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1.1 Introduction

In this chapter, we introduce the HPJava language, a programming language that

extends Java for parallel programming on message passing systems, from multipro-

cessor systems to workstation clusters.

HPJava owes much to High Performanace Fortran (HPF) [4]. Its model of data

distribution is adapted directly from the HPF model. The heritage of HPF can be

traced back to Fortran dialects that were implemented most successfully on SIMD

and other tightly-coupled MPP architectures. While it was always a goal of the HPF

designers that the language should be e�ciently implementable on the more loosely

coupled MIMD clusters that dominate today, the complexity of the language|and

notably the design goal of emulating exactly the semantics of a sequential Fortran

program|have made e�cient implementation on today's architectures quite hard.

HPJava, in contrast, starts from the assumption that the target hardware is a

set of interacting MIMD processors, and exposes that assumption explictly in its

programming model. This greatly simpli�es the task of the compiler, and increases

the chance of obtaining e�cient implementations on architectures including PC and

workstation clusters. Instead of the HPF programming model, the language intro-

duces a high-level structured SPMD programming style|the HPspmd model. A

program written in this class of language explicitly coordinates well-de�ned process

groups. These cooperate in a loosely synchronous manner, sharing logical threads

of control. As in a conventional distributed-memory SPMD program, only a pro-

cess owning a data item such as an array element is allowed to access the item

1



2 The HPspmd Model and its Java Binding Chapter 1

directly. The language provides special constructs that allow programmers to meet

this constraint conveniently.

Besides the normal variables of the sequential base language, the language model

introduces classes of global variables that are stored collectively across process

groups. Primarily, these are distributed arrays. They provide a global name space

in the form of globally subscripted arrays, with assorted distribution patterns. This

helps to relieve programmers of error-prone activities such as the local-to-global,

global-to-local subscript translations which occur in data parallel applications.

In addition to special data types the language provides special constructs to facil-

itate both data parallel and task parallel programming. Through these constructs,

di�erent processors can either work simultaneously on globally addressed data, or

independently execute complex procedures on locally held data. The conversion

between these phases is seamless.

In the traditional SPMD mold, the language itself does not provide implicit

data movement semantics. This greatly simpli�es the task of the compiler, and

should encourage programmers to use algorithms that exploit locality. Data on

remote processors is accessed exclusively through explicit library calls. In particular,

the initial HPJava implementation relies on a library of collective communication

routines originally developed as part of an HPF runtime library. Other distributed-

array-oriented communication libraries may be bound to the language later. Due

to the explicit SPMD programming model, low level MPI communication is always

available as a fall-back. The language itself only provides basic concepts to organize

data arrays and process groups. Di�erent communication patterns are implemented

as library functions. This allows the possibility that if a new communication pattern

is needed, it is relatively easily integrated through new libraries.

In our earlier work on HPF compilation [10] the role of runtime support was

emphasized. Di�culties in compiling HPF e�ciently suggested to make the runtime

communication library directly visible in the programming model. Since Java is

a simple, elegant language, we are implementing our prototype based upon this

language.

Section 1.2 reviews the HPspmd model in the context of the HPJava language.

Section 1.3 describes the class library packages used in code generated by the HP-

Java translator, and thus exposes many of the implementation issues. Some exam-

ples of simple algorithms expressed in HPJava are given in section 1.4. Then section

1.5 discusses the rationale of various design decisions in the language. The status

of the project and future goals are summarized in sections 1.6 and 1.7.

1.2 Java language Binding

This section introduces the HPJava language. HPJava contains the whole of stan-

dard Java as a subset. It adds various builtin classes for describing process groups

and index ranges, new global data types, and some syntax for accessing distributed

data and specifying which processes execute particular statements.



Section 1.2. Java language Binding 3

1.2.1 Basic concepts

Key concepts in the programming model are built around the process groups used to
describe program execution control in a parallel program. Group is a class represent-
ing a process group, typically with a grid structure and an associated set of process
dimensions. It has its subclasses that represent di�erent grid dimensionalities, such
as Procs1, Procs2, etc. For example,

Procs2 p = new Procs2(2,4);

p is a 2-dimensional, 2 by 4 grid of processes.
The second category of concepts is associated with distributed ranges. The

elements of an ordinary array can be represented by an array name and an integer
sequence. There are two parameters associated with this sequence: an index to
access each array element and the extent of the range this index can be chosen
from. In describing a distributed array, HPJava introduces two new kinds of entity
to represent the analogous concepts. A range maps an integer interval into a process
dimension according to certain distribution format. Ranges describe the extent and
the mapping of array dimensions. A location, or slot, is an abstract element of a
range. For example,

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(200, p.dim(1)) ;

creates two ranges distributed over the two process dimensions of the group p. One
is block distributed, the other is cyclic distributed. There are 100 di�erent locations
in the range x. The �rst one, for example, is

x [0]

Additional related concepts are subgroups and subranges. A subgroup is some
slice of a process array, formed by restricting the process coordinates in one or more
dimensions to single values. Suppose i is a location in a range distributed over a
dimension of group p. The expression

p / i

represents a smaller group|the slice of p to which location i is mapped. Similarly, a
subrange is a section of a range, parameterized by a global index triplet. Logically, it
represents a subset of the locations of the original range. The syntax for a subrange
expression is

x [1 : 49]

The symbol \:" is a special separator. It is used to construct a Fortran-90 style

triplet, with lower- and upper-bound expressions de�ning an integer subset. The

optional third member of a triplet is a stride.
When a process grid is de�ned, certain ranges and locations are also implicitly

de�ned. As shown in �gure 1.1, two primitive ranges are associated with dimensions
of the group p:

Range u = p.dim(0);

Range v = p.dim(1);
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Figure 1.1. Structured process group

dim() is a member function that returns a range reference, directly representing a
processor dimension. We can obtain a location in range v, and use it to create a
new group,

Group q = p / v [1] ;

In a traditional SPMD program, execution control is based on if statements and
process id or rank numbers. In the new programming language, switching execution
control is based on the structured process group. For example, it is not di�cult to
guess that the following code:

on(p) {

...

}

will restrict the execution control inside the bracket to processes in group p. The

language also provided well-de�ned constructs to split execution control across pro-

cesses according to data items we want to access. This will be discussed later.

1.2.2 Global variables

When an SPMD program starts on a group of n processes, there will be n control

threads mapped to n physical processors. In each control thread, the program can

de�ne variables in the same way as in a sequential program. The variables created

in this way are local variables. Their names may be common to all processes, but

they will be accessed individually (their scope is local to a process).

Besides local variables, HPJava allows a program to de�ne global variables, ex-

plicitly mapped to a process group. A global variable will be treated by the process

group that created it as a single entity. The language has special syntax for the

de�nition of global data. Global variables are all de�ned by using the new operator

from free storage. When a global variable is created, a data descriptor is also allo-

cated to describe where the data are held. On a single processor, an array variable

might be parametrized by a simple record containing a memory address and an int
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value for its length. On a multi-processor, a more complicated structure is needed

to describe a distributed array. The data descriptor speci�es where the data is cre-

ated, and how they are distributed. The logical structure of a descriptor is shown

in �gure 1.2.
HPJava has special syntax to de�ne global data. The statement

int # s = new int # on p ;

creates a global scalar replicated over process group p. In the statement, s is a data
descriptor handle|a global scalar reference. The scalar contains an integer value.
Global scalar references can be de�ned for any primitive type (or, in principle, class
type) of Java. The symbol # in the type signature distinguishes a global scalar from
a primitive integer. For a global scalar, a �eld value is used to access the value:

on(p) {

int # s = new int # ;

s.value = 100 ;

}

Note how the on clause can be omitted from the constructor: the whole of the active

process group is the default distribution group. Figure 1.3 shows a possible memory

mapping for this scalar on di�erent processes. Note, the value �eld of s is identical

int

Data descriptor

s

data owner
group 

...

100

data reference
}

Figure 1.3. Memory mapping
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in each process in the distribution group. Replicated value variables are di�erent

from local variables with identical names. The associated descriptors can be used

to ensure the value is maintained identically in each process, throughout program

execution.
When de�ning a global array, it is not necessary to allocate a data descriptor

for each array element|one descriptor su�ces for the whole array. An array can
de�ned with various kinds of range, introduced earlier. Suppose we have, as before,

Range x = new BlockRange(100, p.dim(0)) ;

and the process group de�ned in �gure 1.1, then

float [[]] a = new float [[x]] on q ;

will create a global array with range x on group q. Here a is a descriptor handle

describing a one-dimensional array of float. It is block distributed on group q1.

In HPJava a is called a global or distributed array reference.
A distributed array range can also be collapsed (or sequential). An integer range

is speci�ed, eg

float [[*]] b = new float [[100]] ;

When de�ning an array with collapsed dimensions an asterisk is normally added in

the type signatures to mark the collapsed dimensions.
The typical method of accessing global array elements is not exactly the same

as for local array elements, or for global scalar references. In distributed dimensions
of arrays we must use named locations as subscripts, for example

at(i = x [3])

a [i] = 3 ;

We will leave discussion of the at construct to section 1.2.3, and give a simpler
example here: if a global array is de�ned with a collapsed dimension, accessing its
elements is modelled on local arrays. For example:

for(int i = 0 ; i < 100 ; i++)

b [i] = i ;

assigns the loop index to each corresponding element in the array.
When de�ning a multi-dimensional global array, a single descriptor parametrizes

a rectangular array of any dimension:

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new CyclicRange(100, p.dim(1)) ;

float [[,]] c = new float [[x, y]];

1The on clause restrict the data owner group of the array to q. If group p is used instead, the

one-dimenstional array will be replicated in the �rst dimenstion of the group, and block distributed

over the second dimension.
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Figure 1.4. Array of distributed arrays

This creates a two-dimension global array with the �rst dimension block distributed

and the second cyclic distributed. Now c is a global array reference. Its elements

can be accessed using single brackets with two suitable locations inside.
The global array introduced here is a true multidimensional array, not a Java-

like array-of-arrays. Java-style arrays-of-arrays are still useful. For example, one
can de�ne a local array of distributed arrays:

int[] size = {100, 200, 400};

float [[,]] d[] = new float [size.length][[,]] ;

Range x[], y[];

for (int l = 0; l < size.length; l++) {

const int n = size [l] ;

x[l] = new BlockRange(n, p.dim(0)) ;

y[l] = new BlockRange(n, p.dim(1)) ;

d[l] = new float [[x[l], y[l]]];

}

This creates the stack of distributed arrays shown in �gure 1.4.

Like Fortran 90, HPJava allows construction of sections of global arrays. The

syntax of section subscripting uses double brackets. The subscripts can be scalar

(integers or locations) or triplets.

Suppose we have array a and c de�ned as above. Then a[[i]], c, c[[i,

1::2]], and c[[i, :]] are all array sections. Here i is an integer in the appro-

priate interval (it could also be a location in the �rst range of a and c). Both the

expressions c[[i, 1::2]] and c[[i, :]] represent one-dimensional distributed

arrays, providing aliases for subsets of the elements in c. The expression a[[i]]

contains a single element of a, but the result is a global scalar reference (unlike the

expression a[i] which is a simple variable).

Array section expressions are often used as arguments in function calls2. Table

2When used in method calls, the collapsed dimension array is a subtype of the ordinary one. i.e.

an argument of float[[*,*]], float[[*,]] and float[[,*]] type can all be passed to a dummy

of type float[[,]]. The converse is not true.



8 The HPspmd Model and its Java Binding Chapter 1

global var array section type

2-dimension c float [[,]]

c[[:,:]] float [[,]]

1-dimension c[[i,:]] float [[]]

c[[i,1::2]] float [[]]

scalar(0-dim) c[[i,j]] float #

Table 1.1. Section expression and type signature

1.1 shows the type signatures of global data with di�erent dimensions.
The size of an array in Java can be had from its length �eld. In HPJava,

information like the distributed group and distributed dimensions can be accessed
from the following inquiries, available on all global array types:

Group grp() // distribution group

Range rng(int d) // d'th range

Further inquiry functions on Range yield values such as extents and distribution

formats.

1.2.3 Program execution control

HPJava has all the conventional Java statements for execution control within a

single process. It introduces three new control constructs, on, at and overall for

execution control across processes. A new concept, the active process group, is

introduced. It is the set of processes sharing the current thread of control.
In a traditional SPMD program, switching the active process group is e�ectively

implemented by if statements such as:

if(myid >= 0 && myid < 4) {

...

}

Inside the braces, only processes numbered 0 to 3 share the control thread. In

HPJava, this e�ect is expressed using a Group. When a HPJava program starts, the

active process group has a system-de�ned value. During the execution, the active

process group can be changed explicitly through an on construct in the program.
In a shared memory program, accessing the value of a variable is straightforward.

In a message passing system, only the process which holds data can read and write
the data. We sometimes call this SPMD constraint. A traditional SPMD program
respects this constraint by using an idiom like

if(myid == 1)

my_data = 3 ;

The if statement makes sure that only my data on process 1 is assigned to.
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In the language we present here similar constraints must be respected. Besides
on construct introduced earlier, there is a convenient way to change the active
process group to access a required array element, namely the at construct. Suppose
array a is de�ned as in the previous section, then:

on(q) {

a [1] = 3 ; // error

at(j = x [1])

a [j] = 3 ; // correct

}

The assignment statement guarded by an at construct is correct; the one without is

likely to imply access to an element not held locally. Formally it is illegal because, in

a simple subscripting operation, an integer expression cannot be used to subscript

a distributed dimension. The at construct introduces a new variable j, a named

location, with scope only inside the block controlled by the at. Named locations are

the only legal element subscripts in distributed dimensions.
A more powerful construct called overall combines restriction of the active pro-

cess group with a loop:

on(q)

overall(i = x [0 : 3])

a [i] = 3 ;

is essentially equivalent to3

on(q)

for(int n = 0 ; n < 4 ; n++)

at(i = x [n])

a [i] = 3;

In each iteration, the active process group is changed to q / i. In section 1.4,

we will illustrate with further programs how at and overall constructs conveniently

allow one to keep the active process group equal to the data owner group for the

assigned data.

1.2.4 Communication library functions

When accessing data on another process, HPJava needs explicit communication, as

in a normal SPMD program. Communication libraries are provided as packages in

HPJava. Detailed function speci�cations are given elsewhere. The next section will

introduce a small number of top level collective communication functions.

3A compiler can implement overall construct in a more e�cient way, using linearized address

calculation. For detailed translation schemes for the overall construct, please refer to [2]
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1.3 Java packages for HPspmd programming

The implementation of the HPJava compiler is based on a runtime system. It is

actually a source-to-source translator converting an HPJava program to a Java node

program, with function calls to the runtime library, called adJava.

The runtime interface consists of several Java packages. The most important

one is the HPspmd runtime proper. It includes the classes needed to translate

language constructs. Other packages provide communication and some simple I/O

functions. Important classes in the �rst package include distributed array \container

classes" and related classes describing process groups and index ranges. These

classes correspond directly to HPJava built-in classes.

The �rst hierarchy is based on Group. A group, or process group, de�nes some

subset of the processes executing the SPMD program. They can be used to describe

how program variables such as arrays are distributed or replicated across the process

pool, or to specify which subset of processes executes a particular code fragment.

Important members of adJava Group class include the pair on(), no() used to

translate the on construct.

The most common way to create a group object is through the constructor for

one of the subclasses representing a process grid. The subclass Procs represents a

grid of processes and carries information on process dimensions: in particular an in-

quiry function dim(r) returns a range object describing the r-th process dimension.

Procs is further subclassed by Procs0, Procs1, Procs2, . . . which provide simpler

constructors for �xed dimensionality process grids.

The second hierarchy in the package is based on Range. A range is a map from

the integer interval 0; : : : ; n� 1 into some process dimension (ie, some dimension of

a process grid). Ranges are used to parametrize distributed arrays and the overall

distributed loop.

The most common way to create a range object is to use the constructor for

one of the subclasses representing ranges with speci�c distribution formats. Sim-

ple block distribution format is implemented by BlockRange, while CyclicRange

and BlockCyclicRange represent other standard distribution formats of HPF. The

subclass CollapsedRange represents a sequential (undistributed range). Finally, a

DimRange is associated with each process dimension and represents the range of

coordinates for the process dimension itself|just one element is mapped to each

process.

The related adJava class Location represents an individual location in a par-

ticular distributed range. Important members of the adJava Range class include

the function location(i) which returns the ith location in a range and its in-

verse, idx(l), which returns the global subscript associated with a given location.

Important members of the Location class include at() and ta(), used in the im-

plementation of the HPJava that at construct.
Finally, we have the rather complex hierarchy of classes representing distributed

arrays. HPJava global arrays declared using [[]] are represented by Java objects
belonging to classes such as:
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Section2ddI

Section2dcI Section2cdI

Section2ccI

Section1cI

Section

SectionI SectionF

Section1dI

Figure 1.5. The adJava Section hierarchy

Array1dI, Array1cI,

Array2ddI, Array2dcI, Array2cdI, Array2ccI,

...

Array1dF, Array1cF,

Array2ddF, Array2dcF, Array2cdF, Array2ccF,

...

Generally speaking the class \Arraync|d. . . T" represents n-dimensional distributed

arrays with elements of type T|currently one of I, F, . . . , meaning int, float,

. . . 4. The penultimate part of the class name is a string of n \c"s and \d"s speci-

fying whether each dimension is collapsed or normally distributed. These correlate

with presence or absence of an asterisk in slots of the HPJava type signature. The

concrete Array... classes implement a series of abstract interfaces. These follow

a similar naming convention, but the root of their names is Section rather than

Array (so Array2dcI, for example, implements Section2dcI). The hierarchy of

Section interfaces is illustrated in �gure 1.5. The need to introduce the Section

interfaces should be evident from the hierarchy diagram. The type hierarchy of

HPJava involves a kind of multiple inheritance. The array type int [[*, *]], for

example, is a specialization of both the types int [[*, ]] and int [[, *]]. Java

allows \multiple inheritance" only from interfaces, not classes.

Important members of the Section interfaces include inquiry functions dat(),

which returns an ordinary one dimensional Java array used to store the locally held

elements of the distributed array, and the member pos(i, ...), which takes n

subscript arguments and returns the local o�set of the element implied by those

4In the inital implementation, the element type is restricted to the Java primitive types.
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subscripts. Each argument of pos is a location or an integer (only allowed if the

corresponding dimension is collapsed). These functions are used to implement ele-

mental subscripting. The inquiry grp() returns the group over which elements of

the array are distributed. The inquiry rng(d) returns the dth range of the array.

Another package in adJava is the communication library. The adJava commu-

nication package includes classes corresponding to the various collective communi-

cation schedules provided in the NPAC PCRC kernel. Most of them provide of a

constructor to establish a schedule, and an execute method, which carries out the

data movement speci�ed by the schedule. Di�erent communication models may

eventually be added through further packages.
The collective communication schedules can be used directly by the programmer

or invoked through certain wrapper functions. A class named Adlib is de�ned
with static members that create and execute communication schedules and perform
simple I/O functions. This class includes, for example, the following methods, each
implemented by constructing the appropriate schedule and then executing it.

static void remap(Section dst, Section src)

static void shift(Section dst, Section src, int shift, int dim, int mode)

static void copy(Section dst, Section src)

static void writeHalo(Section src, int [] wlo, int [] whi, int [] mode)

Adlib.remap will copy the corresponding elements from one array to another, re-

gardless of their respective distribution format. Adlib.shift will shift data by a

certain amount in a speci�c dimension of the array, in either cyclic or edge-o� mode.

Adlib.writeHalo is used to update ghost regions.

Given the classes described above, one can program in the HPspmd style in pure

Java program. The idea of the HPJava compiler is just to translate the HPJava

program onto this interface, but to use optimized address caculation instead of

function calls to access elements of arrays. For detailed translation scheme, please

refer to [11].

1.4 Programming examples

In this section we give two example programs to show the new language features.

The �rst example is Choleski decomposition, see �gure 1.6. Here, remap is used to

broadcast one updated column to each process. The function idx gets the global

index of location m relative to the parent range x. The second example is Jacobi

iteration, see �gure 1.7, In the displayed code there is only one iteration, but it

demonstrates how to de�ne range references with ghost areas, to use the writeHalo

function, and use of shifted locations as subscripts.

1.5 Issues in the language design

With some of the implementation mechanisms exposed, we can better discuss the

language design itself.
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Procs1 p = new Procs1(4);

on(p) {

Range x = new CyclicRange(n, p.dim(0));

float a[[*,]] = new float [[n, x]];

... some code to initialise `a' ...

float b[[*]] = new float [[n]]; // buffer

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x[k]) {

float d = Math.sqrt(a[k,l]) ;

a[k,l] = d ;

for(int s = k + 1 ; s < N ; s++)

a[s,l] /= d ;

}

Adlib.remap(b[[k+1:]], a[[k+1:, k]]);

overall(m = x [k + 1 :] )

for(int i = x.idx(m) ; i < N ; i++)

a[i,m] -= b[i] * b[x.idx(m)] ;

}

at(l = x [N - 1])

a[N - 1,l] = Math.sqrt(a[N-1,l]) ;

}

Figure 1.6. Choleski Decomposition

Procs2 p = new Procs2(2, 4);

Range x = new BlockRange(100, p.dim(0), 1),

y = new BlockRange(200, p.dim(1), 1);

on(p) {

float [[,]] a = new float [[x,y]], b = new float [[x,y]];

... some code to initialize `a'

Adlib.writeHalo(a);

overall(i=x)

overall(j=y)

b[i,j] = 0.25 * (a[i-1,j] + a[i+1,j] + a[i,j-1] + a[i,j+1]);

overall(i=x)

overall(j=y)

a[i,j] = b[i,j];

}

Figure 1.7. Jacobi Relaxation
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1.5.1 Extending the Java language

The �rst question to answer is why use Java as a base language? Actually, the

programming model embodied in HPJava is largely language independent. It can

be bound to other languages like C, C++ and Fortran. But Java is a convenient

base language, especially for initial experiments, because it provides full object-

orientation|convenient for describing complex distributed data|implemented in a

relatively simple setting, conducive to development of source-to-source translators.

It has been noted elsewhere that Java has various features suggesting it could be

an attractive language for science and engineering [6].

With Java as base language, an obvious question is whether we can extend the

language by simply adding packages, instead of changing the syntax. There are two

problems with doing this for data-parallel programming.
Our baseline is HPF, and any package supporting parallel arrays as general as

HPF is likely cumbersome to code with. Our runtime system needs an (in principle)
in�nite series of class names

Array1dI, Array1cI, Array2ddI, Array2dcI, ...

to express the HPJava types

int [[]], int [[*]], int [[,]], int [[,*]] ...

as well as the corresponding series for char, float, and so on. To access an element
of a distributed array in HPJava, one writes

a[i] = 3 ;

In the adJava interface, it must be written as,

a.dat()[a.pos(i)] = 3 ;

This is only for simple subscripting. Constructing array sections will be even more

complex using the raw class library interface.

The second problem is that a Java program using a package like adJava in a

direct, naive way will have very poor performance, because all the local address of

the global array are expressed by functions such as pos. An optimization pass is

needed to transform o�set computation to a more intelligent style. So if a prepro-

cessor must do these optimizations anyway, it makes sense to design a syntax to

express the concepts of the programming model more naturally.

1.5.2 Why not HPF?

The design of the HPJava language is strongly in
uenced by HPF. The language
emerged partly out of practices adopted in our e�orts to implement an HPF com-
pilation system [10]. For example:

!HPF$ POCESSOR P(4)

!HPF$ TEMPLET T(100)

!HPF$ DISTRIBUTE T(BLOCK) ONTO P
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REAL A(100,100), B(100)

!HPF$ ALIGN A(:,*) WITH T(:)

!HPF$ ALIGN B WITH T

have their conterparts in HPJava:

Procs1 p = new Procs1(4);

Range x = new BlockRange (100, p.dim(0));

float [[,*]] a = new float [[x,100]] on p;

float [[ ]] b = new float [[x]] on p;

Both languages provide a globally addressed name space for data parallel applica-
tions. Both of them can specify how data are mapped on to a processor grid. The
di�erence between the two lies in their communication aspects. In HPF, a simple
assignment statement may cause data movement. For example, given the above
distribution, the assignment

A(10,10) = B(30)

will cause communication between processor 1 and 2. In HPJava, similar commu-
nication must be done through explicit function calls5:

Adlib.remap(a[[9,9]], b[[29]]);

Experience from compiling the HPF language suggests that, while there are various

kinds of algorithms to detect communication automatically, it is often di�cult to

give the generated node program acceptable performance. In HPF, the need to

decide on which processor the computation should be executed further complicates

the situation. One may apply \owner computes" or \majority computes" rules to

partition computation, but these heuristics are di�cult to apply in many situations.

In HPJava, the SPMD programming model is emphasized. The distributed

arrays just help the programmer organize data, and simplify global-to-local address

translation. The tasks of computation partition and communication are still under

control of the programmer. This is certainly an extra onus, and the language may

be more di�cult to program than HPF6; but it helps programmer to understand

the performance of the program much better than in HPF, so algorithms exploiting

locality and parallelism are encouraged. It also dramatically simpli�es the work of

the compiler.

Because the communication sector is considered an \add-on" to the basic lan-

guage, HPJava should interoperate more smoothly than HPF with other successful

SPMD libraries, including MPI [5], Global Arrays [7], CHAOS [3], and so on.

1.5.3 Datatypes in HPJava

In a parallel language, it is desirable to have both local variables (like the ones in

MPI programming) and global variables (like the ones in HPF programming). The

5By default Fortran array subscripts starts from 1, while HPJava global subscripts always start

from 0.
6The program must meet SPMD constraints, eg, only the owner of an element can access that

data. Runtime checking can be added automatically to ensure such conditions are met.
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former provide 
exibility and are ideal for task parallel programming; the latter are

convenient especially for data parallel programming.

In HPJava, variable names are divided into two sets. In general those declared

using ordinary Java syntax represent local variables and those declared with # or

[[]] represent global variables. The two sectors are independent. In the implemen-

tation of HPJava the global variables have special data descriptors associated with

them, de�ning how their components are divided or replicated across processes.

The signi�cance of the data descriptor is most obvious when dealing with proce-

dure calls. Passing array sections to procedure calls is an important component in

the array processing facilities of Fortran90 [1]. The data descriptor of Fortran90

will include stride information for each array dimension. One can assume that HPF

needs a much more complex kind of data descriptor to allow passing distributed

arrays across procedure boundaries. In either case the descriptor is not visible to

the programmer. Java has a more explicit data descriptor concept; its arrays are

considered as objects, with, for example, a publicly accessible length �eld. In HP-

Java, the data descriptors for global data are similar to those used in HPF, but

more explicitly exposed to programmers. Inquiry functions such as grp, rng have

a similar role in global data as the �eld length in an ordinary Java array.

Keeping two data sectors seems to complicate the language and its syntax. But

it provides convenience for both task and data parallel processing. There is no need

for things like the LOCAL mechanism in HPF to call a local procedure on the node

processor. The descriptors for ordinary Java variables are unchanged in HPJava.

On each node processor ordinary Java data will be used as local varables, like in an

MPI program.

1.6 Projects in progress

Projects related to this work include development of MPI, HPF, and other parallel

languages such as ZPL[8] and Spar[9]. Here we explain the background and future

developments of our own project.

The work originated in our compilation practices for HPF. As described in [10],

our compiler emphasize runtime support. Adlib[2], a PCRC runtime library, pro-

vides a rich set of collective communication functions. It was realized that by raising

the runtime interface to the user level, a rather straightforward (compared to HPF)

compiler could be developed to translate the high level language code to a node

program calling the runtime functions.

Currently, a Java interface has been implemented on top of the Adlib library.

With classes such as Group, Range and Location in the Java interface, one can

write Java programs quite similar to HPJava proposed here. But a program exe-

cuted in this way will have large overhead due to function calls (such as address

translation) when accessing data inside loop constructs. Given the knowledge of

data distribution plus inquiry functions inside the runtime library, one can substi-

tute address translation calls with linear operations on the loop variable, and keep

inquiry function calls \outside the loop".
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Figure 1.8. Preliminary performance

At the present time, we are implementing the translator. Further research work

will include optimization and safety-checking techniques in the compiler for HPspmd

programming.

Figure 1.8 shows a preliminary benchmark for hand translated versions of our ex-

amples. The parallel programs are executed on 4 sparc-sun-solaris2.5.1with MPICH

and Java JIT compiler in JDK 1.2Beta2. For Jacobi iteration, the timing is for about

90 iterations, the array size is 1024X1024.

We also compared the sequential Java, C++ and Fortran version of the code, all

with -O 
ag when compiling. The dotted lines shown in the �gure only represent

times for the one processor case. We can see that on a single processor, Java

program use language own mechanism for calculating array element address, it is

slower than HPJava, which uses an optimized scheme. We emphasize again that

in the picture we are comparing sequential Fortran, etc with parallel HPJava. This

is not supposed to be an comparative evaluation of the various languages. It is

just supposed to give an impression of the performance ballpark Java is currently

operating in.

1.7 Summary

Through the simple examples in this chapter, we have tried to illustrate that the pro-

gramming language presented here provides the 
exibility of SPMD programming,

and much of the convenience of HPF. The language helps programmers to express

parallel algorithms in a more explicit way. We suggest it will help programmers

to solve real application problems more easily, compared with using communica-

tion packages such as MPI directly, and allow the compiler writer to implement the

language compiler without the di�culties met in the HPF compilation.

The overall structure of the system is shown in �gure 1.9. The central DAD

stands for the Distributed Array Descriptor. Around it, we have di�erent run
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Figure 1.9. Layers of the HPspmd model

time libraries. The Java interface is most relevant here. But the Java binding

is only an introduction of the programming style. (A Fortran binding is being

developed.) Initially the Java version can be used as a software tool for teaching

parallel programming. As Java for scienti�c computation becomes more mature,

it will be a practical programming language to solve real application problems in

parallel and distributed environments.
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