
PCRC-based HPF Compilation

Guansong Zhang, Bryan Carpenter, Geo�rey Fox

Xiaoming Li�, Xinying Li, Yuhong Wen

NPAC at Syracuse University

Syracuse, NY 13244

fzgs,dbc,gcf,lxm,xli,wengnpac.syr.edu

July 11, 1997

Abstract

This paper describes an ongoing e�ort supported by ARPA PCRC

(Parallel Compiler Runtime Consortium) project. In particular, we dis-

cuess the design and implementation of an HPF compilation system based

on PCRC runtime. The approaches to issues such as directive analysis and

communication detection are discussed in detail. The discussion includes

fragments of code generated by the compiler.

Key words: HPF, PCRC, compiler, runtime

Acknowledgement: Much of the work reported here is a result of collab-

oration among Syracuse University, Harbin Institute of Technology, China, and

Peking University, China. The authors would like to acknowledge this collabo-

ration and thank our friends in the other two groups.

�Visiting scholar from HIT, China

1

1 Introduction

HPF has been around for a while [1]. Some early expectations|e�cient and

robust compilers arriving at the market within a few years of the speci�cation's

release|have not been fully realized, but we do see HPF compilers from PGI,

IBM, and DEC. A number of other companies, including SUN, have HPF com-

piler groups. In any case, HPF provides an excellent context for research and

development on parallel compilation systems, because it coherently embodies

many of the issues and concepts that have emerged over several years concern-

ing parallel processing on distributed memory machines.

One of motivations for HPF was that it is just too di�cult to build a paral-

lelizing compiler that produces e�cient code from raw FORTRAN applications.

HPF requests the application programmer to help the compiler. Experience

to date shows that, even with this help, it remains non-trivial to build a full-

featured and high performance compiler for a language as complicated as HPF.

This is especially true if the node program generated by the compiler must

be directly concerned with low-level communication issues, at the level of calls

send() and receive() operations. Thus, PCRC emphasizes the use of a run-

time library [2]. The node program will implemented in terms of higher level

operations, more easily generated by a compiler and more easily understood by

human. Of course, performance remains an issue, since this implies the compiler

must relinquish some opportunities for global optimization. It is unclear how

much performance is actually gained from those global optimizations.

As part of the PCRC e�ort, an HPF compiler is being constructed based

on this approach. Two aspects are being addressed through this e�ort. One

is to evaluate the e�ectiveness of PCRC-based approach to parallel compiler

construction; the other is to see the performance pro�le in comparison with

\lower level" approaches.

At present, the system has been partially constructed. As we will illustrate,

the runtime-based approach allows us to attack a full range of issues encountered

in real world compiler construction. For instance, the compilation of procedure

calls is implemented as a �rst priority, which is unusual in academic compiler

work.

This paper describes the design and implementation of our system. In par-

ticular the approaches to issues such as directive analysis and communication

detection are discussed in detail. Section 2 provides an overview of the system

architecture and some of global considerations. Section 3 describes some of the

key technologies to some extent. Section 4 puts everything together, and il-

lustrates how the compilation is done with some examples of generated code.

Section 5 gives a few results from a benchmark comparision.

2

HPF program Other language program

Language parser

Language translation tools

HPF compiler

Interface

MPI library

PCRC run-time library

Intermediate Representation

Results

Aplication

Distributed memory machine

Fortran

Object code

Node machine compiler

Fortran node program Node program in
other language

Figure 1: Compilation system overview

2 System Overview

There are three major components in our system (see �gure 1): a full featured

HPF 1.0 front-end, HPFfe [3], a set of transformation modules, and the PCRC

runtime [4].

PCRC runtime

The architecture of NPAC PCRC runtime is discussed in section 3.2. It basically

consists of three groups of functions. One is distributed data management; the

second is various data movement runtines; the third is computational functions

corresponding to HPF intrinsic functions. The library is implemented in C++,

and provides a Fortran interface to the compiler. Section 4 gives a
avor of the

Fortran interface.

HPFfe

HPFfe is a compiler front-end for High Performance Fortran Version 1.0. It's

main thrust is its complete coverage of HPF 1.0 syntax and most of compile-time

3

checkable semantics. As a result, Fortran 90 is fully covered. Besides syntax and

semantics modules, a class library extended from Sage++ [7] is incorporated in

the front-end, which allows us to write transformations e�ectively.

For a more detailed description of HPFfe, the reader is referred to [3] or

Chapter 10 of [6].

Transformation modules

The compilation can be divided into two major phases: a program analysis

phase and a program transforming phase. In the �rst part, the compiler will

use the available information to detect what kind of communication pattern is

needed in the program. The second part will carry out the actual transformation

according to the record from the �rst phase to generate node program. It can

subdivided as program format transformation and node program generation two

parts. These modules will be discussed further in section 4.

3 Key technologies

We describe three technologies employed in our compilation system, which are

essential both to the compiler construction work and the performance of gener-

ated code. They are distributed data descriptor, the NPAC runtime kernel, and

communication detection algorithm. Other methods taken in handling various

issues of the compilation will be illustrated in section 4 as we present a complete

node program generated by the compiler.

3.1 Distributed data descriptor

Explicit array data distribution is a core concept of HPF. It frees the compiler

from the task of data partitioning. Data distribution directives, such as ALIGN

and DISTRIBUTE, provide a convenient way to describe how arrays in a global

address (index) space are distributed among processors of a distributed memory

machine. An e�ective mechanism to tell the node program the data distribution

is a key to e�ective compiler construction and runtime function implementation.

We employ the notion of a distributed data descriptor or DAD for this purpose.

Similar mechanisms are also used in other compilers (such as PGI compiler,

shpf compiler, and previous NPAC F90D compiler), but actual designs di�er

considerably. Our experience has shown that designing an e�ective DAD is

non-trivial, if it has to support various data distributions (such as block-cylic,

collapsed, replicated, etc.), and various dynamics of a distributed array during

the course of a program execution (such as rank-reduced sectioning, passing to

a subroutine, etc) while still retaining runtime e�ciency.

A notional tabular representation of the DAD is given in �gure 2. This pic-

ture gives a feel for the information held in the actual array descriptor, although

4

0 1 2 3 4 5 6

0

1

2

g_extent

t_extent

t_stride

t_offset

dist_code

on_pdim

l_extent

l_lb

l_ub

slice_coord

my_coord

ghostsize

l_stride

p_shape

3

4

5

6

7

8

9

10

11

12

13

14type rank p_rank comm major

bass_address

Figure 2: A representation of the distributed array descriptor

it is not a particularly accurate re
ection of the runtime data structure|in the

current implementation this is a C++ object with various subcomponents. It

compactly supports all HPF 1.0 data distribution patterns, including the above

mentioned dynamics, and supports e�cient traversal of local array elements.

The manipulation and management of DADs are major functions of PCRC

runtime. For a thorough discussion of the DAD design, the reader is referred to

[8] or Chapter 6 of [6].

3.2 Runtime kernel

The kernel of NPAC library is a C++ class library. It is descended from the

run-time library of an earlier research implementation of HPF[5] with in
u-

ences from the Fortran 90D run-time and the CHAOS/PARTI libraries. The

kernel is currently implemented on top of MPI. The library design is solidly

object-oriented, but e�ciency is maintained as a primary goal. Inlining is used

extensively, and dynamic memory allocation, unnecessary copying, true proce-

dure calls, virtual functions and other forms of indirection are generally avoided

unless they have clear organizational or e�ciency advantages.

The overall architecture of the library is illustrated in �gure 3. At the

top level there are several compiler-speci�c interfaces to a common run-time

kernel. The four interfaces shown in the �gure are illustrative. They include

two di�erent Fortran interfaces (used by di�erent HPF compilers), a user-level

5

PCRC
Java interface

MPI

Distributed data and control

ad++ interface

(Adlib)Kernel run-time

Communication and arithmetic

ranges
Distributed

Groups

Distributed control
‘‘where’’

Process

 ‘‘on’’

SHPF
F90 interface

Distributed Distributed controlIterators on ranges
 Arrays

Random access
schedules

Tree
Schedules

PCRC
F77 interface

reductions
etc

‘‘remap’’, ‘‘shift’’,

schedules
Message

etc
‘‘gather’’/‘‘scatter’’

Figure 3: PCRC runtime architecture

C++ interface called ad++1, and a proposed Java interface2. The development

of several top-level interfaces has produced a robust kernel interface, on which we

anticipate other language- and compiler- speci�c interfaces can be constructed

relatively straightforwardly.

The largest part of the kernel is concerned with global communication and

arithmetic operations on distributed arrays. These are represented on the

right-hand side of �gure 3. The communication operations supported include

HPF/F90 array intrinsic operations such as CSHIFT, the function pcrc write halo,

which updates ghost areas of a distributed array, the function remap, which is

equivalent to a Fortran 90 array assignment between a conforming pair of sec-

tions of two arbitrarily distributed HPF arrays, and various gather- and scatter-

type operations allowing irregular patterns of data access. Arithmetic opera-

tions supported include all F95 array reduction and matrix arithmetic opera-

tions, and HPF combining scatter. A complete set of HPF standard library

functions is under development.

Nearly all these operations (including many of the arithmetic operations) are

1ad++ is currently implemented as a set of header �les de�ning distributed arrays as

type-secure container class templates, function templates for collective array operations, and

macros for distributed control constructs.
2We also intend to produce a METACHAOS interface.

6

based on reusable schedules, in the PARTI/CHAOS mold. As well as support-

ing the inspector-executor compilation strategy, this organization is convenient

in an object-oriented setting|a communication pattern becomes an object. As

an illustration, consider the reduction operations. All reductions from a dis-

tributed array to a global result are described by an abstract base class using

virtual functions for local block reductions. Speci�c instances such as SUM or

PRODUCT are created by deriving concrete classes that instantiate the arithmetic

virtual functions. This is a cleaner and more type-secure (hence, potentially,

more e�ciently compilable) alternative to passing function pointers to a generic

reduction function.

For regular data movement operations a schedule consists of lists of source

and destination blocks for local copies or send or receive operations. A block

is de�ned as a multi-dimensional local array section parametrized by an o�set

and two short vectors of extents and strides. Where blocks are non-contiguous

due to striding, or several blocks need to be communicated between the same

pair of processors to execute a schedule, data is agglomerated by copying from

user space to a bu�er before sending, and copied back after receiving.

All the data movement schedules are dependent on the infra-structure on the

left-hand side of the �gure 3. This provides the distributed array descriptor, and

basic support for traversing distributed data (\distributed control"). Important

substructures in the array descriptor are the range object, which describes the

distribution of an array global index over a process dimension, and the group

object, which describes the embedding of an array in the active processor set.

At the time of writing the kernel is fully functional and quite mature, two

of the four interfaces illustrated are complete, and others are in progress.

3.3 Communication classi�cation and detection

HPF directives release the compiler from the task of choosing the data distribu-

tion, and owner computes rule (or other heuristics) more or less releases compiler

from computation partitioning. Thus, essentially two pieces of work are left for

compiler to do: communication detection and node program generation.
Taking the following array assignment as example,

...

REAL X(16), Y(16)

...

X(1:15) = Y(2:16)

Whether communication is needed depends on whether each pair of correspond-

ing elements are in the same processor. Because of the two level mappings

(alignment and distribution) de�ned in HPF, the answer may not be readily

obtainable. Our basic strategy is to classify communication requirement in an

array assignment (the basis for every thing else) into three categories, namely,

7

no communication, shift communication, and remap communication. We have

developed a theory to detect them by the compiler.
The the meaning of no communication is self evident. Here is a reasonably

straightforward example

REAL X(16), Y(16)

!HPF$ TEMPLATE T(48)

!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE T(BLOCK) ONTO P

!HPF$ ALIGN X(i) WITH T(3*i-1)

!HPF$ ALIGN Y(i) WITH T(2*i+1)

...

X(1:9:2) = Y(2:14:3)

In general the conditions for no communication may be non-trivial to compute.

In our scheme no communication is assumed if the conditions de�ned below for

shift communication obtain, but with a shift amount of zero (a su�cient but

not exhaustive test).
Shift communication implies communication is needed, but a shift along

array's template is adequate to move corresponding elements into the same
processor. For instance,

REAL X(16), Y(16)

!HPF$ TEMPLATE T(48)

!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE T(CYCLIC) ONTO P

!HPF$ ALIGN X(i) WITH T(3*i-1)

!HPF$ ALIGN Y(i) WITH T(2*i+1)

...

X(1:9:2) = Y(2:14:3)

needs only shift communication.

The condition for shift communication is based on the concept of shift-

homomorphism. Consider the fragment of HPF in �gure 4. Assume tx and

ty are normalized to be multiples of p. The array sections in the assignment are

shift-homomorphic if they have the same extent (number of elements) and

ax:xs

ay:ys
=

tx

ty
(1)

(a di�erent de�nition applies if both templates are cyclically distributed).

If this condition holds the section assignment can be implemented by shifting

the values of X along template TY then performing a local copy. We omit the

proof of this claim and the formula for the shift amount.

Remap communication is the �nal catch-all|the bag in which all other sec-

tion assignments are put.

Appropriate functions are provided in PCRC runtime to support the three

situations. For instance, a pcrc write halo() function is designed to e�ciently

8

!HPF$ PROCESSORS P(p)

!HPF$ TEMPLATE TX(tx), TY(ty)

!HPF$ DISTRIBUTE TX(BLOCK) ONTO P

!HPF$ DISTRIBUTE TY(BLOCK) ONTO P

!HPF$ DIMENSION X(M), Y(N)

!HPF$ ALIGN X(I) WITH TX(ax* I + bx)

!HPF$ ALIGN Y(I) WITH TY(ay* I + by)

...

X(xl:xu:xs) = Y(yl:yu:ys)

Figure 4: Generic array section assignment

deal with shift communications, and a pcrc remap() function is designed to

handle remap communications. For detailed derivation of our communication

detection algorithm, the reader is referred to [9] or Chapter 8 of [6]. Section 4

will also give a speci�c application of the algorithm.

4 Putting the pieces together

The NPAC compiler is implemented as a translator from HPF to Fortran 77. It

focusses on exploitation of explicit forall parallelism in the source HPF program.

The transformation modules perform two basic functions, program analysis and

transformation. In this section, we describe these modules and give concrete

fragments of node code generated by our compiler.

4.1 Program analysis

In the program analysis phase, the following items are examined to prepare

basic information for the next phase:

� processor information, including rank and size in each rank

� template information, also including rank and size in each rank

� distribution information for each template

� align information for each distributed array

� variable reference in each forall statement

� array dummy in procedure argument

9

The �rst four items are obtained from PROCESSOR, TEMPLATE, DISTRIBUTE and

ALIGN statements respectively. Their translation in node program are straight-

forward|generating a DAD for each array declaration, as illustrated later in

this section.

In translating a forall statement into a FORTRAN DO construct to be exe-

cuted on a sequential machine, the \owner computes" rule is used to assign the

computation to each node processor. For example:

FORALL (i=1:n) A(i)=B(i)

If A is a non-partitioned array and B is a partitioned array, then a broadcast is

needed. If the array is a partitioned one the communication needed is dependent

on the reference pattern of the forall index. Detection of the communication

pattern was discussed in section 3.3.

4.2 Program transformation

From the implementation point of view, most of the transformation needed to

deal with each part can be subdivided as two phases: format transformation

and node program generation. In format transformation, the components of

the actual source program is changed, making them suitable for being further

processed while keeping the semantics �xed. For example simple array assign-

ments can be trivially converted to forall statements, and treated as such in the

next phase. The language features encountered in the second phase are thus

narrowed down. Since the transformation keeps the semantics of the original

program unchanged, it is possible to further divide the whole process as dif-

ferent small parts, with each of them takes care of a particular issue in format

transformation. This method helps us separate the transformation program as

di�erent modules, implemented and tested independently.

The program generation phase carries out the actual translation work and

generates the node program. Below we will use simple examples to illustrate

the translations done for dif ferent language components. For simpli�cation, the

examples only involve one-dimension arrays. The scheme introduced here can

be generalized to deal with the multi-dimension arrays and array sections. This

generalization is implemented in our HPF compiler framework.

Housekeeping: memory management and address translation

There are two memory allocation strategies used in our compiler: dynamically

allocate a temporary for each RHS term, or allocate a \ghost area" for arrays

that appear in RHS contexts where they need a small shift along the processor

grid. The �rst method is used to handle \remap" communication. When a call

to pcrc remap is needed, a temporary array is allocated with the same align-

ment and distribution as the LHS target array and the RHS term is copied to the

10

temporary array. The second method is used to e�cently handle \shift" com-

munication. If the compiler detects the need for a shift a \ghost area" is added

to the RHS array. \Edge" elements are transferred using pcrc write halo.

This saves the cost of copying a whole array.

As well as memory allocation, the node program must deal with transla-

tion between global array subscripts and local (node) subscripts. The run-time

provides various functions to help with this translation3. The node program

linearizes subscript computations for multi-dimensional arrays. Linearization of

array segments, in conjunction with use of DAD inquiry functions provided in

the runtime library, is important for implementing transcriptive features of HPF

procedure, such as the INHERIT directive. Unnecessary copy-in and copy-out in

caller or callee are generally avoided.

DAD generation

The compiler must generate code and initialize the distributed array descriptors

(DADs) passed to run-time functions and sub-programs. Using the PCRC-

runtime Fortran interface, DAD initialization is straightforward.
The HPF program

REAL X(1:205), Y(-12:161)

!HPF$ PROCESSORS P(2)

!HPF$ TEMPLATE TX(-2:205),TY(-17:190)

!HPF$ DISTRIBUTE TX(BLOCK) ONTO P

!HPF$ DISTRIBUTE TY(BLOCK) ONTO P

!HPF$ ALIGN X(i) WITH TX(1*i+0)

!HPF$ ALIGN Y(i) WITH TY(1*i-12)

...

translates to

pcrc_shp_P(1) = 2

pcrc_grp_P = pcrc_new_group_grid (1,pcrc_shp_P)

pcrc_rng_TY(1) = pcrc_new_range_distribute ((-17),190,1,pcrc_grp_P&

&,1)

pcrc_rng_TX(1) = pcrc_new_range_distribute ((-2),205,1,pcrc_grp_P,&

&1)

pcrc_dad_Y = pcrc_new_array_data (Y,pcrc_real,pcrc_size_real,1,pcr&

&c_grp_P)

call pcrc_set_array_align (pcrc_dad_Y,1,(-12),161,1,(-12),0,2,pcrc&

&_rng_TY(1))

pcrc_dad_X = pcrc_new_array_data (X,pcrc_real,pcrc_size_real,1,pcr&

&c_grp_P)

call pcrc_set_array_align (pcrc_dad_X,1,1,205,1,0,0,0,pcrc_rng_TX(&

&1))

...

call pcrc_delete_array (pcrc_dad_X)

3But these functions are never called from within the inner DO loops generated by trans-

lation of a forall.

11

call pcrc_delete_array (pcrc_dad_Y)

call pcrc_delete_range (pcrc_rng_TX(1))

call pcrc_delete_range (pcrc_rng_TY(1))

call pcrc_delete_group (pcrc_grp_P)

For each processor array a grp value is created with the appropriate shape. For

each template dimension, a rng value is created to record its distribution code,

distribution stride and o�set. For each partitioned array, a dad value is created

to record its shape and its alignment stride and o�set, it is the DAD handle for

this array. These are all integer handles to runtime objects. At the end of the

program, destructors will be called for the created objects.

Expressions and assignment

Some preliminary work has already been done in the format transformation

phase, and the major task of this phase is to deal with forall statements and

scalar assignments.
Assuming the program header in previous example, consider the forall state-

ment

FORALL (i=8:112:1) X(i) = Y(1*i-1)

A shift communication is needed. The local Y segment should be extended by
2 element larger to include a ghost area on the left. The pcrc write halo

will send the edge data to the appropriate position in the next processor. The
translation is

pcrc_irg0 = pcrc_new_range_loop (8,112,1,1,0,pcrc_range (pcrc_dad_&

&X,1))

call pcrc_loop_bounds (pcrc_irg0,pcrc_lil_i,pcrc_liu_i,pcrc_lis_i)

pcrc_sdd0 = pcrc_new_array_section (1,pcrc_dad_X)

call pcrc_set_array_triplet (pcrc_sdd0,1,8,112,1,pcrc_dad_X,1)

pcrc_gtl_Y(1) = 0

pcrc_gtu_Y(1) = 2

call pcrc_write_halo (pcrc_dad_Y,pcrc_gtl_Y,pcrc_gtu_Y)

call pcrc_coef (pcrc_dad_X,1,8,112,1,1,0,0,pcrc_u00,pcrc_v00)

call pcrc_coef (pcrc_dad_Y,1,8,112,1,1,(-1),2,pcrc_u10,pcrc_v10)

if (pcrc_on (pcrc_group (pcrc_sdd0))) then

do i=0,(pcrc_liu_i-pcrc_lil_i)/pcrc_lis_i,1

pcrc_sdx1 = pcrc_v10+pcrc_u10*i

pcrc_sdx0 = pcrc_v00+pcrc_u00*i

X(pcrc_sdx0) = Y(pcrc_sdx1)

enddo

endif

call pcrc_delete_array (pcrc_sdd0)

call pcrc_delete_range (pcrc_irg0)

The local loop bounds and stride: lil, liu, lis are calculated according to the

forall index range and the DAD of the lhs. The function coef is called to get the

address coe�cient for each array dimension, which later are used to calculate

the local address in the array reference. To make sure the a portion of the lhs

section is held on the current processor, an if statement is inserted. Finally,

destructor for the temporary objects describing the lhs section and the forall

range are called.

12

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

T
im

e
(i

n
se

co
nd

s)

Processor number

LAPLACE with simple alignment

PCRC 256
PCRC 512

PCRC 1024
PGI 256
PGI 512

PGI 1024

Figure 5: Laplace update.

5 Preliminary Benchmark Results

Figures 5 and 6 display select results of a benchmark comparision between the

new NPAC compiler the PGI HPF compiler, version 2.0. The programs were

run on the IBM SP2 at NPAC. The Laplace benchmark performs Jacobi relax-

ation on 256 � 256, 512 � 512 and 1024 � 1024 arrays, distributed blockwise

over various numbers of processor. Both compilers achieve about the same per-

formance on a single node, but generally our compiler exhibits better speedup

on multiple processors, presumably due to more e�ective handling of commu-

nication. The synthetic benchmark involves no communication|it is a forall

assignment involving large arrays. It suggests that (unlike the PGI compiler)

we deal with address translation e�ciently, even for cyclic distribution format.

(Speedup is relative to an equivalent sequential program compiled with the IBM

Fortran compiler.)

While these examples are necessarily select, in general we �nd that (on code

that both compilers can successfully compile) the NPAC compiler compares very

favourably with the commercial compiler.

13

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

Processor number

General Benchmark Speedup (No Communication) (Compared with Sequential)

PCRC CYCLIC 800k
PGI CYCLIC 800k

Figure 6: Synthetic benchmark involving cyclic distribution format.

6 Discussion

The PCRC-based HPF compilation system described above has been partially

implemented. From this experience, we see runtime based approach to compiler

construction as a viable methodology in compiler research and development, as

well as education. It always emphasizes the \bigger" picture, without getting

lost in �ne points.

Automatic generation of message passing programs from data distribution

speci�cations has been explored for some time in the context of various data

parallel languages [10], [11], [12], [13] and [14].

In [13], the support of the run-time functions are relatively weak; the com-

piler needs to generate send and receive primitives to accomplish communi-

cation. Though this may have more e�cient code generation after extensive

program analysis, the compiler may become too complicated to be operational.

The most recent paper on HPF compiling was [15], in which a local set

enumeration method was used to generate local part of a loop iteration and

derive the communication set. Comparatively speaking, we believe our run time

support method to get values is more straightforward and e�cient, especially

for regular access to the array data.

Emphasizing the runtime in compilation system construction is essentially

14

taking a divide-conque philosophy. It allows a complicated system to be cleanly

divided into two large pieces. Di�erent people can independently work on dif-

ferent pieces. Once some function is well understood in the runtime, it may be

inlined in the compiler generated code, or used directly by the compiler to im-

prove performance. Rich runtime becomes a valuable infrastructure supporting

di�erent compiler constructions. This is the idea of PCRC.

References

[1] HPFF, High Performance Fortran Language Speci�cation (version 1.0).

May 3, 1993.

[2] PCRC, Common Runtime Support for High Performance Data Parallel

Languages, Project proposal, May, 1994.

[3] Xiaoming Li, et al, \HPFfe: a Front-end for HPF," NPAC Technical Re-

port, SCCS-771, May 1996, and

http://www.npac.syr.edu/projects/pcrc/hp�e.html.

[4] Bryan Carpenter, Geo�rey Fox, Don Leskiw, Xiaoming Li, \PCRC runtime

interface (Ver 0.5)," NPAC Technical Report, SCCS-799, July 10, 1996.

[5] John Merlin, Bryan Carpenter and Tony Hey, \shpf: a Subset High Perfor-

mance Fortran compilation system," Fortran Journal, pp 2-6, March 1996.

[6] Xiaoming Li, Runtime Oriented HPF Compilation. Technical Report,

SCCS-773, NPAC at Syracuse University, 1997.1.

[7] D. Gannon, et al, \A Class library for Building Fortran 90 and C++ Re-

structuring Tools," Nov. 1993,

http://www.extreme.indiana.edu/sage/index.html.

[8] Bryan Carpenter, James Cowie, Don Leskiw, and Xiaoming Li, \The Dis-

tributed Array Descriptor for a PCRC HPF Compiler," Version 2.0, NPAC

Technical Report, SCCS-770d, Jan., 1997.

[9] Xiaoming Li, Yuhong Wen, \E�cient Compilation of Forall Statement with

Runtime Support," NPAC Technical Report, SCCS-800, October, 1996.

[10] D. Callahan and K. Kennedy, \Compiling Programs for Distributed-

Memory Multiprocessors," J. Supercomputing, Vol. 2, pp. 151-169, Oct.

1988

[11] A. Rogers and K. Pingali, \Process Decomposition Through Locality of

Reference", Proc. ACM SIGPLAN Intl Conf. Program language Design

and Implementation, pp69-80, June 1989

15

[12] C. Koelbel and P. Mehrotra, \Compiling Global Name-Space Parallel Loops

for Distributed Execution", IEEE Trans. Parallel and Distributed Systems,

vol. 2, pp. 440-451, Oct. 1991

[13] C.-W. Tseng, \An Optimizing Fortran D Compiler for MIMD Distributed-

Memory machines", PhD thesis, Rice University Jan. 1993

[14] S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi, \Compi-

lation Techniques for Block-Cyclic Distributions", Proc. Intl. Conf. Super-

computing, pp.392-401, July 1994

[15] Kees van Reeuwijk, Will Denissen, Henk J. Sips, and Edwin M.R.M.

Paalvast, \An implementation Framework for HPF Distributed Arrays on

Message-Passing Parallel Computer Systems", IEEE Trans. on parallel and

distributed system, vol.7 Sep. 1996

16

