
Considerations in HPJava language design and

implementation

Guansong Zhang, Bryan Carpenter, Geo�rey Fox

Xinying Li, Yuhong Wen

111 College Place

NPAC at Syracuse University

Syracuse, NY 13244

fzgs, dbc, gcf, xli, weng@npac.syr.edu

Fax: (315)4431973

September 14, 1998

Abstract

This report discusses some design and implementation issues in the

HPJava language. Through example codes, we will illustrate how various

language features have been designed to facilitate e�cient implementa-

tion. This may help programming of real applications in the new style.

1 Introduction

HPJava is a programming language extended from Java to support parallel

programming, especially (but not exclusively) data parallel programming on

message passing and distributed memory systems, from multi-processor systems

to workstation clusters.

Although it has a close relationship with HPF [1], the design of HPJava

does not inherit the HPF programming model. Instead the language introduces

a high-level structured SPMD programming style|the HPspmd model. A pro-

gram written in this kind of language explicitly coordinates well-de�ned pro-

cess groups. These cooperate in a loosely synchronous manner, sharing logical

threads of control. As in a conventional distributed-memory SPMD program,

only a process owning a data item such as an array element is allowed to access

the item directly. The language provides special constructs that allow program-

mers to meet this constraint conveniently.

1

Besides the normal variables of the sequential base language, the language

model introduces classes of global variables that are stored collectively across

process groups. Primarily, these are distributed arrays. They provide a global

name space in the form of globally subscripted arrays, with assorted distribution

patterns. This helps to relieve programmers of error-prone activities such as the

local-to-global, global-to-local subscript translations which occur in data parallel

applications.

In addition to special data types the language provides special constructs

to facilitate both data parallel and task parallel programming. Through these

constructs, di�erent processors can either work simultaneously on globally ad-

dressed data, or independently execute complex procedures on locally held data.

The conversion between these phases is seamless.

In the traditional SPMD mold, the language itself does not provide implicit

data movement semantics. This greatly simpli�es the task of the compiler, and

should encourage programmers to use algorithms that exploit locality. Data

on remote processors is accessed exclusively through explicit library calls. In

particular, the initial HPJava implementation relies on a library of collective

communication routines originally developed as part of an HPF runtime li-

brary. Other distributed-array-oriented communication libraries may be bound

to the language later. Due to the explicit SPMD programming model, low level

MPI communication is always available as a fall-back. The language itself only

provides basic concepts to organize data arrays and process groups. Di�erent

communication patterns are implemented as library functions. This allows the

possibility that if a new communication pattern is needed, it is relatively easily

integrated through new libraries.

The preceding paragraphs attempt to characterize a language independent

programming style. This report only briey sketches the HPJava language. For

further details, please refer to [2, 3]. Here we will discuss in more depth some

issues in the language design and implementation. With the pros and cons

explained, the language can be better understood and appreciated.

Since it is easier to comment on the language design with some knowledge of

its implementation, this document is organized as follows: section 2 briey re-

views the HPJava language extensions; section 3 outlines a simple but complete

implementation scheme for the language; section 4 explains the language design

issues based on its implementation; �nally, the expected performance and test

results are given.

2 Overview of HPJava

Java already provides parallelism through threads. But that model of paral-

lelism can only be easily exploited on shared memory computers. HPJava is

targetted at distributed memory parallel computers (most likely, networks of

PCs and workstations).

2

HPJava extends Java with class libraries and some additional syntax for deal-
ing with distributed arrays. Some or all of the dimensions of a these arrays can
be declared as distributed ranges. A distributed range de�nes a range of integer
subscripts, and speci�es how they are mapped into a process grid dimension.
It is represented by an object of base class Range. Process grids|equivalent
to processor arrangements in HPF|are described by suitable classes. A base
class Group describes a general group of processes and has subclasses Procs1,
Procs2, . . . , representing one-dimensional process grids, two-dimensional pro-
cess grids, and so on. The inquiry function dim returns an object describing a
particular dimension of a grid. In the example

Procs2 p = new Procs2(3, 2) ;

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[,]] a = new float [[x, y]] on p ;

a is created as a 100 � 200 array, block-distributed over the 6 processes in p.

The Range subclass BlockRange describes a simple block-distributed range of

subscripts|analogous to BLOCK distribution format in HPF. The arguments of

the BlockRange constructor are the extent of the range and an object de�ning

the process grid dimension over which the range is distributed.

In HPJava the type-signatures and constructors of distributed arrays use

double brackets to distinguish them from ordinary Java arrays. Selected dimen-

sions of a distributed array may have a collapsed (sequential) ranges rather than

a distributed ranges: the corresponding slots in the type signature of the array

should include a * symbol. In general the constructor of the distributed array

is followed by an on clause, specifying the process group over which the array

is distributed. (If this is omitted the group defaults to the APG, see below.)

Distributed ranges of the array must be distributed over distinct dimensions of

this group.
A standard library, Adlib, provides functions for manipulating distributed

arrays, including functions closely analogous to the array transformational in-
trinsic functions of Fortran 90. For example:

float [[,]] b = new float [[x, y]] on p ;

Adlib.shift(b, a, -1, 0, CYCL) ;

float g = Adlib.sum(b) ;

The shift operation with shift-mode CYCL executes a cyclic shift on the data in

its second argument, copying the result to its �rst argument. The sum operation

simply adds all elements of its argument array. In general these functions imply

inter-processor communication.
Often in SPMD programming it is necessary to restrict execution of a block

of code to processors in a particular group p. Our language provides a short
way of writing this construct

3

on(p) {

...

}

The language incorporates a formal idea of an active process group (APG).

At any point of execution some group is singled out as the APG. An on(p)

construct speci�cally changes its value to p. On exit from the construct, the

APG is restored to its value on entry.
Subscripting operations on distributed arrays are subject to some restrictions

that ensure data accesses are local. An array access such as

a [17, 23] = 13 ;

is forbidden because typical processes do not hold the speci�ed element. The

idea of a location is introduced. A location can be viewed as an abstract element,

or \slot", of a distributed range. The syntax x [n] stands for location n in range

x. In simple subscripting operations (distinct from section subscripting opera-

tions), distributed dimensions of arrays can only be subscripted using locations

(not integer subscripts). These must be locations in the appropriate range of

the array. Finally, locations appearing in simple subscripting operations must

be named locations, and named locations can only be scoped by at and overall

constructs.
The at construct is analogous to on, except that its body is executed only

on processes that hold the speci�ed location. The array access above can be
safely written as:

at(i = x [17])

at(j = y [23])

a [i, j] = 13 ;

Any location is mapped to a particular slice of a process grid. The body of the

at construct only executes on processes that hold the location speci�ed in its

header.
The last distributed control construct in the language is called overall. It

implements a distributed parallel loop, and is parametrized by a range. Like at,
the header of this construct scopes a named location. In this case the location
can be regarded as a parallel loop index.

float [[,]] a = new float [[x, y]], b = new float [[x, y]] ;

overall(i = x)

overall(j = y)

a [i, j] = 2 * b [i, j] ;

The body of an overall construct executes, conceptually in parallel, for every

location in the range of its index. An individual \iteration" executes on just

those processors holding the location associated with the iteration. Because

of the rules about use of subscripts, the body of an overall can usually only

4

combine elements of arrays that have some simple alignment relation relative

to one another. The idx member of Range can be used in parallel updates to

yield expressions that depend on global index values.

Other important features of the language include Fortran-90-style regular

array sections, an associated idea of subranges, and subgroups, which can be

used to represent the restricted APG inside at and overall constructs.

The language extensions are most directly targetted at data parallelism. But

an HPJava program is implicitly an SPMD Java program, and task parallelism

is available by default. A structured way to write a task parallel program is to

write an overall construct parametrized by a process dimension (which is a par-

ticular kind of range). The body of the loop executes once in each process. The

body can execute one or more \tasks" of arbitrary complexity. Task parallel

programming with distributed arrays can be facilitated by extending the stan-

dard library with one-sided communication operations to access remote patches

of the arrays, and we are investigating integration of software from the PNNL

Global Array Toolset in this connection.

3 Translation scheme

The initial HPJava compiler is implemented as a source-to-source translator

converting an HPJava program to a Java node program, with calls to runtime

functions. The runtime system is built on the NPAC PCRC runtime library[4],

which has a kernel implemented in C++ and a Java interface implemented in

Java and C++.

3.1 Java packages for HPspmd programming

The current runtime interface for HPJava is called adJava. It consists of two

Java packages. The �rst package is the HPspmd runtime proper. It includes the

classes needed to translate language constructs. The second package provides

communication and some simple I/O functions. These packages are outlined in

the next two sections.

3.1.1 HPJava language support

An environment class SpmdEnv provides functions to initialize and �nalize the

underlying communication library (currently MPI). It can also be used to sup-

port multi-threaded programming in HPJava1:

1In this section, we only list classes and �elds or methods most helpful to an understanding

of the language implementation. For more complete information, please refer to reference [4].

5

class public SpmdEnv {

public SpmdEnv(String argv[]) {} // Initialization in main program

public SpmdEnv(SpmdEnv spdm) {} // Initialization in threads

public Group apg ; // Active Process Group

...

}

The constructors call native functions to prepare the lower level communica-

tion package. The important �eld apg de�nes the group of processes that is

cooperating in \loose synchrony" at the current point of execution.

The other classes in this package correspond directly to HPJava built-in

classes. The �rst hierarchy is based on Group. A group, or process group,

de�nes some subset of the processes executing the SPMD program. Groups have

two important roles in HPJava. First they are used to describe how program

variables such as arrays are distributed or replicated across the process pool.

Secondly they are used to specify which subset of processes execute a particular

code fragment.

Group

Procs

Procs2Procs1Procs0

Figure 1: The HPJava Group hierarchy

The adJava class corresponding to the HPJava Group class is

class Group {

...

public boolean on() {} // Function pair for

public void no() {} // translating on construct

}

There are several ways to create group objects. The most common is to use

the constructor for one of the subclasses representing a process grid. The sub-

class Procs represents a grid of processes and carries information on process

dimensions: in particular an inquiry function dim(r) returns a range object

describing the r-th process dimension. Procs is further subclassed by Procs0,

Procs1, Procs2, . . . which provide simpler constructors for �xed dimensionality

6

process grids. The class hierarchy of groups and process grids is shown in �gure

1.

The second hierarchy is based on Range. A range is a map from the integer

interval 0; : : : ; n� 1 into some process dimension (ie, some dimension of a pro-

cess grid). Ranges are used to parametrize distributed arrays and the overall

distributed loop.

The most common way to create a range object is to use the constructor for

one of the subclasses representing ranges with speci�c distribution formats. The

current class hierarchy is given in �gure 2. The simple block distribution for-

mat implemented by BlockRange. CyclicRange and BlockCyclicRange repre-

sent other standard distribution formats of HPF. The subclass CollapsedRange

represents a sequential (undistributed range). Finally, DimRange represents the

range of coordinates of a process dimension itself|just one element is mapped

to each process.

BlockRange

BlockCyclicRangeRange

CollapsedRange

CyclicRange

DimRange

Figure 2: The HPJava Range hierarchy

The adJava class Range class includes members:

class Range {

...

public Location location(int i) {} // The i-th location

public int idx(Location loc) {} // Index of location in range

public Range triplet(int l,int u,int s) {} // Subrange triplet

}

The related adJava class Location represents an individual location in a particu-

lar distributed range. It has members at() and ta() used in the implementation

of the HPJava that at construct.
Finally we have classes for representing global data. HPJava global data

declared using [[]] or # is represented by the following Java classes:

7

Array0Int, Array1Int, Array2Int, ...

Array0Float, Array1Float, Array2Float, ...

...

Generally speaking ArraynType is used to represent an n-dimensional distributed

array with elements of type type2. As a special case, if n equals zero, the global

data is a scalar reference (declared using # in HPJava).
We will illustrate the constructors in later examples. Here we list some

important �elds and members:

public type data[];

is an ordinary Java array used to store the locally held elements of the dis-
tributed array. The member

public long element(Location loc0, Location loc1, Location loc2, . . .)

returns the local address in data �eld from the element of the distributed array

speci�ed by the list of locations.
Sectioning operations, akin to the regular array sections of Fortran 90, can

be performed on any array. These returne array objects of the same or lower
rank. For example, Array2Int has members

public Array0Int section(Location loc0, Location loc1)

public Array1Int section(Range rng0, Location loc1)

public Array1Int section(Location loc0, Range rng1)

public Array2Int section(Range rng0, Range rng1)

In a section member a Location argument represents a scalar subscript, a

Range object represents a \triplet subscript".
All ArraynType classes share a base class Section. This includes the com-

mon �elds of ArraynType, such as

public Group group ; // Group over which data is stored

public Range range[] ; // Range for different dimensions

These �elds can be accessed publicly.

3.1.2 Collective communication library

The adJava commonication package includes classes corresponding to the var-

ious collective communication schedules provided in the NPAC PCRC kernel.

Most of them provide of a constructor to establish a schedule, and an execute

method, which carries out the data movement speci�ed by the schedule. The

communication schedules provided in this package are based on the NPAC run-

time library. Di�erent communication models may eventually be added through

further packages.

2In the inital implementation, the element type is restricted to the Java primitive types.

8

The collective communication schedules can be used directly by the pro-
grammer or invoked through invoked through certain wrapper functions. A
class named Adlib is de�ned with static members that create and execute
communication schedules and perform simple I/O functions. For example, the
class includes the following methods, each implemented by constructing the ap-
propriate schedule and then executing it. Their use will be illustrated in later
examples:

static public void remap(Section dst, Section src)

static public void shift(Section dst, Section src,

int shift, int dim, int mode)

static public void copy(Section dst, Section src)

static public void writeHalo(Section src,

int[] wlo, int[] whi, int[] mode)

Polymorphism is achieved by using arguments of class Section. This class

includes a reference to the data �eld of the concrete array subclass, so the

communication schedule can access the array elements.

3.2 Programming in the adJava interface

In this section we illustrate through an example|Fox's algorithm [5] for matrix

multiplication|how to program in the adJava interface. We assume A and B

are square matrices of order n, so C = AB is also a square matrix of order n.

Fox's algorithm organizes A, B and C into sub-matrices on a P by P process

array. It takes P steps. In each step, a sub-matrix of A is broadcast across each

row of the processes, a local block matrix product is computed, and array B is

shifted for computation in the next step.

We can program this algorithm in HPJava, using Adlib.remap to broadcast

submatrices, Adlib.shift to shift array B, and Adlib.copy to copy data back

after shifting. The HPJava program is given in �gure 3. The subroutine matmul

for local matrix multiplication will be given in the next section.

This HPJava program is slightly atypical: it uses arrays distributed ex-

plicitly over process dimensions, rather than using higher-level ranges such as

BlockRange to describe the distribution of the arrays. Hence, two-dimensional

matrices are represented as four dimensional arrays with two distributed ranges

(process dimensions) and two collapsed range (the local block). This simpli�es

the initial discussion.

We can rewrite the program in pure Java language using our adJava interface.

A translation is given in �gure 4. This is an executable Java program. One can

use (for example) mpirun to start Java virtual machines on P
2 processors and

let them simultaneously load the Fox class. This naive translation uses for loops

plus at constructs to simulate the overall constructs. The function pairs on-no

and at-ta adjust the �eld spmd.apg, which records the current active process

group. The dynamic alteration of this group plays an non-trivial role in this

program. The call to remap implements a broadcast because the temporary sub

9

Procs2 p = new Procs2(P,P);

Range x = p.dim(0), y = p.dim(1);

on(p) {

float [[,,*,*]] a = new float [[x,y,B,B]];

float [[,,*,*]] b = new float [[x,y,B,B]];

... initialize a, b elements ...

float [[,,*,*]] c = new float [[x,y,B,B]];

float [[,,*,*]] tmp = new float [[x,y,B,B]];

for (int k = 0; k<P; k++) {

overall(i = x) {

float [[*,*]] sub = new float [[B,B]];

Adlib.remap(sub, a[[i, (x.idx(i)+k)%P, :, :]]);

// Broadcast sub-matrix of 'a'

overall(j = y)

matmul(c[[i, j, :, :]], sub, b[[i, j, :, :]]);

// Local matrix multiplication

}

Adlib.shift(tmp, b, 1, 0, CYCLIC);

// Cyclic shift 'b' in first dim, amount 1

Adlib.copy(b, tmp);

}

}

Figure 3: Algorithm for matrix multiplication in HPJava

is replicated over the process group active at it's point of declaration. Within

the overall(i = x) construct, the locally e�ective APG is a row of the process

grid.

3.3 Improving the performance

The program for the Fox algorithm is completed by the de�nition of matmul.
First in HPJava:

void matmul (float[[*,*]] c, float[[*,*]] b, float[[*,*]] c) {

for (int i=0; i<B; i++)

for (int j=0; j<B; j++)

for (int k=0; k<B; k++)

c[i,j]+=a[i,k]*b[k,j];

}

10

import spmd.*;

import spmd.adlib.*;

class Fox {

final static int P=2;

final static int B=4;

final static Range z = new CollapsedRange(B);

public static void matmul(Array2Float c,Array2Float a,Array2Float b) {

... implemented in next section ...

};

public static void main(String argv[]) {

SpmdEnv spmd = new SpmdEnv(argv);

Procs2 p=new Procs2(P,P);

Range x=p.dim(0); Range y=p.dim(1);

if(p.on()) {

Array4Float a = new Array4Float(x,y,z,z,spmd.apg);

Array4Float b = new Array4Float(x,y,z,z,spmd.apg);

... initialize a, b elements ...

Array4Float c = new Array4Float(x,y,z,z,spmd.apg);

Array4Float tmp = new Array4Float(x,y,z,z,spmd.apg);

for (int k=0; k<P; k++) {

for (int i=0; i<P; i++) {

Location ii = x.location(i);

if (ii.at()) {

Array2Float sub = new Array2Float(z,z,spmd.apg);

Adlib.remap(sub, a.section(ii,

a.range[1].location((i+k)%P),

a.range[2],a.range[3]));

// Broadcast sub-matrix of 'a'

for (int j=0; j<P; j++) {

Location jj = y.location(j);

if (jj.at()) {

matmul(c.section(ii,jj,c.range[2],c.range[3]),sub,

b.section(ii,jj,b.range[2],b.range[3]));

// Local matrix multiplication

} jj.ta();

}

} ii.ta();

}

Adlib.shift(tmp, b, 1, 0, 0);

// Cyclic shift 'b' in first dim, amount 1

Adlib.copy(b, tmp);

}

}

}

}

Figure 4: Algorithm for matrix multiplication in adJava

11

Translated naively to the adJava interface, this becomes:

public static void matmul(Array2Float c,

Array2Float a, Array2Float b) {

for (int i=0; i<B; i++)

for (int j=0; j<B; j++)

for (int k=0; k<B; k++)

c.data[c.element(c.range[0].location(i),

c.range[1].location(j))] +=

a.data[a.element(a.range[0].location(i),

a.range[1].location(k))] *

b.data[b.element(b.range[0].location(k),

b.range[1].location(j))];

}

The methods element and location were introduced earlier. The information

that all three arrays have collapsed ranges is not speci�ed in the adJava program.

It was, however, speci�ed in the HPJava program. This extra information can

be used to dramatically improve the performance of the translated code.

It is clear that the segment of code above will have very poor run-time per-

formance, because it involves many method invocations for each array element

access. Because the array data is actually stored in a certain regularly strided

section of a Java array, these calls are not really necessary. All that is needed is

to �nd the address of the �rst array element, then write the other addresses as a

linear expression in the loop variable and this initial value. The code above can

be rewritten in the form given in �gure 5. This optimization exposes various

low-level inquiries (and one auxilliary class, Stride) in the adJava runtime. The

details are not particularly important here (see [4]). The e�ect is to compute

the parameters of the linear expressions for the local address o�sets. This allows

inlining of the element calls. In this case the resulting expressions are linear in

the induction variables of the for loops. If necessary the multiplications can be

eliminated by standard compiler optimizations.

This segment of Java code will certainly run much faster. The only drawback

is that, compared with the �rst Java procedure, the optimized code is hardly

readable. This is a simple example of the need for compiler intervention if this

style of programming is to be made acceptable.

Similar optimizations can be applied to the overall construct. As described

in [3], a trivial implementation of the general overall construct is through a

for loop surrounding an at construct. More sensibly, all the machines across a

process dimension should simultaneously execute the body for all locally held

locations in the relevant distributed range. Computation of the local o�set of

the array element can again be reduced to a linear expression in a loop variable

instead of a function call.

12

public static void matmul(Array2Float c, Array2Float a, Array2Float b) {

Range c_r0=c.range[0];

Range c_r1=c.range[1];

Stride c_u0=c.stride[0];

Stride c_u1=c.stride[1];

final int i_c_bas=c_u0.disp(c_r0.bas());

final int i_c_stp=c_u0.disp_step(c_r0.str());

final int j_c_bas=c_u1.disp(c_r1.bas());

final int j_c_stp=c_u1.disp_step(c_r1.str());

... similar inquiries for a and b ...

for (int i=0; i<B; i++) {

for (int j=0; j<B; j++) {

for (int k=0; k<B; k++) {

c.data[i_c_bas + i_c_stp * i + j_c_bas + j_c_stp * j] +=

a.data[i_a_bas + i_a_stp * i + k_a_bas + k_a_stp * k] *

b.data[k_b_bas + k_b_stp * k + j_b_bas + j_b_stp * j];

}

}

}

}

Figure 5: Optimized translation of matmul

4 Issues in the language design

Once the underlying implementation mechanisms of the language is exposed, a

better understanding of the language design itself is possible.

4.1 Extending the Java language

The �rst question to answer is why use Java as a base language? Actually, the

programming model embodied in HPJava is largely language independent. It

can bound to other languages like C, C++ and Fortran. But Java is a convenient

base language, especially for initial experiments, because it provides full object-

orientation|convenient for describing complex distributed data|implemented

in a relatively simple setting, conducive to implementation of source-to-source

translators. It has been noted elsewhere that Java has various features suggest-

ing it could be an attractive language for science and engineering [6].

With Java as base language, an obvious question is whether we can extend

the language by simply adding packages, instead of changing the syntax. There

are two problems with doing this for data-parallel programming.
Our baseline is HPF, and any package supporting parallel arrays as general

as HPF is likely cumbersome to code with. The examples given earlier using the
adJava interface illustrate this point. The runtime system needs all the class
names

13

Array0Int, Array1Int, Array2Int ...

to express the HPJava types

int #, int[[]], int[[,]] ...

as well as the corresponding ones for char, float, and so on. Even if we restrict
to two dimensional arrays, expressing subtypes like int[[*,]], int[[,*]] or
int[[*,*]] may require further subclasses of Array2Int such as

Array2IntCollapsedDistributed

Array2IntDistributedCollapsed

Array2IntCollapsedCollapsed

To access an element of a distributed array in HPJava, one writes

a[i] = 3 ;

In the adJava interface, it needs to be written as,

a.data[a.element(i)] = 3 ;

The second problems is that a Java program using a package like adJava in

a direct way will have very poor performance, because all the local address of

the global array are expressed by functions such as element. An optimization

pass is needed to transform o�set computation to a more intelligent style. So,

if a preprocessor must do these optimizations anyway, it makes most sense to

design a set of syntax to express the concepts of the programming model more

naturally.

4.2 Why not HPF?

The design of the HPJava language is strongly inuenced by HPF. The language
emerged partly out of practices adopted in our e�orts to implement an HPF
compilation system [7]. For example:

!HPF$ POCESSOR P(4)

!HPF$ TEMPLET T(100)

!HPF$ DISTRIBUTE T(BLOCK) ONTO P

REAL A(100,100), B(100)

!HPF$ ALIGN A(:,*) WITH T(:)

!HPF$ ALIGN B WITH T

have their conterparts in HPJava:

Procs1 p = new Procs1(4);

Range x = new BlockRange (100, p.dim(0));

float [[,*]] a = new float [[x,100]] on p;

float [[]] b = new float [[x]] on p;

14

Both languages provide a globally addressed name space for data parallel appli-
cations. Both of them can specify how data are mapped on to a processor grid.
The di�erence between the two lies in their communication aspects. In HPF,
a simple assignment statement may cause data movement. For example, given
the above distribution, the assignment

A(10,10) = B(30)

will cause communication between processor 1 and 2. In HPJava, similar com-
munication must be done through explicit function calls3:

Adlib.remap(a[[9,9]], b[[29]]);

Experience from compiling the HPF language suggests that, while there are

various kinds of algorithms to detect communication automatically, it is often

di�cult to give the generated node program acceptable performance. In HPF,

the need to decide on which processor the computation should be executed fur-

ther complicates the situation. One may apply \owner computes" or \majority

computes" rules to partition computation, but these heuristics are di�cult to

apply in many situations.

In HPJava, the SPMD programming model is emphasized. The distributed

arrays just help the programmer organize data, and simplify global-to-local ad-

dress translation. The tasks of computation partition and communication are

still under control of the programmer. This is certainly an extra onus, and the

language is more di�cult to program than HPF4. But this helps programmer to

understand the performance of the program much better than in HPF, so algo-

rithms exploiting locality and parallelism are encouraged. It also dramatically

simpli�es the work of the compiler.

Because the communication sector is considered an \add-on" to the basic

language, HPJava should interoperate more smoothly than HPF with other

successful SPMD libraries, including MPI, CHAOS, Global Arrays, DAGH, and

so on.

4.3 Datatypes in HPJava

In a parallel language, it is desirable to have both local variables (like the ones

in MPI programming) and global variables (like the ones in HPF programming).

The former provide exibility and are ideal for task parallel programming; the

latter are convenient especially for data parallel programming.

In HPJava, variable names are divided into two sets. In general those de-

clared using ordinary Java syntax represent local variables and those declared

with [[]] or # represent global variables. The two sectors are independent. In

3By default Fortran array subscripts starts from 1, while HPJava global subscripts always

start from 0.
4The program must meet SPMD constraints, eg, only the owner of an element can access

that data. Runtime checking can be added automatically to ensure such conditions are met.

15

the implementation of HPJava the global variables have special data descriptors

associated with them, de�ning how their components are divided or replicated

across processes. The signi�cance of the data descriptor is most obvious when

dealing with procedure calls.

Passing array sections to procedure calls is an important component in the

array processing facilities of Fortran90 [8]. The data descriptor of Fortran90 will

include stride information for each array dimension. One can assume that HPF

needs a much more complex kind of data descriptor to allow passing distributed

arrays across procedure boundaries. In either case the descriptor is not visible

to the programmer. Java has a more explicit data descriptor concept; its arrays

are considered as objects, with, for example, a publicly accessible length �eld.

In HPJava, the data descriptors for global data are similar to those used in

HPF, but more explicitly exposed to programmers. Inquiry �elds such as group,

range[] have the same standing in global data as the �eld length in an ordinary

Java array.

In HPJava, an array can be sectioned to yield a \zero-dimensional array" by

speci�ying all scalar subscripts in double brackets. The result is a global data

entity containing the associated array element; the result is not the element

itself. The di�erence between an array sectioned to a global scalar and an array

elment is that the global scalar has a descriptor specifying the process group

that holds the element. This one reason why [[]] is used for the section

operation and [] is used for array element access. The symbol # is introduced

to augment the type signature of a global scalar reference (a zero-dimensional

array) to distinguish it from an ordinary Java scalar.

Keeping two data sectors seems to complicate the language and its syntax.

But it provides convenience for both task and data parallel processing. There is

no need for things like the LOCAL mechanism in HPF to call a local procedure on

the node processor. The descriptors for ordinary Java variables are unchanged

in HPJava. On each node processor ordinary Java data will be used as local

varables, like in an MPI program.
It is allowed to combine the two di�erent kinds of array (standard Java and

distributed) of the language. For example:

int[] size = {100, 200, 400};

float [[,]] d [] = new float [size.length][[,]];

Range x[];

Range y[];

for (int l = 0; l < size.length; l++) {

x[l] = new BlockRange(size[l], p.dim(0)) ;

y[l] = new BlockRange(size[l], p.dim(1)) ;

d[l] = new float [[x[l], y[l]]];

}

will create an array like the one shown in �gure 6. This facility is useful for

multigrid and multiblock algorithms.

16

x

d[1]

d[0]

y d[2]

Figure 6: Array of distributed arrays

4.4 Convenience of programming

The language provides some special syntax for the programmer's convenience.

Unlike the syntax for data declaration, which has fundamental signi�cance in

the programming model, this part is pure syntactic convenience.

First there are a limited number of Java operators overloaded,

� a group reference can be restricted by a location reference with the /

operation,

� a sub-range or location reference can be mapped by [] from a range by

triplet expression or an integer,

These two items can be considered as shorthand for using suitable constructors

in the corresponding classes. This is similar to the way Java provides special

syntax support for String class constructor.

Another overloading occurs location shift, which is used to support ghost

regions. A shift operator + is de�ned between a location and an integer. It

will be illustrated in the examples in the next section. This is a restricted

operation|it has meaning (and is legal) only in an array subscript expression.

5 Example programs

In this section, we give some more interesting examples of HPJava code. The

�rst example is Choleski decomposition, in which one needs to update n subma-

trices by subtracting an outer product of two vectors. On a parallel computer

with a distributed memory, the array may have a column-interleaved storage,

then each processor can update its own column after getting the �rst updated

column of the matrix or submatrix.

17

The above algorithm is written in HPJava in �gure 7. In the code, a cyclic

range is used to allocate the original array on multiprocessors. The result lower

triangular matrix overwrites part of its storage. During the computation, the

collective communication remap is used for broadcasting updated columns.

Procs1 p = new Procs1(P) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[*,]] a = new float [[N, x]] ;

float [[*]] b = new float [[N]] ;

... some code to initialise `a' ...

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x[k]) {

float d = Math.sqrt(a[k,l]) ;

a[k,l] = d ;

for(int s = k + 1 ; s < N ; s++)

a[s,l] /= d ;

}

Adlib.remap(b[[k + 1 :]], a[[k + 1 :, k]]);

overall(l = x[k + 1 :])

for(int i = x.idx(l) ; i < N ; i++)

a[i,l] -= b[i] * b[x.idx(l)] ;

}

at(l = x [N - 1])

a[N - 1,l] = Math.sqrt(a[N-1,l]) ;

}

Figure 7: Choleski decomposition in HPJava

The second example is Jacobi iteration. The algorithm calculates the average

value of the neighboring elements. A ghost area is de�ned when the global array

is de�ned through a special BlockRange constructor. In the code of �gure 8 there

is only one iteration. The library function writeHalo performs the necessary

communications to update ghost edges to make it ready for the iteration.

18

Procs2 p = new Procs2(2, 4);

Range x = new BlockRange(100, p.dim(0), 1);

Range y = new BlockRange(200, p.dim(1), 1);

on(p) {

float [[,]] a = new int [[x,y]] ;

... some code to initialize `a' ...

float [[,]] b = new int [[x,y]];

Adlib.writeHalo(a);

overall(i = x)

overall(j = y)

b[i,j] = (a[i-1,j] + a[i+1,j] +

a[i,j-1] + a[i,j+1]) * 0.25;

overall(i = x)

overall(j = y)

a[i,j] = b[i,j];

}

Figure 8: Jacobi iteration in HPJava

6 Concluding remarks

In this report, we discussed design and implementation issues in HPJava, a new

programming language we have proposed. We claim that the language has the

exibility of SPMD programming, and much of the convenience of HPF. Re-

lated languages include F{, Spar, ZPL and Titanium. They all take di�erent

approaches from ours. The implementation of HPJava is straightforwardly sup-

ported by a runtime library. In the next step, we will complete the HPJava

translator and implement further optimizations. At the same time, we plan to

integrate further SPMD libraries into the framework.

References

[1] High Performance Fortran Forum, \High Performance Fortran Language

Speci�cation", version 2.0, Oct. 1996

[2] Bryan Carpenter, Guansong Zhang, Geo�rey Fox, Xinying Li, and Yuhong

Wen. \Introduction to Java-Ad".

http://www.npac.syr.edu/projects/pcrc/doc.

19

[3] Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xinying Li, and Yuhong

Wen. \A high level SPMD programming model: HPspmd and its Java

language binding". http://www.npac.syr.edu/projects/pcrc/doc.

[4] Bryan Carpenter, Guansong Zhang and Yuhong Wen, \NPAC PCRC Run-

time Kernel (Adlib) de�nition",

http://www.npac.syr.edu/projects/pcrc/doc

[5] E Pluribus Unum, \Programming with MPI", Morgan Kaufmann Publish-

ers, Inc. 1997.

[6] Geo�ery C. Fox, editor. ACM 1998Workshop on Java for High-Performance

Network Computing, Concurrency: Practice and Experience (to appear).

Palo Alto, California, Feb. 28 and Mar. 1, 1998.

http://www.cs.ucsb.edu/conferences/java98

[7] Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li,

and Yuhong When. \PCRC-based HPF compilation", 10th International

Workshop on Languages and Compilers for Parallel Computing, 1997.

[8] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith

and Jerrold L. Wagener, Fortran 90 Handbook, McGraw-Hill book com-

pany, 1992

20

