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Abstract This report introduces a new language,

HPJava, for parallel programming on message pass-

ing systems. The language provides a high level

SPMD programming model. Through examples and

performance results, the features of the new pro-

gramming style, and its implementation, are illus-

trated.
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1 Introduction

In this report, we introduce HPJava language,

a programming language extended from Java

for parallel programming on message passing

systems, from multiprocessor systems to work-

station clusters.

Although it has a close relationship with

HPF[1], the design of HPJava does not fol-

low HPF directly. Instead it introduces a high

level structured SPMD programming style,

HPspmd, which can be summarized as follows:

� Structured SPMD programming.

Programs written in the programming lan-

guage presented here explicitly coordinate

a well-organized process group. As in a

conventional distributed-memory SPMD

program, only a process owning a data

item is allowed to access the item directly.

The language provides special constructs

that allow programmers to meet this con-

straint conveniently.

� Global name space. Besides the nor-

mal local variables of the sequential base

language, the language provides classes of

variables accompanied by non-trivial data

descriptors, providing a global name space

in the form of globally subscripted ar-

rays, with assorted distributed patterns.

This helps to relieve programmers of error-

prone activities such as the local-to-global,

global-to-local address translations which

occur in data parallel applications.

� Hybrid of data and task parallel

programming. The language also pro-

vides special constructs to facilitate both

data parallel and task parallel program-

ming. Through language constructs, dif-

ferent processors can either simultane-

ously work on global addressed data, or in-

dependently execute complex procedures

on their own local data. The conversion

between these phases is seamless.

� Communication libraries. In the tra-

ditional SPMD model, the language it-

self does not provide implicit data move-

ment semantics. Di�erent communication

patterns are implemented as library func-

tions. This greatly simpli�es the task of

the compiler, and should encourage pro-

grammers to use algorithms that exploit

locality. Data on remote processors are ac-

cessed exclusively through explicit library

calls. In particular, the initial HPJava im-

plementation relies on a library of pow-



erful collective communication routines.

Other distributed-array oriented commu-

nication libraries may be bound to the lan-

guage later. The low level MPI communi-

cation is always available as a fall-back.

Since the language itself only provides ba-

sic concepts to organize data arrays and

process groups, it allows the possibility

that when a new communication pattern

is needed, it should be relatively easy to

integrate through new libraries.

In our earlier work on HPF compilation [2] the

role of runtime support was emphasized. Di�-

culties in compiling HPF e�ciently suggested

to make the runtime communication library di-

rectly visible in the programming model. Since

Java language is simple, elegant language, we

implemented our prototype based upon this

language.

2 Java language Binding

String is a class in Java, but there is language

syntax, including construction and concatena-

tion operations, to support it. In HPJava, we

add several similar built-in classes.

2.1 Basic concepts

Key concepts in the programming model are

built around process groups, used to describe

program execution control in a parallel pro-

gram.

Process group. Group is a class represent-
ing a process group, typically with a grid struc-
ture and an associated set of process dimen-
sions. It has its subclasses that represent dif-
ferent grid dimensionalities, such as Procs1,
Procs2, etc. For example,

Procs2 p = new Procs2(2,4);

An HPJava program will be executed in paral-

lel across the processes of a grid.

Distributed dimension and index with

position. The elements of an ordinary array

can be represented by an array name and an

integer sequence. Here, we have two concepts

reected by int values: an index to access each

array element and a range that index can be

chosen from. In describing a distributed array,

we use two new built-in classes in HPJava to

represent the analogous concepts:

� A range maps an integer interval into

a process dimension according to certain

distribution format. Ranges describe the

extent and mapping of array dimensions.

� A location, or slot, is an abstract element

of a range. A range can be regarded as

a set of locations, actually it is a one-to-

one mapping between the global index and

locations.

For example,

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(200, p.dim(1)) ;

creates two ranges on the di�erent process di-
mensions of the group p. One is block dis-
tributed, the other is cyclic distributed. There
are 100 di�erent Location items mapped by
the range x from integers, for example, the �rst
one is

Location i = x[0];

Subgroup and Subrange. A subgroup is

some slice of a process array, formed by re-

stricting the process coordinates in one or more

dimensions to single values.
Suppose i is a location in a range distributed

over a dimension of group p. The expression

p / i

represents a smaller group|the slice of p to

which location i is mapped.

Similarly, a subrange is a section of a range,

parameterized by a global index triplet. Logi-

cally, it represents a subset of the locations of

the original range.
The syntax for a subrange expression is

x [ 1 : 49 ]



The symbol \:" is a special separator. It is

used to compose a triplet expression with op-

tional int expressions to represent an integer

subset. The default initial and �nal values are

respectively zero and the extent of the range.

The default stride size is 1.

Structured SPMD programming. When
a process group is de�ned, a set of ranges and
locations are also implicitly de�ned, as shown
in �gure 1. The two (primitive) ranges associ-
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Figure 1: Structured processes group

ated with dimensions of the group p are,

Range u=p.dim(0);

Range v=p.dim(1);

dim() is a member function that returns a

range reference, directly representing a proces-

sor dimension.
We can obtain a location in range v, and use

it to create a new group,

Location j = v[1];

Group q = p/j;

As shown in the �gure, group p is highly struc-

tured, The notions introduced around it con-

tribute to program execution control in the

new programming language.
In a traditional SPMD program, execution

control is based on if statements and process
id or rank numbers. In the new programming
language, switching execution control is based
on the structured process group. For example,
it is not di�cult to guess that the following
code:

on(p) {

...

}

will restrict the execution control inside the

bracket to processes in group p.

The language also provided well-de�ned con-

structs to split execution control across pro-

cesses according to data items we want to ac-

cess. This will be discussed later.

2.2 Global variables

When an SPMD program starts on a group

of n processes, there will be n control threads

mapped to n physical processors. In each con-

trol thread, the program can de�ne variables

in the same way as in a sequential program.

The variables created in this way are local vari-

ables. Their names may be replicated across

processes, but they will be accessed individu-

ally (their scope is local to a process).

Besides local variables, HPJava allows a

program to de�ne global variables, explicitly

mapped to a process group. A global variable

will be treated by the process group that cre-

ating it as a single entity. The language has

special syntax for the de�nition of global data.

Global variables are all de�ned by using the

new operator from free storage. When a global

variable is created, a data descriptor is also al-

located to describe where the data are held.

Data descriptor and global data. The

concept of data descriptor is not new. It ex-

ists in the Java language itself. For example,

the �eld length in the Java array reects the

fact that an array is accessed through a data

descriptor.

On a single processor, an array variable

might be parametrized by a simple record con-

taining a memory address and an int value for

the the length. On a multi-processor, a more

complicated structure is needed to describe a

distributed array. The data descriptor spec-

i�es where the data is created, and how are

they are distributed. The logical structure of

a descriptor is shown in �gure 2.
New syntax is added in HPJava to de�ne

data with descriptors.

on(p)

int # s = new int #;
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Figure 2: Descriptor

creates a global scalar on the current executing

process group. In the statement, s is a data de-

scriptor handle, in HPJava term, a global scalar

reference. The scalar contains an integer value.

Global scalar references can be de�ned for any

primitive type (or, in principle, class type) of

Java. The symbol # in the right hand side of

the assignment indicates a data descriptor is

allocated as the scalar is created.
For a scalar variable, a �eld value is used

to retrieve the value.

on(p) {

int # s = new int #;

s.value = 100;

}

Figure 3 shows a possible memory mapping

for this scalar on di�erent processes. Note,

int

Data descriptor

s

data owner
group 

...

100

data reference
}

Figure 3: Memory mapping

the value �eld of s is identical in each process

in the current executing processes. Replicated

value variables are di�erent from local variables

with replicated names. The associated descrip-

tors can be used to ensure the value is main-

tained identically in each process, throughout

program execution.

The group inside a descriptor is called the
data owner group, it de�nes where the global
values are held.

on(p)

int # s = new int # on q;

will set data owner �eld in the descriptor to

group q. In general this may be a subset of

the default, p (the whole of the current active

process group).
When de�ning a global array, it is not neces-

sary to allocate a data descriptor for each array
element. So the syntax for de�ning a global
array is not derived directly from the one for
a scalar. An array can de�ned with di�erent
kinds of ranges introduced earlier. Suppose we
still have

Range x = new BlockRange(100, p.dim(0)) ;

and the process group de�ned in �gure 1, then

on(q)

float [[ ]] a = new float [[x]];

will create a global array with range y on group

q. Here a is a descriptor handle describing a

one-dimensional array of float. It is block dis-

tributed on group q1. In HPJava term, a is also

called a global or distributed array reference.
A distributed array range can also be col-

lapsed (or sequential). An integer range is
speci�ed, eg

on(p)

float [[*]] b = new float [[100]];

When de�ning an array with collapsed dimen-

sions, * can optionally be added in a type sig-

natures to mark these dimensions.
The typical method of accessing global array

elements is not exactly the same as for local
array elements, or for global scalar references.
Since global arrays may have position informa-
tion in their dimensions, we often use locations
as their subscripts:

Location i=x[3];

at(i)

a[i]=3;

1The on clause restrict the data owner group of the

array to q. If group p is used instead, the one dimen-

stion array will be replicated in the �rst dimenstion

of the group, and block distributed over the second

dimension.



Here the fourth element of array a is assigned
the value 3. We will leave discussion of the
at construct to section 2.3, and give a simpler
example here: if a global array is de�ned with
a collapsed dimension, accessing its elements
can be modelled on local arrays. For example:

for(int i=0; i<100; i++)

b[i]=i;

assigns the loop index to each corresponding

element in the array.
When de�ning a multi-dimensional global

array, a single descriptor parametrizes a rect-
angular array of any dimensions.

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(100, p.dim(1)) ;

float [[,]] c = new float [[x, y]];

This creates a two-dimension global array with

the �rst dimension block distributed and the

second cyclic distributed. Now c is a global

array reference. Its elements can be accessed

using single brackets with two suitable loca-

tions inside.
The global array introduced here is a

Fortran-style multi-dimensional array, not a
Java-like array-of-arrays. Java-style arrays-of-
arrays are still useful. For example, one can
de�ne a local array of distributed arrays:

int[] size = {100, 200, 400};

float [[,]] d[] =

new float [size.length][[,]] ;

Range x[];

Range y[];

for (int l = 0; l < size.length; l++) {

const int n = size [l] ;

x[l] = new BlockRange(n, p.dim(0)) ;

y[l] = new BlockRange(n, p.dim(1)) ;

d[l] = new float [[x[l], y[l]]];

}

creates an array shown in �gure 4.

Array sections and type signatures. HP-

Java allows to construct sections of global ar-

rays. The syntax of section subscripting uses

double brackets. The subscripts can be scalar

(integers or locations) or triplets.

Suppose we still have array a and c de�ned

as above, then, a[[i]], c, c[[i, 1::2]], and

x

d[1]

d[0]

y d[2]

Figure 4: Array of distributed array

c[[i, :]] are all array sections. Here i is

a location in the �rst range of a and c (it

could also be an integer in the appropriate in-

terval). Both the expressions c[[i, 1::2]]

and c[[i, :]] represent one-dimensional dis-

tributed arrays, providing aliases for subsets of

the elements in c. The expression a[[i]] con-

tains a single element of a, but the result is

a global scalar reference (unlike the expression

a[i] which is a simple variable).

Array section expressions are often used as

arguments in function calls2. Table 1 shows the

type signatures of global data with di�erent

dimensions. In the table, both i and j are

global var array section type

2-dimension c

c[[:,:]] float [[,]]

1-dimension c[[i,:]]

c[[i,1::2]] float [[ ]]

scalar(0-dim) c[[i,j]] float #

Table 1: Section expression and type signature

location references.

Inquiry �elds and functions The size of
an array in Java can be had from its length

�eld. Similarly, in HPJava, information like

2When used in method calls, the collapsed dimen-

sion array is a subtype of the ordinary one. i.e. an argu-

ment of float[[*,*]], float[[*,]] and float[[,*]]

type can all be passed to a dummy of type float[[,]].

The converse is not true.



data owner group and distributed dimensions
can be accessed from the following �elds,

Group group; //data owner group

Range range[]; //dimension array

Further inquiry functions on Range yield values

such as extents and distribution formats.

2.3 Program execution control

HPJava has all the Java statements for execu-

tion control within a single process. It intro-

duces three new control constructs, on, at and

overall for execution control across processes.

A new concept, the active process group, is in-

troduced. It is the set of processes sharing the

current thread of control.
In a traditional SPMD program, switching

the active process group is e�ectively imple-
mented by if statements such as:

if(myid>=0 && myid<4) {

...

}

Inside the braces, only processes numbered 0

to 3 share the control thread. In HPJava, this

e�ect is expressed using a Group. When a HP-

Java program starts, the active process group

has a system-de�ned value. During the execu-

tion, the active process group can be changed

explicitly through an on construct in the pro-

gram.
In a shared memory program, accessing the

value of a variable is straightforward. In a mes-
sage passing system, only the process which
holds data can read and write the data. We
sometimes call this SPMD constraint. A tradi-
tional SPMD program respects this constraint
by using an idiom like

if(myid==1)

my_data=3;

The if statement makes sure that only

my data on process 1 is assigned to.
In the language we present here similar con-

straints must be respected. Besides on con-
struct introduced earlier, there is a convenient
way to change the active process group to ac-
cess a required array element, namely at con-
struct. Suppose array a is de�ned as in the
previous section, then:

on (q) {

Location i=x[1];

at(i)

a[i]=3; //correct

a[i]=3; //error

}

The assignment statement guarded by an at

construct is correct; the one without it may

cause run-time error.
A more powerful construct called overall

combines switching of the active process group
with a loop:

on(q)

overall(i= x|0:3)

a[i]=3;

is essentially equivalent to3

on(q)

for(int n=0;n<4;n++)

at(i=x[n])

a[i]=3;

In each iteration, the active process group is

changed to q/i. In section 3, we will illustrate

with further programs how at and overall

constructs conveniently allow one to keep the

active process group equal to the data owner

group for the assigned data.

2.4 Communication library func-

tions

When accessing data on another process, HP-

Java needs explicit communication, as in a or-

dinary SPMD program. Communication li-

braries are provided as packages in HPJava.

Detailed function speci�cations will be intro-

duced in other papers. Here we will only in-

troduce a small number of top level collective

communication functions.

In the current design, the collective commu-

nications are member functions of a static class

Adlib. Adlib.remap will copy the correspond-

ing element from one to another, regardless of

3A compiler can implement overall construct in a

more e�cient way, using linearized address calculation.

For detail de�nition on overall construct, please refer

to [3]



their distribution format. Adlib.shift will

shift certain amount in a speci�c dimension

of the array in either cyclic or edge-o� mode.

Adlib.writeHalo is used to support ghost re-

gions.

It is possible to integrate other communi-

cation library as communication packages of

the language. We have already implemented

a Java MPI interface. Currently CHAOS [4]

and GA [5] are being considered as \add-on"

packages.

3 Programming examples

In this section we only give out example pro-

grams to show the new language features.
The �rst example is Choleski decomposition,

Procs1 p = new Procs1(4);

on(p) {

Range x = new CyclicRange(n, p.dim(0));

float a[[*,]] = new float [[n, x]];

float b[[*]] = new float [[n]];

// buffer

... some code to initialise `a' ...

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x[k]) {

float d = Math.sqrt(a[k,l]) ;

a[k,l] = d ;

for(int s = k + 1 ; s < N ; s++)

a[s,l] /= d ;

}

Adlib.remap(b[[k+1:]], a[[k+1:, k]]);

overall(m = x | k + 1 : )

for(int i = x.idx(m) ; i < N ; i++)

a[i,m] -= b[i] * b[x.idx(m)] ;

}

at(l = x [N - 1])

a[N - 1,l] = Math.sqrt(a[N-1,l]) ;

}

Here, remap is used to broadcast one updated

column to each process.
The second example is Jacobi iteration,

Procs2 p = new Procs2(2, 4);

Range

x = new BlockRange(100, p.dim(0), 1),

y = new BlockRange(200, p.dim(1), 1);

on(p) {

float [[,]] a = new int [[x,y]] ;

... some code to initialize `a'

float [[,]] b = new int [[x,y]];

Adlib.writeHalo(a);

overall(i=x|:)

overall(j=y|:)

b[i,j] = 0.25 * (a[i-1,j] +

a[i+1,j] + a[i,j-1] + a[i,j+1]);

overall(i=x|:)

overall(j=y|:)

a[i,j] = b[i,j];

}

In the above code, there is only one iteration,

it is used to demonstrate how to de�ne range

reference with halo area, and how to use the

writeHalo function.

4 Project in progress

Projects related to this work include develop-

ment of MPI, HPF, and other parallel lan-

guages such as ZPL and Spar, introduced

elsewhere4. Here we explain the background

and future developments of our own project.

The work originated in our compilation

practices for HPF. As described in [2], our com-

piler emphasize runtime support. Adlib[3], a

PCRC runtime kernel library, provides a rich

set of collective communication functions. It

was realized that by raising the runtime inter-

face to the user level, a rather straightforward

(compared to HPF) compiler could be devel-

oped to translate the high level language code

to a node program calling the runtime func-

tions.

Currently, a Java interface has been imple-

mented on top of the Adlib library. With

classes such as Group, Rang and Location in

the Java interface, one can write Java programs

quite similar to HPJava we proposed here. Yet,

4For more analysis, please refer to our documents at

http://www.npac.syr.edu/projects/pcrc/doc



the program executed in this way will have

large overhead due to function calls (such as

address translation) when accessing data inside

loop constructs.

Given the knowledge of data distribution

plus inquiry functions inside runtime library,

one can substitute address translation calls

with linear operation on the loop variable, and

keep most of the inquiry function calls outside

the loop. This is the basic idea of the HPJava

compiler.

At present time, we are working on the de-

sign and implementation of the prototype of

this translator. Further research works will

include optimization and safety-checking tech-

niques in the compiler for HPspmd program-

ming.

Figure 5 shows a preliminary benchmark for

hand translated versions of our examples. The

parallel programs are executed on 4 sparc-sun-

solaris2.5.1 with mpich MPI and Java JIT com-

piler in JDK 1.2Beta2. For Jacobi iteration,

the timing is for about 90 iterations, the array

size is 1024X1024.
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Figure 5: Preliminary performance

We also compared the sequential Java, C++

and Fortran version of the code, all with -O

ag. Shown in the �gure. Since Java program

use language own mechanism for calculating

array element address, it is slower than HP-

Java, which uses an optimized scheme.

Similar test was made on an 8-node SGI

challenge(mips-sgi-irix6.2), the communication

time is much smaller than the one on solaris,

due to MPI device using shared memory. The

overall performance is not as good, because the

JIT compiler on IRIX. The whole system are

also being ported to Windows NT.

5 Summary

Through the simple examples in the report, we

can see the programming language presented

here has the exibility of a SPMD program,

and the convenience of HPF. The language en-

courages programmers to express parallel al-

gorithms in a more explicit way. We suggest

it will help programmers to solve real applica-

tion problems more easily, compared with us-

ing communication packages such as MPI di-

rectly, and allow the compiler writer to imple-

ment the language compiler without the di�-

culties met in the HPF compilation.

The Java binding is only an introduction of

the programming style. (A Fortran binding is

being developed.) It can be used as a software

tool for teaching parallel programming. As

Java for scienti�c computation become more

mature, it will be a practical programming lan-

guage to solve real application problems in par-

allel and distribute environments.
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