
Automatic Object Serialization in the mpiJava Interface to MPI

Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko and Sang Lim

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,gcf,shko,slimg@npac.syr.edu

Abstract

The paper discusses use of the Java object serializa-

tion model for marshalling communication data in Java

bindings of the Message Passing Interface standard,

MPI. This approach is compared with a Java transcrip-

tion of the derived datatype mechanism used for bu�er

description in C and Fortran bindings of MPI. We de-

scribe an implementation of the mpiJava interface to

MPI incorporating automatic object serialization. The

programming model is attractive, though benchmark re-

sults show that the current JDK implementation of se-

rialization is not fast enough for high performance ap-

plications. Strategies to improve this situation are dis-

cussed.

1 Introduction

In the few years since the Fortran, C and C++ bind-

ings of the Message Passing Interface, MPI, were de-

�ned [14], Java has emerged as a major language for

distributed programming. There are various indica-

tions [8, 9, 10] that Java may also become an important

language for scienti�c and parallel computing. Not sur-

prisingly, therefore, several groups have independently

developed Java bindings to MPI and Java implementa-

tions of MPI subsets. In the absence of a standarized

Java API for MPI, everyone implements a di�erent in-

terface. In a move to remedy this situation, with sup-

port of several groups working in the area, the Java

Grande Forum drafted an initial proposal for a com-

mon Java interface to MPI [4].

Three major issues arising in the design of a Java in-

terface to MPI are: the class hierarchy, the detailed ar-

gument lists for methods, and mechanisms for describ-

ing message bu�ers. The proposal in [4] attempts to

follow the standardized language bindings for MPI as

closely as practical, while conforming to Java's object-

oriented programming model and following program-

ming conventions commonly adopted by Java program-

mers. MPI, even in its original C and Fortran instantia-

tions, deliberately followed object-oriented design prin-

ciples. The subsequent addition of a C++ binding for

MPI [14] already de�ned a detailed class hierarchy. The

Java binding suggested in [4] adopts that hierarchy as it

stands. At the level of detailed argument lists there are

many small di�erences between the Java interface and

the established C or C++ interfaces. These di�erences

are either enforced by restrictions of the Java language

(for example the lack of call-by-reference arguments),

or exploit obvious features of Java to simplify the in-

terface (for example, explicit array-size arguments can

often be omitted because they can be extracted from

run-time information in a Java array). These details

are quite important in practise, but they are relatively

super�cial. More fundamental questions occur at the

level of bu�er description.

A characteristic feature of MPI is its exible method

for describing message bu�ers consisting of mixed

primitive �elds scattered, possibly non-contiguously,

over the local memory of a processor. These

bu�ers are described through special objects called de-

rived datatypes|run-time analogues of the user-de�ned

types supported by languages like C. The standard

MPI approach does not map very naturally into Java,

because Java does not expose the the physical memory

layout of user data, or necessarily implement a �xed,

linear address space internally
1
.

In [2, 3, 1] we suggested a Java-compatible restric-

tion of the general MPI derived datatype mechanism,

in which all primitive elements of a message bu�er have

the same type, and they are selected from the elements

of a one-dimensional Java array passed as the bu�er

argument. This approach preserves some of the func-

tionality of the original MPI mechanism|for example

the ability to describe strided sections of a one dimen-

1For example, the garbage collector is allowed to relocate ob-

jects unpredicably at runtime, so the absolute and relative ad-

dresses of objects are e�ectively ill-de�ned.

sional bu�er argument, and to represent a subset of

elements selected from the bu�er argument by an in-

direction vector. But it does not allow description of

bu�ers containing elements of mixed primitive types.

The derived datatype mechanism is retained in the

initial draft of [4], but its usefulness seems to be lim-

ited. In the context of Java, a more promising ap-

proach may be the addition a new basic datatype to

MPI representing a serializable object. The bu�er ar-

ray passed to communication functions is still a one-

dimensional array, but as well as allowing arrays with

elements of primitive type, the element type is allowed

to be Object. The serialization paradigm of Java can

be adopted to transparently serialize bu�er elements

at source and unserialize them at destination. An im-

mediate application is to multidimensional arrays. A

Java multidimensional array is an array of arrays, and

an array is an object. Therefore a multidimensional ar-

ray is a one-dimensional array of objects and it can be

passed directly as a bu�er array. The options for rep-

resenting sections of such an array are limited, but at

least the one can communicate whole multidimensional

arrays without explicitly copying them (of course there

may well be copying inside the implementation).

1.1 Overview of this article.

This article discusses our current work on use of ob-

ject serialization to marshal arguments of MPI commu-

nication operations. It builds on earlier work on the

mpiJava interface to MPI [1], which is implemented

as a set of JNI wrappers to native C MPI packages for

various platforms. The original implementation of mpi-

Java supported MPI derived datatypes, but not object

types.

Section 2 reviews the parts of the API of [4] relating

to derived datatypes and object serialization. Section

3 describes our prototype implementation of automatic

object serialiation in mpiJava. In section 4 we describe

some benchmarks for this initial implementation. The

results imply that naive use of existing Java serial-

ization technology does not provide the performance

needed for high performance message passing environ-

ments. Possible remedies for this situation are outlined

briey in the �nal discussion section.

1.2 Related work

Early work by the current authors on Java MPI

bindings is reported in [2]. A comparable approach

to creating full Java MPI interfaces has been taken

by Getov and Mintchev [15, 11]. A subset of MPI is

implemented in the DOGMA system for Java-based

parallel programming [13]. MPI Software Technology,

Inc have announced their intention to deliver a com-

mercial Java interface to MPI called JMPI [5]. Java

implementations of the related PVM message-passing

environment have been reported in [16] and [7]. A pure

Java implementation of MPI built on top of JPVM has

been described in [6].

For an extensive discussion of performance issues

surrounding object serialization see section 3 of [12] and

references therein. The discussion there mainly relates

to serialization in the context of fast RMI implementa-

tions. The cost of serialization is likely to be an even

more critical issue in MPI, because the message-passing

paradigm usually has lower overheads.

2 Review of an API for derived

datatypes and Object datatypes

The MPI standard is explicitly object-based. The

C++ binding speci�ed in the MPI 2 standard collects

these objects into suitable class hierarchies and de�nes

most of the library functions as class member functions.

The Java API proposed in [4] follows this model, and

lifts its class hierarchy directly from the C++ binding.

The major classes are illustrated in Figure 1.

The class MPI only has static members. It acts as a

module containing global services, such as initialization

of MPI, and many global constants including the de-

fault communicator COMM WORLD2. The communicator

class Comm is the single most important class in MPI.

All communication functions are members of Comm or

its subclasses. Another class that is relevant for the

discussion below is the Datatype class. This describes

the type of the elements in the message bu�ers passed

to send, receive, and other communication functions.

Various basic datatypes are prede�ned in the package.

These mainly correspond to the primitive types of Java,

shown in �gure 2.

The standard send and receive operations of MPI

are members of Comm with interfaces

void send(Object buf, int offset, int count,

Datatype datatype, int dst, int tag)

Status recv(Object buf, int offset, int count,

Datatype datatype, int src, int tag)

In both cases the actual argument corresponding to

buf must be a Java array with element type deter-

mined by the datatype argument. If the speci�ed type

2It has been pointed out that if multiple MPI threads are

allowed in the same Java VM, the default communicator cannot

be obtained from a static variable. The �nal version of the API

may change this convention.

2

Datatype

Group

MPI

Comm

Status

Intercomm

Intracomm

Cartcomm

Graphcomm

Request Prequest

mpipackage

Figure 1. Principal classes of MPI

MPI datatype Java datatype

MPI.BYTE byte

MPI.CHAR char

MPI.SHORT short

MPI.BOOLEAN boolean

MPI.INT int

MPI.LONG long

MPI.FLOAT float

MPI.DOUBLE double

MPI.OBJECT Object

Figure 2. Basic datatypes in proposed Java
binding

corresponds to a primitive type, the bu�er will be a

one-dimensional array. Multidimensional arrays can

be communicated directly if an object type is speci-

�ed, because an individual array can be treated as an

object. Communication of object types implies some

form of serialization and unserialization. This could be

the built-in serialization provided in current Java envi-

ronments, or it could be some specialized serialization

optimized for MPI (or some combination of the two).

Bu�er array arguments are followed by o�sets that

specify the element in the array where the message ac-

tually starts.

Besides object types the draft Java binding proposal

retains a model of MPI derived datatypes. In C or For-

tran bindings of MPI, derived datatypes have two roles.

One is to allow messages to contain mixed types. The

other is to allow noncontiguous data to be transmitted.

The �rst role involves using the MPI TYPE STRUCT

derived data constructor, which allows one to describe

the physical layout of, say, a C struct containing mixed

types. This will not work in Java, because Java does

not expose the low-level layout of its objects. In C

or Fortran MPI TYPE STRUCT also allows one to incor-

porate displacements computed as di�erences between

absolute addresses, so that parts of a single message

can come from separately declared arrays and other

variables. Again there is no very natural way to do this

in Java. E�ects similar to of these uses of MPI TYPE -

STRUCT can be achieved by using MPI.OBJECT as the

bu�er type, and relying on object serialization.

We conclude that in the Java binding the �rst role

of derived dataypes should probably be abandoned|

derived types can only include elements of a single basic

type. This leaves description of noncontiguous bu�ers

as the essential role for derived data types.

Every derived data type constructable in the Java

binding has a uniquely de�ned base type. This is one of

the 9 basic types enumerated above. A derived datatype

is an object that speci�es two things: a base type and

a sequence of integer displacements. In contrast to the

C and Fortran bindings the displacements can be in-

terpreted in terms of subscripts in the bu�er array ar-

gument, rather than as byte displacements.

For example the type constructor indexed is a mem-

ber of Datatype with interface

Datatype indexed(int [] arrayOfBlocklengths,

int [] arrayOfDisplacements)

This is a binding of the standard MPI operation

MPI TYPE INDEXED. It constructs a new datatype rep-

resenting replication of the original datatype (to which

3

the method is applied) into a sequence of blocks. Each

block can contain a di�erent number of copies and have

a di�erent displacement. The base type of the new

datatype will be the same as the base type of the orig-

inal type. If the displacement sequence of the original

type was

fdisp0; : : : ; dispn�1g

with extent
3 ex, and B is arrayOfBlocklengths argu-

ment and D is arrayOfDisplacements argument, the

new datatype will have displacement sequence

f disp0 + D[0] � ex; : : : ; disp
n�1 + D[0] � ex;

disp0 + (D[0] + 1) � ex; : : : ; disp
n�1 + (D[0] + 1) � ex;

: : : ;

disp0 + (D[0] + B[0]� 1) � ex; : : : ;
disp

n�1 + (D[0] + B[0]� 1) � ex;

: : : ;

disp0 + D[c� 1] � ex; : : : ; disp
n�1 + D[c� 1] � ex;

disp0 + (D[c� 1] + 1) � ex; : : : ;
disp

n�1 + (D[c� 1] + 1) � ex;
: : : ;

disp0 + (D[c� 1] + B[c� 1]� 1) � ex; : : : ;
disp

n�1 + (D[c� 1] + B[c� 1]� 1) � ex g

Here, c is the number of blocks.

In Java the derived dataype constructed by indexed

has a potentially useful role. It allows to send (or re-

ceive) messages containing values scattered randomly

in some one-dimensional array. The draft proposal

incorporates versions of other type constructors from

MPI including MPI TYPE VECTOR for strided sections.

We note, though, that the value of providing strided

sections is reduced because Java has no natural map-

ping between elements of its multidimensional arrays

and elements of equivalent one-dimensional arrays.

This thwarts one common use of strided sections, for

representing portions of multidimensional arrays.

3 Implementation issues for Object

datatypes

As described in the previous section the proposal

of [4] includes a restricted, Java-compatible version of

the general datatype mechanism of MPI. The proposal

retains much of the complexity of the standard MPI

mechanism, but its value is apparently reduced in Java.

In this section we will discuss the other option for rep-

resenting complex data bu�ers in the Java binding|

introduction of an MPI.OBJECT datatype.

3The extent of a dataype is a measure of the distance between

its smallest and largest displacement.

It is natural to assume that the elements of arrays

passed as bu�er arguments to send and other out-

put operations are objects whose classes implement the

Serializable interface. There are at least two ways

one may consider communicating object types in the

MPI interface

1. Use the standard ObjectOutputStream to convert

the object bu�ers to byte vectors, and communi-

cate these byte vectors using the same method

as for primitive byte bu�ers (for example, this

might involve a native method call to C MPI

functions). At the destination, use the standard

ObjectInputStream to rebuild the objects.

2. Replace calls to the writeObject, readObject

methods on the standard streams with specialized

functions that use platform speci�c knowledge to

communicate data �elds more e�ciently. For ex-

ample, one might replace writeObject with a na-

tive method that creates an MPI derived datatype

structure describing the layout of data in the ob-

ject, and passes this bu�er descriptor to a native

MPI Send function.

In the second case our implementation is responsible for

prepending a suitable type descriptor to the message,

so that objects can be reconstructed at the receiving

end before the data �elds are copied to them. This

complexity is hidden in the �rst approach.

Evidently the �rst implementation scheme is more

straightforward, and only this approach will be consid-

ered in the rest of this section. We discuss an imple-

mentation based on the mpiJava wrappers, combining

standard JDK object serialization methods with a JNI

interface to native MPI. Benchmark results presented

in the next section suggest, however, that something

like the second approach (or some suitable combina-

tion of the two) deserves serious consideration.

The original version of mpiJava was a direct Java

wrapper for standard MPI. Apart from adopting an

object-oriented framework, it added only a modest

amount of code to the underlying C implementation of

MPI. Derived datatype constructors, for example, sim-

ply called the datatype constructors of the underlying

implementation and returned a Java object containing

a representation of the C handle. A send operation or

a wait operation, say, dispatched a single C MPI call.

Even using standard JDK object serialization and a na-

tive MPI package, uniform support for the MPI.OBECT

basic type complicates the wrapper code signi�cantly.

In the new version of the wrapper, every send, re-

ceive, or collective communication operation tests if the

base type of the datatype argument describing a bu�er

4

is OBJECT. If not|if the bu�er element type is a prim-

itive type|the native MPI operation is called directly,

as in the old version. If the bu�er is an array of ob-

jects, special actions must be taken in the wrapper. If

the bu�er is a send bu�er, the objects must be serial-

ized. To support MPI derived datatypes as described

in the previous section, we must also take account of

the possibility that the message is actually some subset

of the of array of objects passed in the bu�er argument,

selected according to the displacement sequence of the

derived datatype
4
. In the implementation, a method

byte [] Object_Serialize(Object buf,

int offset,

int count,

Datatype type)

takes the send bu�er and descriptor, and returns a byte

vector containing the serialized data. At the receiving

end a corresponding Object deserialize method is

called. Making the Java wrapper responsible for han-

dling derived data types when the base type is OBJECT

requires additional state in the Java-side Datatype

class. In particular the Java object explicitly maintains

the displacement sequence as an array of integers.

A further set of changes to the implementation arises

because the size of the serialized data is not known in

advance, and cannot be computed at the receiving end

from type information available there. Before the seri-

alized data is sent, the size of the data must be com-

municated to the receiver, so that a byte receive bu�er

can be allocated. We send two physical messages|

a header containing size information, followed by the

data
5
. This, in turn, complicates the implementation

of the various wait and test methods on communica-

tion request objects, and the start methods on per-

sistent communication requests. A wait operation,

for example, can no longer simply dispatch a native

MPI WAIT call. Instead it must check what kind of non-

blocking communication the request object was created

for. If it was a receive operation involving objects, the

wait method makes an MPI WAIT call to wait for the

header, followed by a blocking MPI RECV call to accept

the data. This implies the introduction of extra state

4To clarify: at this point we are supporting both MPI derived

datatypes (allowing non-contiguous bu�ers) and objects as basic

MPI types. Uniformity requires support, in particular, of derived

types whose base type is Object. When only bu�ers of primi-

tive type were supported, the wrapper code never dealt with

displacement sets in derived types directly|they were handled

inside the native MPI. But of course the native MPI cannot deal

with derived types that have objects as their basic components.
5In simple cases it would be possible to use MPI PROBE to

�nd out the physical message size at the receiving end be-

fore posting the receive, but this approach does not work well

for all non-blocking communication modes (or for collective

communication).

to the Java Request class, storing the argument list of

the operation that created the request object.

Finally, comparable changes are needed in the col-

lective communication wrappers. A gather opera-

tion, for example, involving object types is imple-

mented as an MPI GATHER operation to collect all mes-

sage lengths, followed by an MPI GATHERV to collect

possibly di�erent-sized data vectors.

4 Benchmark results for multidimen-

sional arrays

We assume that in the kind of Grande applications

where MPI is most likely to be used, some of the

most pressing performance issues about bu�er descrip-

tion and object communication will concern arrays and

multidimensional arrays of small objects|most espe-

cially arrays with primitive elements such as ints and

floats. For initial benchmarks we concentrated on

the overheads introduced by object serialization when

the objects contain many arrays of primitive elements.

Speci�cally we concentrated on communication of two-

dimensional arrays with primitive elements.

The immediate goal, therefore, was to understand

the overheads in communicating multidimensional Java

arrays using generic object serialization technology.

The \ping-pong" method was used to time point-to-

point communication of an N by N array of primitive

elements treated as a one dimensional array of objects,

and compare it with communication of an N
2
array

without using serialization. As an intermediate step we

also timed communication of a 1 byN
2
arrey treated as

a one-dimensional (size 1) array of objects. This allows

us to extract an estimate of the overhead to \serialize"

an individual primitive element.

The code to send the N
2
oat vector, for example,

looks schematically like

float [] buf = new float [N * N] ;

MPI.COMM_WORLD.send(buf, 0, N * N, MPI.FLOAT,

dst, tag) ;

and the code to receive it looks like

float [] buf = new float [N * N] ;

MPI.COMM_WORLD.recv(buf, 0, N * N, MPI.FLOAT,

src, tag) ;

For the N �N oat arrays we have

float [] [] buf = new float [N] [N] ;

MPI.COMM_WORLD.send(buf, 0, N, MPI.OBJECT,

dst, tag) ;

and

5

float [] [] buf = new float [N] [] ;

MPI.COMM_WORLD.recv(buf, 0, N, MPI.OBJECT,

src, tag) ;

For the 1�N
2
oat arrays we have

float [] [] buf = new float [1] [N * N] ;

MPI.COMM_WORLD.send(buf, 0, 1, MPI.OBJECT,

dst, tag) ;

and

float [] [] buf = new float [1] [] ;

MPI.COMM_WORLD.recv(buf, 0, 1, MPI.OBJECT,

src, tag) ;

As a crude timing model for these benchmarks, one can

assume that there is a cost t
T
ser to serialize each primi-

tive element of type T, an additional cost t
vec
ser to serial-

ize each subarray, similar constants t
T
unser and t

vec
unser for

unserialization, and a cost t
T
com to physically tranfser

each element of data. Then the total time for bench-

marked communications should be

t

T[N
2
]

= c+ t

T
comN

2
(1)

t

T[1][N
2
]

= c

0
+ (t

T
ser + t

T
com + t

T
unser)N

2
(2)

t

T[N][N]
= c

00
+ (t

vec
ser + t

vec
unser)N +

(t
T
ser + t

T
com + t

T
unser)N

2
(3)

These formulae do not attempt to explain the constant

initial overhead, don't take into account the extra bytes

for type description that serialization introduces into

the stream, and ignore possible non-linear costs asso-

ciated with analysing object graphs, etc. Empirically

these e�ects are small for the range of N we consider.

All measurements were performed on a cluster

of 2-processor, 200 Mhz UltraSparc nodes connected

through a SunATM-155/MMF network. The under-

lying MPI implementation was Sun MPI 3.0 (part of

the Sun HPC package). The JDK was jdk1.2beta4.

Shared memory results quoted are obtained by running

two processes on the processors of a single node. Non-

shared-memory results are obtained by running peer

processes in di�erent nodes.

In a series of measurements, element serialization

and unserialization timing parameters were estimated

by independent benchmarks of the serialization code.

The parameters t
vec
ser and t

vec
unser were estimated by plot-

ting the di�erence between serialization and unserial-

ization times for T[1][N2] and T[N][N]. The raw

communication speed was estimated from ping-pong

results for t
T[N

2
]
. Table 1 contains the resulting es-

timates of the various parameters for byte, int and

float elements.

Figures 3 to 4 plot actual measured times from ping-

pong benchmarks for the mpiJava sends and receives of

t
byte
ser = 0.043 t

int
ser = 0.74

t
byte
unser = 0.027 t

int
unser = 0.42

t
byte
com = 0:062

y
t
int
com = 0:25

y

t
byte
com = 0:008

x
t
int
com = 0:038

x

t
oat
ser = 2.1 t

vec
ser = 100

t
oat
unser = 1.4 t

vec
unser = 53

t
oat
com = 0:25

y

t
oat
com = 0:038

x

Table 1. Estimated parameters in serialization
and communication timing model. The t

T
com

values are respectively for non-shared mem-
ory (y) and shared memory (x) implementa-
tions of the underlying communication. All
timings are in microseconds.

arrays with byte, int and float elements. In the plots

the array extent, N , ranges between 128 and 1024. The

measured times for t
T[N

2
]
, t

T[1][N
2
]
and t

T[N][N]

are compared with the formulae given above (setting

the c constants to zero). The agreement is good, so

our parametrization is assumed to be realistic in the

regime considered.

According to table 1 the overhead of Java serial-

ization nearly always dominates other communiation

costs. In the worst case|oating point numbers|it

takes around 2 microseconds to serialize each num-

ber and a smaller but comparable time to unserialize.

But it only takes a few hundredths of a microsecond

to communicate the word through shared memory. Se-

rialization slows communication by nearly two orders

of magnitude! When the underlying communication is

over a fast network rather than through shared mem-

ory the raw communication time is still only a fraction

of a microsecond, and serialization still dominates that

time by about one order of magnitude. For byte el-

ements serialization costs are smaller, but still larger

than the communication costs in the fast network and

still much larger than the communication cost through

shared memory. Serialization costs for int elements

are intermediate.

The constant overheads for serializing each subar-

ray, characterized by the parameters t
vec
ser and t

vec
unser are

also quite large, although, for the array sizes consid-

ered here they only make a dominant contribution for

the byte arrays, where individual element serialization

6

0 128 256 384 512 640 768 896 1024
N

0

50

100

150

200

250

300

m
ill

is
ec

s

NON−SHARED MEMORY
BYTE

 byte [N][N], MPI.OBJECT
 byte [1][NxN], MPI.OBJECT
 byte [NxN], MPI.BYTE

0 128 256 384 512 640 768 896 1024
N

0

200

400

600

800

1000

1200

1400

1600

1800

m
ill

is
ec

s

NON−SHARED MEMORY
INT

 int [N][N], MPI.OBJECT
 int [1][NxN], MPI.OBJECT
 int [NxN], MPI.INT

0 128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

NON−SHARED MEMORY
FLOAT

 float [N][N], MPI.OBJECT
 float [1][NxN], MPI.OBJECT
 float [NxN], MPI.FLOAT

Figure 3. Communication times from Pingpong benchmark in non-shared-memory case, compared
with model defined by Equations 1 to 3 and Table 1.

7

0 128 256 384 512 640 768 896 1024
N

0

50

100

150

200

250

300

m
ill

is
ec

s

SHARED MEMORY
BYTE

 byte [N][N], MPI.OBJECT
 byte [1][NxN], MPI.OBJECT
 byte [NxN], MPI.BYTE

0 128 256 384 512 640 768 896 1024
N

0

200

400

600

800

1000

1200

1400

1600

1800

m
ill

is
ec

s

SHARED MEMORY
INT

 int [N][N], MPI.OBJECT
 int [1][NxN], MPI.OBJECT
 int [NxN], MPI.INT

0 128 256 384 512 640 768 896 1024
N

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

s

SHARED MEMORY
FLOAT

 float [N][N], MPI.OBJECT
 float [1][NxN], MPI.OBJECT
 float [NxN], MPI.FLOAT

Figure 4. Communication times in shared-memory case, compared with model.

8

is relatively fast
6
.

5 Discussion

In Java, the object serialization model for data mar-

shalling has various advantages over the MPI derived

type mechanism. It provides much (though not all)

of the exibility of derived types, and is presumably

simpler to use. Object serialization provides a natural

way to deal with multidimensional arrays. Such arrays

are, of course, very common in scienti�c programming.

The Java mapping of derived datatypes, on the other

hand, is problematic|a signi�cant part of the exibil-

ity in the original C/Fortran speci�cation is lost in the

transcription to Java. It is at least arguable that in

Java the MPI derived datatypes mechanism should be

abandoned altogether in favour of using object serial-

ization.

Our initial implementation of automatic object seri-

alization in the context of MPI is somewhat impaired

by performance of the serialization code in the cur-

rent Java Development Kit. In our implementation

bu�ers were serialized using standard technology from

the JDK. The benchmark results from section 4 show

that this implementation of serialization introduces

very large overheads relative to underlying communi-

cation speeds on fast networks and symmetric multi-

processors. Similar problems were reported in the con-

text of RMI implementations in [12]. We �nd that in

the context of fast message-passing environments (not

surprisingly) the issue is even more critical. Overall

communication performance can easily be downgraded

by an order of magnitude or more.

The standard Java serialization framework allows

the programmer to provide optimized serialization and

unserialization methods for particular classes, but in

scienti�c programming we are often more concerned

with the speed of operations on arrays, and espe-

cially arrays of primitive types. The documented parts

of the standard Java framework for serialization do

not to our knowledge allow a way to customize han-

dling of arrays. However the available source code for

ObjectOutputStream and ObjectInputStream classes

includes the methods for serializing arrays, and we are

optimistic that by tuning these classes it should be

possible to greatly improve performance for cases that

concern us here. In any case the message is clear: we

6Our timing model assumed the values of these parameters

is independent of the element type. This is only approximately

true, and the values quoted in the table and used in the plotted

curves are averages. Separately measured values for byte arrays

were smaller than these averages, and for int and float arrays

they were larger.

need much faster implementations of object serializa-

tion, better attuned to the needs of scienti�c computa-

tion. Especially, arrays of primitive elements need to

be handled much more carefully.

While we expect that there is considerable scope to

optimize the JDK serialization software, an interesting

alternative from the point of view of ultimate e�ciency

is to replace calls to the writeObject, readObject

methods with specialized, MPI-speci�c, functions. A

call to writeObject, for example, could be replaced

with a native method that creates an MPI derived

datatype structure describing the layout of data in the

object. This would allow one to provide the conceptu-

ally straightforward object serialization model at the

user level, while retaining the option of fast, \zero-

copy" communication strategies (enabled by MPI de-

rived datatypes) inside the implementation.

We are investigating the practicality of both these

approaches to optimization.

References

[1] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and
X. Li. mpiJava: A Java interface to MPI.
In First UK Workshop on Java for High Perfor-

mance Network Computing, Europar '98, Sept. 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

[2] B. Carpenter, Y.-J. Chang, G. Fox, D. Leskiw, and
X. Li. Experiments with HPJava. Concurrency: Prac-
tice and Experience, 9(6):633, 1997.

[3] B. Carpenter, G. Fox, G. Zhang, and X. Li.
A draft Java binding for MPI., Nov. 1997.
http://www.npac.syr.edu/projects/pcrc/HPJava/mp-
iJava.html.

[4] B. Carpenter, V. Getov, G. Judd, T. Skjellum,
and G. Fox. MPI for Java: Position docu-
ment and draft API speci�cation. Technical Re-
port JGF-TR-3, Java Grande Forum, Nov. 1998.
http://www.javagrande.org/.

[5] G. Crawford III, Y. Dandass, and A. Skjellum.
The JMPI commercial message passing environment
and speci�cation: Requirements, design, motivations,
strategies, and target users.
http://www.mpi-softtech.com/publications.

[6] K. Dincer. jmpi and a performance instrumen-
tation analysis and visualization tool for jmpi.
In First UK Workshop on Java for High Perfor-

mance Network Computing, Europar '98, Sept. 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

[7] A. J. Ferrari. JPVM: Network parallel computing in
Java. In ACM 1998 Workshop on Java for High-

Performance Network Computing. Palo Alto, Febru-

ary 1998, Concurrency: Practice and Experience,
1998. To appear.

[8] G. C. Fox, editor. Java for Computational Science and

Engineering|Simulation and Modelling, volume 9(6)
of Concurrency: Practice and Experience, June 1997.

9

[9] G. C. Fox, editor. Java for Computational Science

and Engineering|Simulation and Modelling II, vol-
ume 9(11) of Concurrency: Practice and Experience,
Nov. 1997.

[10] G. C. Fox, editor. ACM 1998 Workshop on Java

for High-Performance Network Computing. Palo Alto,

February 1998, Concurrency: Practice and Experi-
ence, 1998. To appear.
http://www.cs.ucsb.edu/conferences/java98.

[11] V. Getov, S. Flynn-Hummel, and S. Mintchev. High-
performance parallel programming in Java: Exploit-
ing native libraries. In ACM 1998 Workshop on Java

for High-Performance Network Computing. Palo Alto,

February 1998, Concurrency: Practice and Experi-
ence, 1998. To appear.

[12] Java Grande Forum. Java Grande Forum report: Mak-
ing Java work for high-end computing. Technical
Report JGF-TR-1, Java Grande Forum, Nov. 1998.
http://www.javagrande.org/.

[13] G. Judd, M. Clement, and Q. Snell. DOGMA: Dis-
tributed object group management architecture. In
ACM 1998 Workshop on Java for High-Performance

Network Computing. Palo Alto, February 1998, Con-
currency: Practice and Experience, 1998. To appear.

[14] Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard. University of Tenessee,
Knoxville, TN, June 1995.
http://www.mcs.anl.gov/mpi.

[15] S. Mintchev and V. Getov. Towards portable message
passing in Java: Binding MPI. Technical Report TR-
CSPE-07, University of Westminster, School of Com-
puter Science, Harrow Campus, July 1997.

[16] N. Yalamanchilli and W. Cohen. Communication per-
formance of Java based Parallel Virtual Machines. In
ACM 1998 Workshop on Java for High-Performance

Network Computing. Palo Alto, February 1998, Con-
currency: Practice and Experience, 1998. To appear.

10

