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1 Introduction

In this report, we introduce HPJava language, a programming language extended from Java [1]

for parallel processing, targeting at multi-processor system with distributed memory.

The language introduces a new programming style, called structured SPMD programming(We

will explain more about this term in section 2.1.4). It can be summarized as following1,

� Structured SPMD programming The programming language presented here has a

single thread control on a well organized process group. As a SPMD program, only the data

owners are allowed to share the current control thread when the data items are accessed.

The language o�erers special constructs for programs to achieve this conveniently, at the

same time, presents a well de�ned loosely synchronization mechanism among the processors.

� Global name space Besides local variables, the language provides variables associated

with data descriptor, a global name space, especially, global addressed array with di�erent

distribute patterns among processors in a process group. This helps to relieve programmers

of error-prone activities like local-to-global, global-to-local translations in most data parallel

applications.

� Collective communication Accessing data on di�erent processors is through a power-

ful collective communication library provided with the language. With this library, data

parallel applications may have dead-lock free communication. As in SPMD style, the lan-

guage itself does not provide data movement semantics implicitly. This encourages the

programmer to write algorithms that exploit locality and simpli�es the task of compiler

writers.

1Though these are \buzzwords" just like Java has, they try to characterize a language independent programming

style.
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� Hybrid of data and task parallel programming The language provides constructs

facilitating both data parallel and task parallel programming. Through language constructs,

di�erent processors can not only work simultaneously on global addressed data, but also

execute independently complex procedures on their own local data. The conversion between

these two phases is a seamless one.

� Flexible for future extension The language itself only provides basic concepts to orga-

nize a group of process grid. Di�erent communication patterns are implemented as library

functions. This gives the possibility that when ever a new communication pattern is needed,

it is relatively easy to be integrated.

In fact, the programming style introduced here is language independent, it can also be binded

with other programming languages like C/C++ and Fortran.

However, we believe in the near future, Java will play a more important role in the program-

ming world. In addition Java language itself is simple. So we explain the new language constructs

inside Java language, and implementing our prototype based on it.

2 Java language Binding

String is a class, yet treated almost as a primary data-type in Java language, we call it as

a build-in class. In HPJava, we add more build-in classes to represent basic concepts in our

language.

2.1 Basic concepts

The key concepts in the new programming style is built around process groups, which will be

used to support program execution control in a parallel program.

2.1.1 Process group

A new class, Group, is de�ned, it represents a process group, typically with a grid structure and

an associated set of process dimensions.

Class Group has subclasses derived from it to represent di�erent grid shape, such as Procs1,

Procs2, etc. For example,

Group p = new Procs2(2,4);

de�nes a group p of a 2X4 2-dimension process grid. These 8 processes will have 2 processes

dimensions associate with them.

Naturally, an HPJava program will be executed parallel in each process of a group grid. The

package provides a pre-de�ned group, Procs1 Adlib.global. It is an one dimension process

grid, with the size of total number of logical processes the runtime environment provided. The

program will starts on this group, and new process groups may be created as subsets of this

group.
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2.1.2 Distributed dimension and index with position

In a programming language, array elements are corresponding to an integer sequence, for example

in Java, we have

int[] a = new int[10];

then, when accessing the array, we use an index in the sequence,

for (int i=0; i<a.length; i++)

...a[i]...

In fact, we have two concepts here, an index i and a range where the index can be chosen

from, speci�ed by length. They are both of type int.

When describing an array with position information, we need two new build-in classes in

HPJava to represent those two concepts,

Range. A range maps an integer interval into a process dimension according to certain distri-

bution format. Ranges describe the extent and mapping of array dimensions.

Location. A location, or slot, is an abstract element of a range. A range can be regarded as a

set of locations, actually it is a one-to-one mapping between the global index and locations.

For example,

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(200, p.dim(1)) ;

will create two ranges on the di�erent process dimensions of Group p, one is block distributed,

the other is cyclic distributed. We will further explain the function dim and the meaning of block

and cyclic range in section 2.1.4.

We can get 100 di�erent items as Location references mapped by the range x from integers,

for example, the �rst one is,

Location i = x|0;

here \|" is an operator de�ned on Rang and int.

When mapping a location reference from a range by an integer, its order or rank in the range

is used. We can also get this integer value from an inquiry function in Range class.

int order = x.id(i);

will assign variable order to 0.

2.1.3 Subgroup and Subrange

A subgroup is some slice of a process array, formed by restricting the process coordinates in one

or more dimensions to single values. A subgroup is a Group.

Any subgroup has a parent process grid and a dimension set which is some subset of the

dimensions of the parent grid. The restriction operation on a group takes a slice in a particular

dimension. This restriction procedure is conveniently expressed in terms of a location reference.

Suppose i is a location in a range distributed over a dimension of group p. The expression
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p / i

represents a smaller group|the slice of p to which location i is mapped. (By the nature of

the de�nition of the / operator we can see that p / i / j is equivalent to p / j / i.)

Similarly, a subrange is a section of a range, parameterized by a global index triplet. A

subrange is a Range. Logically, it represents a subset of the locations of the original range.

The syntax for a subrange expression is

x | 1 : 49

or

x | 1 : 98 : 2

for a strided subrange.

In the above examples, both \/" and \|" are overloaded operators in HPJava.

The symbol \:" is a special separator. It is used to compose a triplet expression, with three

optional int expression to represent an integer subset by pointing out the initial position, �nal

position and an optional stride size. Expression :98:2, 1:98 and 1::2 are all legal triplet. The

default initial and �nial value are zero and the maximum value of the array index respectively.

The default stride size is 1. Unlike other expressions in Java, there is no type information

associate with them.

2.1.4 Structured SPMD programming

When a process group is de�ned, a set of Range and Location reference also have been de�ned.

as in �gure 1.

Range

q

p

Range

u

v

u[1::2]

Group 

Group 

Range

Figure 1: Structured processes

The two associated ranges with the group p are,

Range u=p.dim(0);

Range v=p.dim(1);

Group.dim(int) is a member function return a Range reference. It corresponds to a processor

dimension, which reects the basic meaning of a range. This range can be considered either a

block range with its size as one, or a cyclic range of its extent the same as the processor number.

More complicated ranges can be derived from it. Currently, the language supports block range,

cyclic range. The distribution format for these two ranges can be show in �gure 2. Besides a

collapsed range, de�ned as duplicated positions on each process in the dimension is also provided.

Combining block range and cyclic range will get block-cyclic distribution. For example,
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Range v1=new CyclicRange(20, v);

Range v2=new BlockRange(100, v1);

will create a cyclic(5) distribution on the second dimension of the processor.

We de�ne the range representing processor dimension as level 0 range, and range based on it

one level higher. So u and v are level 0 ranges, v1 is a level 1 range and v2 is a level 2 range2.

Further more, we can get a location in Range u, and use it to create a new group,

Location i = u|1;

Group q = p/i;

We also can create a subrange of v by writing

v|1::2

Note that in Group p, it need two locations to locate the processor with a dotted circle. They

are i mapped from Range u, and a new location j mapped from Range v.

Location j = v|0;

From the �gure, we can see that Group p is a highly structured concept, and all the notions

introduced around it contribute to program execution control in the new programming language.

In a traditional SPMD program, execution control is based on if statements and process id

or rank numbers. In the new programming language, switching execution control is based on the

structured process group we introduced above, for example, it is not di�cult to think that the

following code

on(p) {

...

}

will switch the execution control inside the bracket to processes in Group p.

Further more, the language provided well de�ned constructs to switch execution control among

processes according to data items we want to access. Therefor, we call the programming model

introduced here structured SPMD programming.

2Currently, the language supports up to level 2 range. We don't see the need to support level 3 range yet.
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2.2 Global variables

HPJava is a SPMD programming style language, when a program starts on a group of n processes,

there will be n logical control threads, which mapping to utmost n physical processors.

On each control thread, the program can de�ne variables in the same way as Java language.

The variables created in this way are local variables, they are replicated names on each process,

which will be accessed by each process individually.

Besides local variables, HPJava allows a program to de�ne global variables, which are dis-

tributed on a process group. The global variables will be considered a single entity during the

execution on each process which creates it.

The language has special syntax for the de�nition of global data. And the global variables

are all obtained by using the new operator from free storage.

When a global variable is created, a data descriptor is also allocated to describe where it is

created. We will further introduce this concept.

2.2.1 Global scalar and data owner

The following code,

on(p)

int # s = new int #;

creates a global scalar on the current executing process group. In the statement, s is a data

descriptor handle, in HPJava term, a global scalar reference. And the scalar is of an integer value.

Global scalar references can be de�ned for each primitive type and class type in Java.

The symbol # in the right hand side of the assignment indicates a data descriptor is allocated

as the scalar is created. Also it will be used to access this int value, as in the following, 3

on(p) {

int # s = new int #;

# s = 100;

}

Figure 3 shows a possible memory mapping for this scalar on di�erent processes.

Note, the value of s is duplicated on each process in the current executing processes. Dupli-

cated variables are di�erent from replicated local variables. The descriptors they have can be

used to keep their value identical on each process during the program execution.

Compared with a local variable,

on(p)

int t = 10;

the memory layout for the two will be quite di�erent. There is no data descriptor allocated

with t, neither t is a handle.

The group inside a descriptor is called data owner group, it de�nes where the global variable

belongs.

For a local variable, the data owner is the process which holds the data, though there is no

descriptor to record it. For example, there will be an integer t on each process in Group p when

t is de�ned as above.

3Though the \#" is used as a pre�x operator here, s is only a handle, it is not the descriptor itself.

6



int

Data descriptor

s

data owner
group 

...

100

data reference
}

Figure 3: Memory mapping

For a global variable, the data owner group and the group on which the data are de�ned are

two di�erent concepts. By default, the data owner is the current executing group. We can also

specify the data owner group explicitly by using an optional on clause after new operator.

on(p)

int # s = new int # on q;

will set data owner �eld in the descriptor of s as Group q.

Note, the on clause only change the data owner, it does not change the scope of the variable.

The above code is similar but di�erent from the following one.

on(q)

int # s = new int #;

In the previous fragment, the owner of s is set as Group q, but its descriptor is duplicated

on each process in Group p where s is de�ned.

2.2.2 Global array

When de�ning a global array, it is not necessary to allocate a data descriptor for each array

element, so the syntax to de�ne a global array is not derived directly from the one for scalar.

on(p)

float [[ ]] a = new float [[100]];

will create a global array of size 100 on Group p. Here a is a descriptor handle, which describes

an one dimension float type array. The distribution format is the same as a collapsed range.

We call it collapsed dimension. In HPJava term, a is also called a global or distributed array

reference.

A global array can also be created with di�erent kinds of ranges we introduced before. Unlike

the global array de�ned with collapsed dimension, array element in a range de�ned dimension is

not duplicated in that process dimension.

Suppose we still have

Range x = new BlockRange(100, p.dim(0)) ;

7



and the process group de�ned in �gure 1, then

on(q)

float [[#]] b = new float [[x]];

will create a global array with Range x on Group q. Here a is a descriptor handle, which

describes an one dimension float type array of size 100, distributed with block range on the

�rst dimension of Group p.

Note, when de�ning a global array, if its dimension is not collapsed, then a symbol # is marked

in double brackets.

The accessing pattern of a global array element is not the same as a global scalar reference,

neither exactly same as a local array element. Since global arrays may have position information

in their dimensions, we may need location references as their indexes when their dimensions are

not collapsed.

Location i=x|3;

at(i)

b[i]=3;

Here the forth element of array a is assigned to 3. We will leave at construct and how to

access array elements in section 2.3, and look at something simpler here.

When a global array is de�ned with a collapsed dimension, accessing its element is simpler.

for(int i=0; i<100; i++)

b[i]=i;

will assign the loop index to each corresponding element in the array.

When de�ning a multi-dimension global array, there is also no need to allocate a descriptor

on each dimension. One descriptor can describe a rectangular array of any dimensions4.

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(100, p.dim(1)) ;

float [[#,#]] c = new float [[x, y]];

will create a two-dimension global array, with the �rst dimension block distributed and the

second cyclic distributed. c is a global array reference, its element can be accessed by putting a

single bracket with two location references inside.

The array introduced here is Fortran-style multi-dimension arrays rather than C-like array-

of-arrays, hence it can be clearly showed that which dimensions the descriptor is describing.

The array-of-arrays in Java is still useful, global arrays can be combined with local arrays.

For example,

int[] size = {100, 200, 400};

float [[#,#]] [] d = new float [size.length] [[#,#]];

Range x[];

Range y[];

for (int l = 0; l < size.length; l++) {

x[l] = new BlockRange(size[l], p.dim(0)) ;

y[l] = new BlockRange(size[l], p.dim(1)) ;

d[l] = new float [[x[l], y[l]]];

}

4limitations may come from the size of one dimension array in Java. Since it's used to allocate memory for a

multi-dimension array.
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will create an array show as in �gure 4.

x

d[1]

d[0]

y d[2]

Figure 4: Array of distributed array

2.2.3 Array section and type signature

HPJava provides array section of global arrays. The syntax of section subscripting is similar to

array de�nition, a double bracket is used. The subscripts can be locations or ranges.

Suppose we still have

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(100, p.dim(1)) ;

float [[#]] b = new float [[x]];

float [[#,#]] c = new float [[x, y]];

then, c, c[[i, y|1::2]], c[[i, z]] and b[[i]] are all array sections. Here i is a location

in the �rst range of b and c, and z is a subrange of the second range of c.

Expression c[[i, y|1::2]] and c[[i, z]] represent a one-dimensional distributed array,

providing an alias for a subset of elements of c. Expression b[[i]] contains a single element of

b, yet the result is a global scalar reference, not a simple variable.

When section is made in a collapsed dimension, a triplet expression instead of a range reference

is used directly. For example, if we have,

float [[ ]] a = new float [[100]];

then a[[:98:2]] is a strided array section.

In HPJava, array section expression will be used as arguments in member function calls. As

in any programming language, only the dummy argument and actual argument have the same

type signature, the function call can be completed. Table 1 shows the type relations of global

data with di�erent dimensions.

In the table, both i and j are location references.

When used in method calls, # marked type is a super-type of the one without the symbol. i.e.

an argument of float[[,]], float[[#,]] and float[[,#]] type can all be passed to a dummy

of type float[[#,#]]. But it is not true vise versa.
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global variable array section type

2-dimension c

c[[x,y]] float [[#,#]]

1-dimension c[[i,y]]

c[[i,y|1::2]] float [[#]]

scalar(0-dim) c[[i,j]] float #

Table 1: Section expression and type signature

2.2.4 Data descriptor

When we introduced global data, we introduced a concept, data descriptor. We will explain more

about the idea in this section.

Actually, the concept of data descriptor is not something entirely new. It exists in Java

language itself.

In Java, array type is not of any class type, but a special reference type. In fact, it is exactly

a handle to a data descriptor. We can see this point through the following example.

In C language, a main function may has the following prototype,

int main(int argc, char* argv[]);

From the function input, one can retrieve the information like how many command line

arguments are passed, and where they are located.

But in Java, a main function is written as,

int main(String argv[]) {

...

};

Why does not Java language need to pass the number of arguments?

The answer is that you can always get this value from the array reference, argv.length. This

means argv not only store where the array data is, but also record the length of the array. It is

a simplest data descriptor.

On a single processor, an array variable can be labeled by a simple value like memory addresses

and an int value as length.

On a multi-processor, to label a global variable, a more complicated structure is needed. We

call it data descriptor. It portrays where the data is created, and how are they distributed. A

logical structure of a descriptor is shown in �gure 5.

The descriptor locates on each process which de�nes the global variable, whenever necessary,

a process can look up those information to decide where the data is.

In HPJava, when global data are de�ned, such as

int # s = new int #;

float [[ ]] a = new float [[ ]];

float [[#]] b = new float [[x]];

float [[#,#]] c = new float [[x, y]];
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Figure 5: Descriptor

a descriptor shown in the �gure is allocated with them.

Though they have di�erent syntax looking and di�erent names, such as global scalar reference

an global array reference, in an implementation point of view, s, a b and c are all descriptor

handles. They are not the descriptor themselves.

Therefor, syntactically , we use the descriptor handle to represent the whole data it describes;

And we use di�erent operators, such as # (when it describes scalar) or [] (when it describes array)

to access the data value.

When a new array section is created, a new descriptor has to be created to depict a subset of

the same array with some dimension restricted by locations or subranges. In this case, a double

bracket is used.

2.2.5 Inquiry �elds and functions

The length of an array reference in Java can be get from its length �eld. Similarly, in HPJava,

information like data owner group and distributed dimensions can be accessed from the following

�elds,

Group group; //data owner group

Range range[]; //dimension array

And further inquiry functions may be used to get values such as dimension extent and distri-

bution format.

For an array with collapsed dimensions, collapsed ranges will be created for the corresponding

dimensions.

2.3 Program execution control

HPJava has all the Java statements for program execution control on a single process. It also

introduces three new control constructs, on, at and over for execution control among processes.

2.3.1 Active process group

A new concept, active process group, is introduced here. it is the set of processes sharing the

current thread of control.

In a traditional SPMD program, the concept of switching the active process group is reected

by if statement,
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if(myid>=0 && myid<4) {

...

}

means that inside the brace bracket, the processes numbered as 0 to 3 share the control

thread.

In HPJava, this concept is expressed by a Group reference. When a HPJava program starts,

the active process group is a system pre-de�ned value, Adlib.global. During the execution, the

active process group can be set explicitly through an on construct in the language, for example

on(p) {

...

}

This will change the active process group of the code inside the bracket to Group p, which

means that every statement inside the bracket is only executed by the processes inside Group p.

2.3.2 Accessing global variable

In a single process program, accessing the value of a variable is straight forward. Given a data

reference, there is only one process can be used to read or write it. In a SPMD program, only the

process which holds data can read and write the data. A traditional SPMD program achieves

this by using if statements. For example,

if(myid==1)

my_data=3;

will make sure that only my data on process 1 is assigned to 3.

In the language we present here, the same thing is required, and not only for local variables

but also for global variables. Say it in HPJava terms: when assigning data, the data owner must

be the active process group.

We have already introduced the on construct to switch the active process group, there is a

more convenient way to change the active process group according to the array element we want

to access: at construct.

Suppose we still have b de�ned in previous section,

on (q) {

Location i=x|1;

at(i)

b[i]=3; //correct

b[i]=3; //error

}

The assign statement guarded by an at construct is correct, the one without it may cause

run time error if there is run time range checking.

In general, at construct has the form,

at(Location i= ...) {

array[i]=...

}
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inside the brace bracket, the active process group will be restricted by Location i. If i has

already been declared, Location can be omitted in the construct.

This is similar to a traditional SPMD program like,

if( own(array[global_local(i)]) ) {

array[global_local(i)]=...

}

In HPJava, a more powerful construct over can be used to combine the switching of the

active process group with a loop,

on(q)

over(Location i= x|0:3)

b[i]=3;

is semantically equivalent to5

on(q)

for(int n=0;n<4;n++)

at(Location i=x|n)

b[i]=3;

Inside each iteration, the active process group is changed to q/i.

In general, over construct has the form,

over (Location i = range expression jtriplet expression) f
:::

g

Note, the = inside over construct header does not represent an assignment expression. It is

used to compose an over loop control header, with its left hand side as a loop index and its right

hand side as loop range in which the loop index takes value.

Similar as in at construct, if the loop index has already been declared in the program, keyword

Location can be omitted.

In section 3, we will use more programs to show that by using the at and over construct it is

quite convenient for a program to keep the active process group equal to the data owner group

of the assigned data.

Generally speaking, when writing global data, the active process group should be equal to the

data owner group. Bigger than the data owner group may cause runtime problem, smaller than

the data owner group may cause the global variable have di�erent values on di�erent processes.

When reading global data, the active process group should be not bigger than the data owner

group. In any situations, the active process group must be contained in the data owner group. We

call this access rule for global data. Some optional run-time checking may be added at compiling

time to �nd code violating this rule, but it also should be kept in mind of the programmer to

avoid the accessibility violation.

When accessing data on another process, HPJava needs explicit communication as in a ordi-

nary SPMD program. The most important communication functions are introduced in section

2.5.

5But a compiler can implement over construct in a more e�cient way.
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2.4 Operators

Table 2 summarize the operators which is new to or overloaded from Java, and their functionalities

in HPJava.

Operator Operand type(s) Operation performed

/ Group, Location restrict a group to a subgroup by a

location, used as the divide operator

in Java

| Range, triplet expression restrict a range to a location by an

integer expression or a subrange by

a triplet expression; also in over con-

struct control header. used as the bit-

or operator in Java

: int, int form a triplet expression

# global scalar reference access values of the global scalar ref-

erence, also in de�nition of a global

scalar reference, and a non collapsed

dimension

[[]] global array ref-

erence, Location, Range or

triplet expression

section subscript a global array,

also in de�nition of a global array

reference

[] global array reference,

Location

access array element

= in over construct control header.

used as an assignment expression in

Java

Table 2: Operator

The �rst three items are used upon built-in classes in HPJava. Though we list symbol : here,

it is di�erent from other operators. As we introduced earlier, when it is used on integer, no value

in Java type is returned, only a triplet expression is formed. The next four items are concerned

with de�ning and accessing global data. We consider [] as an operator on array reference here.

There are two things we need to pay attention to in this section.

Operator new When new is used to allocate global variables in the program, the new data are

created on the current active process group. In HPJava, there is an optional on clause, which can

be used after new operator to specify the data owner group. Here again, it should be noticeed

that the active process group as an executor of new is di�erent from the data owner group, the

one speci�ed by the on clause.

on(p) {

int # s = new int # on q;

...

}
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will create a global scalar similar but di�erent to the one created in the following,

on (p) {

int # s = new int #;

...

}

In the �rst fragment, the data descriptor is duplicated on all process in Group p, but for

those not in Group q, the data reference �eld of the descriptor is unde�ned.

We also have accessibility problem here. One can not de�ne,

on (q)

int # s = new int # on p;

Restricted type conversion When an array has position information in its dimensions,

Location references, instead of int values are used as indexes. Given a global index we can

get a location reference by | operation from the range. Sometimes it is also convenient that

given a location reference, we can get the order of the location in the range it comes from. So a

type conversion is de�ned from Location to int inside at and over constructs.

on(q)

over(Location i= x|0:3) {

b[i]=(int)i;

}

will assign the location id to each array element. It is equivalent to,

on(q)

over(Location i= x|0:3) {

b[i]=x.id(i);

}

Whenever necessary, this conversion can be an implicit one.

We call it as a restricted conversion, because it works only with at and over constructs. For

example,

on(q)

over(Location i= x|0:3) {

Location j=i;

b[i]=j; //error, j can not be converted;

Range y=x;

Location k=y|i; //correct, i converted to an integer;

b[i]=k; //error, k can not be converted;

}

Another restricted type conversion is vice versa, from int to Location. This only happens

when an integer used as an index in a dimension which is not a collapsed dimension, and it will

be converted to the location mapping from the range which de�ne the dimension of the array.

For example, suppose b is a distributed array,
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int i=3;

b[(Location)i]=i;

is equivalent to,

int i=3;

b[b.range[0]|i]=i;

Similarly, a triplet expression can be converted to a subrange. Both conversions are valid only

when their results expected to be a location or subrange. And they also can be implicit ones.

Adding integers and triplets as access keys for distributed array provides a \higher level"

access for programmers. But they are not intend to be abused. A programmer should consider

their code to exploit the possibility to reuse concepts such as location and subrange to improve

e�ciency, instead of depending compiler to �nd reusable patterns. One more thing need to

be noticed is that though it is actually correct to use both location reference and integer to

access array element in a non-collapsed dimension, we still use symbol # to mark non-collapsed

dimension when de�ning a distributed array. The reason to do this is to help compiler generate

better code for address caculation when an array dimension is collapsed.

These type conversions are de�ned to simplify program writing. If they look confusing, one

can always use inquiry functions to get the desired results.

One typical use of the type conversion is location shift. It supports ghost regions, which require

a new constructor for BlockRange with speci�cation of ghost widths. A collective operation

Adlib.writeHalo can update the ghost regions of a distribute array, copying values from the

physical segments of neighboring processes. For example, the following is a version of Jacobi

iteration with only one iteration inside.

Procs2 p(2, 4);

on(p) {

Range x = new BlockRange(100, p.dim(0), 1); // ghost width 1

Range y = new BlockRange(200, p.dim(1), 1); // ghost width 1

int [[#,#]] a = new int [[x,y]] ;

// ... some code to initialize `a'

int [[#,#]] b = new int [[x,y]];

Adlib.writeHalo(a);

over(Location i=x|:)

over(Location j=y|:)

b[i,j] = (a[i-1,j] + a[i+1,j] + a[i,j-1] + a[i,j+1]) / 4;

// location i, j converted to integer + or - one, converted back;

over(Location i=x|:)

over(Location j=y|:)

a[i,j] = b[i,j];

}
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2.5 Communication library functions

Communication libraries are provided as packages in HPJava. Detailed function speci�cations

will be introduced in other papers. In this section, we will only introduce a small number of

top level collective communication functions, through which data parallel applications may have

dead-lock free communication.

It should be noticed that the SPMD programming style of the language also allow MPI

library be integrated as part of the communication libraries of the language. This part will also

be introduced else where.

2.5.1 Package adlib

As a Java language, HPJava has a special package adlib. Several important collective commu-

nications are member functions of a static class Adlib in the package.

Adlib.remap Given two global array of the same shape and element type, Adlib.remap will

copy the corresponding element from one to another, regardless of their distribution format.

Adlib.shift This function will shift certain amount in a speci�c dimension of the array in

either cyclic or o�-edge mode. Explicit memory management for the shift is needed.

Adlib.writeHalo This function is used to support ghost region, it update the halo area of the

global array from neighboring processes when is called.

3 Programming examples in HPJava

We already saw one example program, Jacobi iteration, in section 2.4. In this section, we have

two more examples.

3.1 Choleski decomposition

In [2] di�erent kinds of Choleski algorithm organization are discussed. Among them, column

interleaved outer product form and row interleaved column Choleski form are considered more

promising ones on a parallel computer system with distributed memory. Here we only write one of

them, the outer product form of Choleski algorithm, which is based on the following mathematic

equation:

A1 =

�
a11 a1

T

a1 As

�
=

�
a
1=2

11 0

l1 I

� �
1 0

0 A2

� �
a
1=2

11 l1
T

0 I

�

the updating of the submatrix A2 is accomplished by subtracting the outer product of l1l1
T .

A simple description of the algorithm in a sequential code may be,
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l11 = a
1=2

11

For k = 1 to n� 1

For s = k + 1 to n

lsk = ask=lkk

For j = k + 1 to n

For i = j to n

aij = aij � likljk

lk+1;k+1 = a
1=2

k+1;k+1

On a parallel computer with a distributed memory, the array may have a column-interleaved

storage, then each processor can update its own column after getting the �rst updated column

of the matrix or submatrix.

We write the above algorithm in the following HPJava program. In the code, a cyclic range

is used to allocate the original array on multiprocessors, the result L can overwrite part of

its storage. During the computation, collective communication remap is used for broadcasting

updated columns.

on(Adlib.global) {

Range x = new CyclicRange(size, Adlib.global.dim(0));

float a[[,#]] = new float [[size, x]];

// initialize the array here;

float b[[]] = new float [[size]]; // used as a buffer

Location j;

at(j=x|0)

a[0,j]=sqrt(a[0,j]);

for(int k=0; k<size-1; k++) {

for(int s=k+1; s<size; s++)

at(j=x|k)

a[s,j]/=a[j,j];

Adlib.remap(b[[k+1:]],a[[k,x|k+1:]]);

over (j=x|k+1:)

for (int i=x; i<size; i++)

a[i,j]-=b[i]*b[j];

at(j=x|k+1)

a[k+1,j]=sqrt(a[k+1,j]);

}

}
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3.2 Fox's algorithm for matrix multiplication

Recall that if A and B are square matrix of order n, then C = AB is also a square matrix of

order n, and cij is obtained by taking the dot product of the ith row of A and jth column of B.

That is,

cij = ai0b0j + ai1b1j + :::+ ai;n�1bn�1;j

Fox's algorithm [3] for multiplication organize A, B and C into submatrix on a P by P process

array. It take P steps, in each step, broadcast corresponding submatrix of A on each row of the

processes, do local computation and then shift array B for the next step computation. Write this

algorithm in HPJava, we still use Adlib.remap to broadcast submatrix, matmul is a subroutine

for local matrix multiplication. Adlib.shift is used to shift array B, and Adlib.copy copies

data back after shift, it can also be implemented as nested over and for loops.

Group p=new Procs2(P,P);

Range x=p.dim(0);

Range y=p.dim(1);

on(p) {

float [[#,#, , ]] a = new float [[x,y,B,B]];

float [[#,#, , ]] b = new float [[x,y,B,B]];

//input a, b here;

float [[#,#, , ]] c = new float [[x,y,B,B]];

float [[#,#, , ]] temp = new float [[x,y,B,B]];

for (int k=0; k<p; k++) {

over(Location i=x|:) {

float [[,]] sub = new float [[B,B]];

//Broadcast submatrix in 'a' ...

Adlib.remap(sub, a[[i, (i+k)%P, z, z]]);

over(Location j=y|:) {

//Local matrix multiplication ...

matmul(c[[i, j, z, z]], sub, b[[i, j, z, z]]);

}

}

//Cyclic shift 'b' in 'y' dimension ...

Adlib.shift(tmp, b, 1, 0, 0); // dst, src, shift, dim, mode;

Adlib.copy(b, tmp);

}

}

4 Summary

Through the three simple examples in the report, we can see the programming language we

present here has all the power of a SPMD program with MPI can have, yet, it has the convenience
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of programming in HPF. The language encourages programmers to express parallel algorithms

in a more explicit way. We believe it will help programmers to solve real application problems

easier compared with using communication packages such as MPI directly, and allow the compiler

writer to implement the language compiler without the di�culties met in the HPF compilation.

The Java binding here is only an introduction of the new programming style. (A Fortran

binding is being developed.) It can be used as a software tool for teaching parallel programming.

And when Java plays a more signi�cant role in scienti�c and engineering computation, it can be

an intermediate language to implement high level programming language such as HPF, or as a

practical programming language itself to solve real application problems in parallel and distribute

environments.
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