrays (*val and *pos) must

be aligned to the source array, with replicated alignment in dimension dim.

The mask array must be value-aligned with the source array (see section

4.5).

Accessibility restrictions: The source and mask arrays must be value-

accessible and the result arrays must be accessible (see section 4.6).

Argument persistence: The val, loc, src and msk arguments are

stored in the schedule as references. The associated objects must persist

for the lifetime of the constructed schedule.

5.46.2 Method

execute(T* valDat, int* posDat, T* srcDat, int* mskDat)

Arguments are the base addresses for local segments of the result value,

result position, source, and mask arrays. They should point to vectors of

the locally held elements.

E�ect: On exit, the value of

val [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

is the minimum value of

src [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1]

for which
msk [x0; : : : ; xdim-1; xdim; xdim+1; : : : ; xR�1] 6= 0

over the allowed values of xdim. The value of

pos [x0; : : : ; xdim-1; xdim+1; : : : ; xR�1]

164



is the smallest xdim value at which this minimum occurs.

As implied by the replicated alignment of the result arrays, the results

are broadcast in the process dimension associated with dimension dim of

the source array.

Replicated data: If the source array has replicated mapping, values for

particular elements for comparision are generally taken from the nearest

copy of the source element. The de�nition of \nearest" is implementation

dependent. Consistent replication of copies in the result array relies on

consistency of copies in the source array.

Overlap restrictions: In-place updates are not allowed. Neither of the

arrays de�ned by the pairs *val, valDat or *pos, posDat may have any

overlap with either of the arrays de�ned by the pairs *src, srcDat and

*msk, mskDat

165



166



Chapter 6

The ad++ interface

167



168



Chapter 7

Distributed loops

In this chapter we discuss various ways to use the Adlib run-time technology

in translation of distributed loops|loops whose ranges is partitioned across

the active process group. Typically such loops are used to access and modify

the data in distributed arrays. For de�niteness, we work in the context of

the ad++ interface. The techniques can be adapted to other interfaces to

the kernel library.
In ad++, the general overall construct is a distributed, parallel loop. It

is parametrized by an Index object which maintains local loop state. If x
is a range the overall construct has the syntax.

Index i(x) ;

OVERALL(i) {

...

} ALLOVER(i) ;

If x has extent N, this construct can be compared to the sequential loop

int i ;

for(i = 0 ; i < N ; i++) {

...

}

The di�erence is that in the overall construct the N instances of the body

of the loop will be partitioned across the set of active processes, following

the mapping of x.
The Index class is a subclass of Location. Within an overall construct

parametrized by an Index i, the Subcript component of i is set to the
local subscript for the current iteration. So i can be used as an array
subscript, as in

169



Array1<float> c(x) ;

Index i(x) ;

OVERALL(i) {

c(i) = ...

} ALLOVER(i) ;

The general overall construct has an e�ect on the active process group

as described in section 2.7. If a construct parametrized by i appears in the

context of an active process group p, the body of the construct executes in

the context of an active process group p / i (recall that Index is a subclass

of Location which is in turn is a subclass of Coord, so this expression is

well-formed.) The parent range of i must be distributed over a dimension

of p.
Combining these features, we can give a more complete example

Array2<float> a(x, y) ;

Array1<float> b(y) ;

...

Index i(x), j(y) ;

OVERALL(i) {

OVERALL(j) {

a(i, j) = 2 * b(j) + x.idx(i) ;

} ALLOVER(j) ;

} ALLOVER(i) ;

To each element of a, this assigns an expression computed from the aligned

value of b and the global subscript of x (obtained through x.idx(i). All

data accesses through legal subscripting operations are local. If a non-local

array element was required, it would take a speci�c call to a member of the

communication library to access it.

The remainder of this chapter discusses several schemes for translating

the distributed loop. The �rst scheme uses the Adlib Index class directly.

The \translation" is the trivial one, using only the C macro preprocessor

to replace the OVERALL and ALLOVER \keywords". The second scheme uses

another auxilliary (iterator) class from the library|LocBlocksIndex. The

translation is still relatively straightforward and has the advantage of being

independent of the level of the parametric range. The LocBlocksIndex

mechanism is quite e�cient, and is used extensively in the implementation

of the Adlib communication library. Finally we describe a scheme which

works directly in terms of the members of Range class, without introducing

any auxilliary iterator class.

170



7.1 class Index

An iterator class, maintaining loop state for simple enumerations of the

elements of a range.

The Index class is derived from the LocBlocksIndex class (see section

7.2) which is in turn derived from Location. These classes are used exten-

sively in Adlib code that has to deal with ranges whose level is not known

in advance. Their use can be avoided if the level of the ranges is known at

compile time, using code transformations described in section 7.3.
The public interface of the Index class is

class Index : public LocBlocksIndex {

public :

Index(Range x) ;

void begin() ;

void next() ;

} ;

7.1.1 Constructor

Index(Range x)

Create an index object for enumerating the elements of range x.

7.1.2 Methods

begin()

Used to implement the general overall construct|a distributed loop. Begins

an enumeration of the elements of the range mapped to the local process.

On exit from this member, the Location component of the index represents

the �rst element of the local segment of the range1.
If i is the loop index, the idiom for the loop is

for(i.begin() ; i.test() ; i.next())

S

The member test() is inherited from LocBlocksIndex (see section 7.2).

next()

Move to next element in enumeration.

1Here \�rst element" simply means �rst in the enumeration. It does not necessarily

mean the local element with the smallest global subscript.

171



7.1.3 Translation of overall construct by macro expan-

sion

The most naive translation of the overall construct is by using the standard
C preprocessor to expand the macros

#define OVERALL(i) for(apgStack.push(&apg), apg.restrict(i.dim), \

i.begin() ; i.test() ; i.next())

#define ALLOVER(i) apgStack.pop(&apg)

E�ectively, the loop

OVERALL(i) {

...

} ALLOVER(i) ;

becomes

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.begin() ; i.test() ; i.next()) {

...

}

apgStack.pop(&apg) ;

We moved the apg manipulations (see section 2.7) outside the for con-

struct to improve readability. The begin(), test() and next() members

of Index are used in the for loop to enumerate the local elements of the

range.

This translation is trivial to implement, but it is very ine�cient. First

we have the overhead of the calls to the iterator members of Index in every

iteration. Secondly (probably even more seriously) every array or range

subscripting operation in the body of the loop involves calls to member

functions. The overhead of all these library calls can easily downgrade

performance by an order of magnitude or more relative to a comparable

sequential for loop.

172



7.2 class LocBlocksIndex

An iterator class, maintaining loop state for enumerations of the locally

held blocks of a range.
The public interface of the LocBlocksIndex class is

class LocBlocksIndex : public Location, public Block {

public :

LocBlocksIndex(Range _x) ;

void beginLocBlk() ;

void nextLocBlk() ;

int test() ;

} ;

7.2.1 Constructor

LocBlocksIndex(Range x)

Create an index object for enumerating the local blocks of range x.

7.2.2 Methods

beginLocBlk()

Begins an enumeration of the blocks of the range mapped to the local pro-

cess. On exit from this member, the Block componenent of the Index

contains the parameters of the �rst (non-empty) block of the locally held

segment of the range, and the Location component represents the �rst ele-

ment (smallest global subscript) in that block. \First block" simply means

�rst in the enumeration|it does not guarantee that the block contains

smaller subscripts than later blocks.
If i is the loop index, the idiom for the loop is

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk())

S

nextLocBlk()

Move to next (non-empty) block in the enumeration, updating the Block

and Location components. Usage is illustrated in the idiomatic example

above.

test()

173



After an initial call to beginLocBlock and zero or more subsequent calls

to nextLocBlock, result of this member is non-zero if there are still blocks

waiting to be enumerated. Usage is illustrated in the idiomatic example

above.

7.2.3 Translation of overall construct using

LocBlocksIndex

The class LocBlocksIndex is a superclass of Index that provides members

to enumerate local blocks of a range, rather than individual local elements.

Library functions return base addresses of the array sections associated

with these blocks. Elements within the block are then enumerated with

a simple, e�cient for loop, computing o�sets from base addresses using

linear expressions. The performance-critical inner loops can be compiled

with high e�ciency. If the block size is large enough, most of the cost of

the library calls is amortized.
LocBlocksIndex is a subclass of Location and of Block. The outer

level in the translation of a overall construct now looks something like

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

... deal with block `i'

}

apgStack.pop(&apg) ;

In this translation scheme we have an outer loop enumerating the locally

held blocks of the range. In general this loop is needed because Adlib

supports higher-level distribution formats like block-cyclic. These allow

multiple blocks of a single range to reside on the same processor. In a

context where it is known in advance that the local process holds a single

block (for example, if the range involved has level 1), the translation scheme

given in the next section allows further optimizations.
In general code to \deal with block i", takes the form

... precompute some bases and increments for block

for(int l = 0 ; l < i.count ; l++) {

...

}

Before �lling the details of this code, we need to put the source code into

a normalized form. The body of a overall construct parametrized by an

index i may use i in several contexts:

174



1. As a subscript in a local subscripting operation.

2. In an expression such as x.idx(i) used to obtain the global subscript

of the current iteration relative to the index range.

3. In an expression such as y.idx(i) used to obtain the global sub-

script of the current iteration relative to some super-range of the

index range.

4. As a scalar subscript in a section subscripting operation.

5. In a group restriction operation of the form p / i, where p is some

group.

As described in chapter 4, subscripting operations on arrays can be replaced
with lower-level operations on the Map and Group classes. For example, if
a is an array of float, the reference

... a(i, j) ...

can be replaced with

float* a_dat = a.dat() ;

... a_dat [a.map(0).offset(i) + a.map(1).offset(j)] ...

Of course the inquiries dat() and map() can be lifted outside any loop.
Similarly, the section construction

... a.sect(i, y) ...

can be replaced with

float* a_dat = a.dat() ;

... Section1<float>(y, a.grp() / i,

a.map(1), a_dat + a.map(0).offset(i)) ...

By applying these transformations, and replacing expression of the form

y.idx(i) by linear expressions in the template global subscript i.tem, the

set of uses of i inside the loop can be reduced to four cases

1. As an argument of Map :: offset.

2. In x.idx(i), yielding the global subscript.

3. In i.tem, yielding the template global subscript.

4. In a group restriction operation of the form p / i.

175



SOURCE:

Range x ;

Map u ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

int u_bas = u.offset(i) ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

... u_bas + u_stp * l ...

}

}

apgStack.pop(&apg) ;

Figure 7.1: Translation of o�set computation.

176



SOURCE:

Range x ;

Index i(x) ;

OVERALL(i) {

... x.idx(i) ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

for(int l = 0 ; l < i.count ; l++) {

... i.glb_bas + i.glb_stp * l ...

}

}

apgStack.pop(&apg) ;

Figure 7.2: Translation of global subscript computation.

177



SOURCE:

Range x ;

Index i(x) ;

OVERALL(i) {

... p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

for(int l = 0 ; l < i.count ; l++) {

... p / i ...

}

}

apgStack.pop(&apg) ;

Figure 7.3: Translation for computation of group restriction.

178



We will deal with these cases in turn. [Replace follwing enumeration and

associated �gures with straight descriptive text.]

O�set computation. Within a particular block the expression

u.offset(i) can be rewritten as a linear function of the inner in-

duction variable. The base for this function is given by the value of

offset for the �rst Location of the range, which is the Location

component of i. Its increment is returned by the member Map ::

step. Figure 7.1 illustrates the translation. The call to offset has

been removed from the inner loop. A good compiler will generate

very e�cient code for the linear expression that replaces it.

Global subscript computation is slightly simpler. The base and incre-

ment for this expression are already contained in the Block compo-

nent of i, computed by its iterator members. Figure 7.2 illustrates

the translation.

Group restriction is translated trivially, as illustrated in �gure 7.3.

Now, consider this example from the preamble to this chapter:

Array2<float> a(x, y) ;

Array1<float> b(y) ;

...

Index i(x), j(y) ;

OVERALL(i) {

OVERALL(j) {

a(i, j) = 2 * b(j) + i ;

} ALLOVER(j) ;

} ALLOVER(i) ;

It can be normalized to the form

Array2<float> a(x, y) ;

Array1<float> b(y) ;

...

float* a_dat = a.dat() ;

float* b_dat = b.dat() ;

Index i(x), j(y) ;

OVERALL(i) {

OVERALL(j) {

a_dat [a.map(0).offset(i) + a.map(1).offset(j)] =

b_dat [b.map(0).offset(j)] + x.idx(i) ;

} ALLOVER(j) ;

} ALLOVER(i) ;

179



A translation of the loop nest is given in �gure 7.4.

Note that in this example the manipulations of apg could have been

omitted, because there are no collective operations inside the loop that

depend on the state of apg.
As a �nal straightforward optimization, when we have perfectly nested

overall constructs, the loop nesting can be changed to put all intra-block
loops innermost. In that case the inner loops become

for(int l = 0 ; l < i.count ; l++) {

for(int m = 0 ; m < j.count ; m++) {

a_dat [a_off0_bas + a_off0_stp * l +

a_off1_bas + a_off1_stp * m] =

b_dat [b_off0_bas + b_off0_stp * m] +

i.glb_bas + i.glb_stp * l ;

}

}

All subscript expressions are linear in the loop induction variables, and we

expect very good code generation from these loops.

The translation scheme described in this section is summarized in �gure

7.5.

180



LocBlocksIndex i(x), j(y) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

int a_off0_bas = a.map(0).offset(i) ;

int a_off0_stp = a.map(0).step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

apgStack.push(&apg) ;

apg.restrict(j.dim) ;

for(j.beginLocBlk() ; j.test() ; j.nextLocBlk()) {

int a_off1_bas = a.map(1).offset(j) ;

int a_off1_stp = a.map(1).step(j.sub_stp) ;

int b_off0_bas = b.map(0).offset(j) ;

int b_off0_stp = b.map(0).step(j.sub_stp) ;

for(int m = 0 ; m < j.count ; m++) {

a_dat [a_off0_bas + a_off0_stp * l +

a_off1_bas + a_off1_stp * m] =

b_dat [b_off0_bas + b_off0_stp * m] +

i.glb_bas + i.glb_stp * l ;

}

}

apgStack.pop(&apg) ;

}

}

apgStack.pop(&apg) ;

Figure 7.4: Translation of example.

181



SOURCE:

Range x ;

Map u ;

Group p ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

x.idx(i) ...

i.tem ...

p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

Group p ;

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

int u_bas = u.offset(i) ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

... u_bas + u_stp * l ...

i.glb_bas + i.glb_stp * l ...

i.tem_bas + i.tem_stp * l ...

p / i ...

}

}

apgStack.pop(&apg) ;

Figure 7.5: Summary of LocBlocksIndex-based translation scheme for

overall construct.

182



7.3 Translation using the kernel range

Internally, all the iterator classes depend on the block member of the ker-

nel range. In this section we show how to use this member directly for

translation of overall constructs. The scheme given here e�ectively inlines

the iterator members used in the previous translations. It also inlines the

offset member of the Map class, in terms of lower level disp and step

members.

To apply the translation scheme described in this section we need some

compile-time knowledge about the level of the range involved. The scheme

works recursively by expanding a overall construct in the source program in

terms of a overall construct for a range one level lower. The procedure can

(if desired) be continued recursively. After one or two stages we get down

to a overall construct for a level-0 range. This base case has a di�erent,

simpler translation. For this scheme to be e�ective we must at least know in

advance if the original parametric range has level 0 (ie, it already represents

the base case). Ideally we should know the exact level, as a compile-time

constant.

Before applying the translation proper, the input program should be

normalized as discussed in the previous section. Rather than discuss trans-

lation of the three uses of Index individually, we will go straight to the

combined summary form, in the style of �gure 7.5. For a parametric range

of level greater than zero, the translation summary is given in �gure 7.6.

The outer loop is a overall construct parametrized by x.ker(). The

block member of x initialize variables describing the block selected by the

current value of the kernel subscript. These variables correspond exactly

with the �elds of the Block component of LocBlocksIndex (and, of course,

this is exactly how they are computed in the implementation of that class).

The offset operation is expanded in terms of disp and step operations,

and an offset for a kernel range. If necessary the transformation can be

applied recursively to eliminate the offset function altogether.

The rest of the translation closely follows that of the previous section.

If the parametric range has level 0 (it is a process dimension, or a

subrange of a process dimension) the summary is given in �gure 7.7.

One stage of recursion applied to the example of the previous section

gives the translation in �gure 7.8. If ranges x and y both have level 1 appli-

cation of the rule for translating level 0 constructs then gives the translation

in �gure 7.9. Finally, �gure 7.10 gives an optimized form on the assumption

that the original ranges were level 1. We can remove the local conditional

because every active process must contain an element of the kernel, and

replace the value i1 initialized by local with d.crd(). Three other op-

timizations do not depend on the assumption of simplicity: additions of

183



SOURCE:

Range x ;

Map u ;

Group p ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

x.idx(i) ...

i.tem ...

p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

Group p ;

Index i1(x.ker()) ;

OVERALL(i1) {

Block i ;

x.block(i1.tem, &i) ;

int u_bas = u.disp(i.sub_bas) + u.ker().offset(i1) ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i_count ; l++) {

... u_bas + u_stp * l ...

i.glb_bas + i.glb_stp * l ...

i.tem_bas + i.tem_stp * l ...

p / i1 ...

}

} ALLOVER(i1) ;

Figure 7.6: Summary of recursive translation scheme for overall construct

with level greater than 0.

184



SOURCE:

Range x ;

Map u ;

Group p ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

x.idx(i) ...

i.tem ...

p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

Group p ;

Dimension d = x.dim() ;

apgStack.push(&apg) ;

apg.restrict(d) ;

int glb ;

if(x.local(&glb)) {

... 0 ...

glb ...

d.crd() ...

p.restrict(d) ...

}

apgStack.pop(&apg) ;

Figure 7.7: Summary of translation for overall construct of level 0.

185



0 are constant-folded away, x.ker().dim() is replaced with x.dim(), and

the apgmanipulations are removed, because the loop body contains no calls

to collective operations.

Because level 1 ranges are an important case, �gure 7.11 summarizes

the translation of the overall construct for level 1 parametric ranges.

186



Index i1(x.ker()), j1(y.ker()) ;

OVERALL(i1) {

Block i ;

x.block(i1.tem, &i) ;

int a_off0_bas = a.map(0).disp(i.sub_bas) + a.map(0).ker().offset(i1) ;

int a_off0_stp = a.map(0).step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

OVERALL(j1) {

Block j ;

y.block(j1.tem, &j) ;

int a_off1_bas = a.map(1).disp(j.sub_bas) + a.map(0).ker().offset(j1) ;

int a_off1_stp = a.map(1).step(j.sub_stp) ;

int b_off0_bas = b.map(0).disp(i.sub_bas) + b.map(0).ker().offset(i1) ;

int b_off0_stp = b.map(0).step(i.sub_stp) ;

for(int m = 0 ; m < j.count ; m++) {

a_dat [a_off0_bas + a_off0_stp * l +

a_off1_bas + a_off1_stp * m] =

b_dat [b_off0_bas + b_off0_stp * m] +

i.glb_bas + i.glb_stp * l ;

}

} ALLOVER(j1) ;

}

} ALLOVER(i1) ;

Figure 7.8: Translation of example. Pass 1, assuming ranges x and y have

level greater than zero.

187



Dimension d = x.ker().dim() ;

apgStack.push(&apg) ;

apg.restrict(d) ;

int i1 ;

if(x.ker().local(&i1) {

Block i ;

x.block(i1.tem, &i) ;

int a_off0_bas = a.map(0).disp(i.sub_bas) + 0 ;

int a_off0_stp = a.map(0).step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

Dimension e = y.ker().dim() ;

apgStack.push(&apg) ;

apg.restrict(e) ;

int j1 ;

if(y.ker().local(&j1) {

Block j ;

y.block(j1.tem, &j) ;

int a_off1_bas = a.map(1).disp(j.sub_bas) + 0 ;

int a_off1_stp = a.map(1).step(j.sub_stp) ;

int b_off0_bas = b.map(0).disp(i.sub_bas) + 0 ;

int b_off0_stp = b.map(0).step(i.sub_stp) ;

for(int m = 0 ; m < j.count ; m++) {

a_dat [a_off0_bas + a_off0_stp * l +

a_off1_bas + a_off1_stp * m] =

b_dat [b_off0_bas + b_off0_stp * m] +

i.glb_bas + i.glb_stp * l ;

}

}

apgStack.pop(&apg) ;

}

}

apgStack.pop(&apg) ;

Figure 7.9: Translation of example. Pass 2, assuming ranges x and y have

level 1, so their kernels are level 0.

188



Dimension d = x.dim() ;

Block i ;

x.block(d.crd(), &i) ;

int a_off0_bas = a.map(0).disp(i.sub_bas) ;

int a_off0_stp = a.map(0).step(i.sub_stp) ;

Dimension e = y.dim() ;

Block j ;

y.block(e.crd(), &j) ;

int a_off1_bas = a.map(1).disp(j.sub_bas) ;

int a_off1_stp = a.map(1).step(j.sub_stp) ;

int b_off0_bas = b.map(0).disp(i.sub_bas) ;

int b_off0_stp = b.map(0).step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

for(int m = 0 ; m < j.count ; m++) {

a_dat [a_off0_bas + a_off0_stp * l + a_off1_bas + a_off1_stp * m] =

b_dat [b_off0_bas + b_off0_stp * m] +

i.glb_bas + i.glb_stp * l ;

}

}

Figure 7.10: Translation of example. Optimizations assuming ranges x and

y are level 1.

189



SOURCE:

Range x ;

Map u ;

Group p ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

x.idx(i) ...

i.tem ...

p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

Group p ;

Dimension d = x.dim() ;

apgStack.push(&apg) ;

apg.restrict(d) ;

Block i ;

x.block(d.crd(), &i) ;

int u_bas = u.disp(i.sub_bas) ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

... u_bas + u_stp * l ...

i.glb_bas + i.glb_stp * l ...

i.tem_bas + i.tem_stp * l ...

p.restrict(d) ...

}

apgStack.pop(&apg) ;

Figure 7.11: Summary of translation for overall construct with level 1 x.

190



7.4 Translation using the subkernel range

[Make this a subsection of the previous section.]

Occasionally an e�ective optimization to the translation scheme of the

last section is to use the subkernel instead of the kernel for outer loops. If

the parametric range is a small subrange of its parent template, covering

only a small part of its kernel, using the subkernel may avoid the overhead

of inspecting many empty blocks. See �gures 3.1 and 3.2.

For a parametric range of level greater than zero, the translation sum-

mary is given in �gure 7.14. The kernel index j is now parametrized by

x.subker() rather than x.ker().

In practise this optimization is more important in the global block enu-

merations of section 7.6 than in distributed loops. As well as providing a

useful optimization to this enumeration, the subkernel imposes an ordering

on block enumeration which is important in certain communication oper-

ations (speci�cally, remap). If the alignment stride of the parent range is

negative, the result for subker().str() is also negative.

191



41

1

0

0

0

4

0

5

5

5

5

4

0

3

2

1

1

1

0

0

2

a) kernel subscripts

b) subkernel subscripts (numbered blocks only)

1 3

2

2

2

2

1

1

3

0

3

2

3 4

3

3

3

2

Figure 7.12: Possible de�nition of the subkernel for the range of �gure 3.1.

2

0

0

0 2

0

0

4

4

2

2

0

5

5

4

2

0

1

b) subkernel subscripts (numbered blocks only)

a) kernel subscripts

3

3

3

3 5

2

2

1

1

1

1

2

5

41

1

10

Figure 7.13: Possible de�nition of the subkernel for the range of �gure 3.2.

192



SOURCE:

Range x ;

Map u ;

Group p ;

Index i(x) ;

OVERALL(i) {

... u.offset(i) ...

x.idx(i) ...

i.tem ...

p / i ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

Group p ;

Index i1(x.subker()) ;

OVERALL(i1) {

Block i ;

x.block(i1.tem, &i) ;

int u_bas = u.disp(i.sub_bas) + u.ker().offset(i1) ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

... u_bas + u_stp * l ...

i.glb_bas + i.glb_stp * l ...

i.tem_bas + i.tem_stp * l ...

p / i1 ...

}

} ALLOVER(i1) ;

Figure 7.14: Summary of subkernel-based translation scheme for overall

construct with level greater than 0.

193



7.5 Access to ghost regions

If an array appearing in a overall construct has ghost regions, the subscripts
of the array may be shifted by some amount without violating the restriction
that all array element accesses are local. In ad++ this can be expressed by
an idiom like

Array1<float> b(x), c(x) ;

Index i(x) ;

OVERALL(i) {

b(i) = c(i + 1) + c(i - 1) ;

} ALLOVER(i) ;

This assumes that the array c has ghost regions of extent one or more

on both sides of its \physical" segments. The particular usage illustrated

here is very useful in \stencil" computations. The addition and subtraction

operators must be overloaded on the Location class to support this usage.

For de�niteness, the translation scheme in �gure 7.15 uses the

blocksIndex-based style of translation, but the same techniques can be

carried over directly to the recursive style.
A subtle point to note in the de�nition of the overloaded + and - op-

erators is that the shift amount is measured relative to the underlying
template range. This is slightly inconvenient if the array range has a non-
trivial alignment stride. Because this is assumed to be unusual in typical
stencil updates, and because alternatives that automatically take account
of the alignment stride add complexity, the current de�nition of the shift
was adopted as a pragmatic compromise. The problem can be overcome by
using the str inquiry, if necessary. If x (ie, c.rng()) may have a non-unit
alignment stride, the assignment in the fragment above should be replaced
by

b(i) = c(i + x.str()) + c(i - x.str()) ;

194



SOURCE:

Range x ;

Map u ;

Index i(x) ;

OVERALL(i) {

... u.offset(i + s) ...

} ALLOVER(i) ;

OUTPUT:

Range x ;

Map u ;

LocBlocksIndex i(x) ;

apgStack.push(&apg) ;

apg.restrict(i.dim) ;

for(i.beginLocBlk() ; i.test() ; i.nextLocBlk()) {

int u_bas = u.offset(i) + s * u.str() ;

int u_stp = u.step(i.sub_stp) ;

for(int l = 0 ; l < i.count ; l++) {

... u_bas + u_stp * l ...

}

}

apgStack.pop(&apg) ;

Figure 7.15: Translation of (constant) shifted o�set computation.

195



7.6 class AllBlocksIndex

An iterator class, maintaining loop state for enumerations of all the blocks

of a range.

The public interface of the AllBlocksIndex class is

class AllBlocksIndex : public LocBlocksIndex {

public :

AllBlocksIndex(Range _x) ;

void beginAllBlk() ;

void nextAllBlk() ;

} ;

7.6.1 Constructor

AllBlocksIndex(Range x)

Create an index object for enumerating all blocks of range x.

7.6.2 Methods

beginAllBlk()

Begins an enumeration of all blocks of the range. On exit from this member,

the Block componenent of the Index contains the parameters of the �rst

(non-empty) block of the range, and the Location component represents

the �rst element (smallest global subscript) in that block. \First block"

simply means �rst in the enumeration|it does not guarantee that the block

contains smaller subscripts than later blocks.

If i is the loop index, the idiom for the loop is

for(i.beginAllBlk() ; i.test() ; i.nextAllBlk())

S

The member test() is inherited from LocBlocksIndex (see section 7.2).

nextAllBlk()

Move to next (non-empty) block in the enumeration, updating the Block

and Location components.

196



7.6.3 Use of AllBlocksIndex in the communication li-

brary

The run-time technology introduced in this chapter for translation of dis-

tributed loops is used extensively in the implementation of the collective

communication library. In that context, blocks of ranges are usually more

important than individual elements, so use of the LocBlocksIndex iterator

is common.

Besides enumeration of locally held blocks, it is sometimes necessary to

enumerate all blocks of a range|local and non-local. For example, a data

remapping operation de�nes a map between the elements of two ranges with

di�erent distribution formats. A local block in one range maps to a speci�c

subrange of the other. But in general this subrange does not correspond

to a single block of the target range|it may be distributed over several

processes, divided into a number of blocks. If the original block of data

is to be moved to the target array, it must be split into a corresponding

number of data blocks, each sent to the appropriate destination.
All blocks enumeration resembles the local blocks enumeration given in

section 7.2, but the loop is started using the beginAllBlk() member of
AllBlocksIndex.

AllBlocksIndex i(x) ;

...

for(i.beginAllBlk() ; i.test() ; i.nextAllBlk()) {

...

}

In each iteration, the crd �eld inherited from the Location component of

i gives the process coordinate of the remote block, while the �elds of the

Block component de�ne the subscript range. If it is necessary to compute

memory o�sets in the remote process, this can be done using offset and

related members of Map in exactly the same way as for a local block.

There is no guarantee that enumeration of the blocks occurs in an ob-

vious sequential order. It is guaranteed that the subsequence of blocks

associated with a single process is enumerated in the same order as for

local blocks enumeration using LocBlocksIndex|this guarantee is often

exploited to ensure message blocks are sent and received in the same order

[need clari�cation on this point of ordering].

197



198



Chapter 8

Implementation of the

communication schedules

199


