
PCRC Fortran 90 and HPF Syntax Test Suite

D.B. Carpenter

Northeast Parallel Architectures Center,

Syracuse University,

111 College Place,

Syracuse, New York, 13244-4100

DRAFT

Abstract

The Fortran syntax test suite is designed as a test of Fortran 90 and

High Performance Fortran (HPF) compilers. It targets the parsing, or

syntax-checking, phase of the compilers.

The suite currently consists of 8 standard Fortran 90 programs and

one HPF program. The programs were constructed synthetically from

the formal syntax de�nition of the languages. They exercise every syntax

rule at least once. The tables of syntax rules used to generate the codes

are also supplied with the test suite.

The test programs are annotated with comments agging the �rst use

(within the �le) of each syntax rule. When a parser erroneously ags a

syntax error on a particular line, these annotations should enable rapid

isolation of the unrecognised syntax rule.

1 The Codes

The codes are located in the directory src/synthetic.

The �rst eight codes

test1.f90

test2.f90

test3.f90

test4.f90

test5.f90

test6.f90

test7.f90

test8.f90

1

are standard Fortran 90. They are designed to exercise every BNF syntax rule

in appendix B of the Fortran 90 Handbook [1].

By far the largest code is test1.f90. The remaining codes are only pro-

vided to test variants in the syntax rule deriving the main program. Since, by

convention, a single �le contains at most one main program, these variants were

placed in separate �les.

The �nal code

testh.f90

is an HPF program. It is designed to exercise every BNF rule in appendix B of

the High Performance Fortran Language Speci�cation, version 1.0 [2].

Presently the codes are provided only in Fortran 90 free format. Fixed

format versions may be provided later.

The test programs were constructed speci�cally to test Fortran parsers, and

by construction they are syntactically legal programs. They also respect the

non-syntactic constraints of Fortran: variables are declared, expressions are

properly typed, explicit procedure interfaces are provided, referenced modules

are de�ned, referenced statement labels exist, etc, wherever these things are

required by the rules of Fortran. Additionally all referenced procedures are

de�ned. It should therefore be possible to compile and link all test programs.

The results of running the programs is unde�ned|test1.f90 in particular ex-

ercises all the �le IO syntax of Fortran. Given the aims of the suite, it did

not appear worthwhile to devise a program that would behave sensibly in an

unknown �le-system environment.

2 Trouble-shooting

The test programs are annotated with comments agging the �rst use within

the current �le of each syntax rule. These comments will often help in isolation

of a compiler bug. For example when one Fortran 90 compiler was used to

compile the program test1.f90 it produced the error message

f90: Error: test1.f90, line 2017: Syntax error, found ','

when expecting one of: <END-OF-STATEMENT> ; <IDENTIFIER>

<INTEGER_KIND_CON> <INTEGER_CONSTANT> (

doc3 : DO, var123 = 1, 2

-----------^

Inspecting test1.f90 we �nd

2012

! do-stmt R818(b) 2013

! nonlabel-do-stmt R820(a) 2014

! loop-control R821(c) 2015

2016

doc3 : DO, var123 = 1, 2 2017

CONTINUE 2018

END DO doc3 2019

2020

The three comments on lines 2013-2015 specify the syntax rules which are used

for the �rst time in the following statement, line 2017. These rule are given in

full in the auxilliary �le rsymbols (for Fortran 90 rules and hsymbols for HPF

rules. For more discussion of the format of these �les see section 3). Searching

this �le for the rules R818, R820 and R821 we �nd that the optional comma

really is justi�ed by the rule R821(c) for loop-control:

loop-control DONE

R821(a) , do-variable = scalar-numeric-expression, scalar-

numeric-expression, scalar-numeric-expression

R821(b) do-variable = scalar-numeric-expression, scalar-nu

meric-expression, scalar-numeric-expression

R821(c) , do-variable = scalar-numeric-expression, scalar-

numeric-expression

R821(d) do-variable = scalar-numeric-expression, scalar-nu

meric-expression

R821(e) , WHILE (scalar-logical-expr)

R821(f) WHILE (scalar-logical-expr)

For con�rmation we can check rule R821 in appendix B of the Fortran 90 Hand-

book, and verify that there are no additional constraints forbidding the comma.

Apparently this particular compiler does not handle this syntax rule correctly

(at least in this context).

3 Construction of the Test Suite

The test programs were constructed systematically to use all rules of Fortran 90

and HPF syntax, starting from the formal syntax references in the appendices

of the language de�nitions.

The guiding strategy in constructing the programs was to approximate a

depth-�rst, backtracking exploration of the syntax rule set. In practise we were

more exible about the order of visiting the rules. A strict depth-�rst approach

would sometimes yield very unrealistic program sections, and would sometimes

generate programs which did not satisfy the non-syntactic (i.e., the non-context-

free) constraints of the language.

Wherever practical we follow the precise grammar given in the references.

Occasionally some normalisation was required to make the rules more suitable

for the our purposes (of course, a given language can be generated by many

di�erent BNF grammars, and our normalisations do not change the set of legal

programs)

The construction proceeds in three phases. For the sake of de�niteness we

call them syntactic, lexical and semantic.

3.1 Syntactic phase

The starting rule for a Fortran program is given in the Fortran Handbook as

R201 executable-program is program-unit

[program-unit]. . .

We copy this rule into a �le called rsymbols, where it is written in the form

executable-program IN PROGRESS

//R201(a) program-unit

program-unit

...

//R201(b) program-unit

The rsymbols �le plays a central r�ole in the construction. It is used to record

syntax rules for grammar symbols as they are encountered. Before proceeding

any further with the construction, we will describe the format of this �le. The

format is di�erent to the Handbook format, because we wish to eliminate optional

parts within single syntax rules, labelling every variant of a rule individually.

Wherever the Handbook notation for a rule allows optional parts, we split the

rule into several sub-rules labelled a, b, c, . . . (we do not regard this subdivision

as a normalisation of the grammar, per se|just as a di�erent notation for the

original grammar). As another example, a rule with two optional parts, such as

R611 substring-range is [scalar-int-expr] : [scalar-int-expr]

will, when it is encountered, be split into four parts enumerating all combina-

tions of options:

substring-range IN PROGRESS

//R611(a) scalar-int-expr : scalar-int-expr

//R611(b) : scalar-int-expr

//R611(c) scalar-int-expr :

//R611(d) :

Two conventions for repeated terms are used in the rsymbols �le: {X}...

means one or more repeats of X (on the current line), and ... (on a line alone)

means zero or more repeats of the previous line. The second convention is

illustrated in rule R201(a) above. There are a few rules in the Handbook where

optional parts appear inside repeats. For example

R529 data-stmt is DATA data-stmt-set [[,] data-stmt-set]. . .

In these cases sub-dividing rules and using the above repeat conventions are

insu�cient to eliminate optional parts in individual rules. In these cases we

normalise the grammar, introducing new symbols. In the example we introduce

a new symbol data-stmt' as follows

data-stmt IN PROGRESS

//R529(a) DATA data-stmt-set {data-stmt'}...

//R529(b) DATA data-stmt-set

data-stmt' IN PROGRESS

//R529(c) , data-stmt-set

//R529(d) data-stmt-set

Using these conventions we can label every variant of every rule in the syntax.

Returning to the start rule R201, we �rst select the �rst variant R201(a).

The right-hand side of the rule is copied to an initially empty �le test1.f90 to

give

program-unit

program-unit

...

Meanwhile, in the rsymbols �le we mark the �rst variant as visited by \uncom-

menting" it|removing the leading slashes:

executable-program IN PROGRESS

R201(a) program-unit

program-unit

...

//R201(b) program-unit

In the emergent test program the �rst symbol requiring expansion is

program-unit. We copy rule R202 to the rsymbols �le as

program-unit IN PROGRESS

//R202(a) main-program

//R202(b) external-subprogram

//R202(c) module

//R202(d) block-data

uncomment the �rst variant in that �le, and replace the �rst instance

program-unit in the test program by the RHS of the rule to get

main-program

program-unit

...

Much later, when the expansion of the �rst program-unit in the test program

is completed, the second program-unit symbol is encountered. Since the �rst

rule for program-unit is already marked as visited (it was uncommented when it

was used), we use the next rule R202(b), and uncomment that. Finally, when all

rules for program-unit have been visited, the IN PROGRESS label for the symbol

in rsymbols is replaced by DONE. Once a symbol is done, it is no-longer expanded

if it is encountered in the test �le (during this phase of the program generation).

Any remaining occurrences of the symbol are left as non-terminals.

The default rule for the order of expansion of symbols in the test program

is simply to expand the �rst non-terminal symbol in the current version of the

program which does not have a \done" entry in rsymbols. This biases early

occurrences of a non-terminal to expand to large expressions, because we usually

put the variants of rules with all options selected �rst in the set of sub-rules

for a symbol. If it appears that this ordering will lead to a very unbalanced, or

semantically illegal program, the �rst candidate symbol is left unexpanded, and

we look to the next candidate. The rules for the �rst symbol will eventually be

used up by expanding later instances of it.

Where rules contain repeats (ellipses), these repeats are generally exploited

where they will allow new sub-rules for in progress symbols to be used up.

Otherwise, if they provide no such opportunity, the repeatable term is written

just once in the test program. Sometimes a single sub-rule for a symbol will

be used several times, to allow all sub-rules for some child symbol to be used

up. For example program-unit is expanded several times by sub-rule R202(b)

because there are two sub-rules for external-subprogram (function and sub-

routine de�nitions) and, in turn, several variations for functions and subroutines

de�nitions.

Eventually, all symbols in rsymbols are marked \done". At this stage, all

rules of the syntax have been exploited once, and the test program has grown

into a very large syntactic term. It will still contain many non-terminal symbols.

As a useful by-product we have a �le rsymbols containing all the syntax

rules of the language.

3.2 Lexical phase

In this phase each remaining non-terminal symbol is replaced by a terminal or

a string of terminals.

Each occurrence of an xyz-name symbol is replaced by a legal Fortran name.

In general, every occurrence of such a symbol is given a di�erent expansion.

For example the �rst variable-name symbol encountered is replaced by var1,

the second by var2, and so on. At this stage we do not worry about semantic

requirements such as variables being declared before they are used. Every oc-

currence of a literal constant is given a value, usually a small value such as 0,

1 or 2 for an integer literal, or 'xx' for a character literal. Other, higher-level

non-terminal symbols, are expanded, typically with the smallest fragment which

is legal in the context.

As this phase proceeds, a table of all names (of program, variables, constants,

procedures, dummy arguments, modules, local use aliases, common blocks, de-

�ned operators, derived types, derived type components, namelist groups, con-

structs, statement labels, block data subprograms, etc) introduced into the pro-

gram is accumulated in a new �le.

3.3 Semantic phase

In the �nal phase the program is \debugged". The static semantic constraints of

the language are ful�lled. We ensure that variables are declared, expressions are

properly typed, explicit procedure interfaces are provided, referenced modules

are de�ned, referenced statement labels exist, and so on, wherever these things

are required by the rules of Fortran. De�nitions of all referenced procedures are

added in the �le which references them.

Mainly this phase just involves adding extra statements|usually declara-

tions, or de�nitions of referenced program units. The procedure is guided by

the \names" �le accumulated in the lexical phase. Entries in that �le are marked

as the named entities are declared or de�ned. The procedure essentially termi-

nates when all names are marked.

Occasionally (due to lack of foresight in the earlier phases) it may be neces-

sary to change previously generated code fragments. One must then take care

not to \lose" code which uniquely uses a particular syntax rule.

The whole procedure is repeated for the High Performance Fortran syntax,

but in this case we only care about visiting the additional syntax rules of HPF.

These rules are accumulated in the �le hsymbols.

4 Testing the Test Suite

The Fortran 90 test programs have been tested with the IBM compiler, xlf90,

the DEC compiler, f90, and the Parasoft compiler, f90. The IBM compiler

fares best, only reporting one syntax error. The DEC compiler reports four

syntax errors. The Parasoft compiler reports about two dozen. To the best of

our knowledge all these reports are erroneous.

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,

Jerrold L. Wagener, Fortran 90 Handbook: Complete ANSI/ISO Reference,

McGraw Hill, New York, 1992.

[2] High Performance Fortran Forum, High Performance Fortran Language

Speci�cation, Version 1.0, 1993.

