
The Gateway System: Uniform Web Based Access to
Remote Resources

Tomasz Haupt, Erol Akarsu, Geoffrey Fox, Alexey Kalinichenko, Kang-Seok Kim, Praveen
Sheethalnath, Choon-Han Youn

 

Northeast Parallel Architecture Center at Syracuse University

 

 

Abstract

Exploiting our experience developing the WebFlow system, we designed the Gateway system to provide seamless
and secure access to computational resources at ASC MSRC. The Gateway follows our commodity components
strategy, and it is implemented as a modern three-tier system. Tier 1 is a high-level front-end for visual
programming, steering, run-time data analysis and visualization, built on top of the Web and OO commodity
standards. Distributed object-based, scalable, and reusable Web server and Object broker middleware forms Tier 2.
Back-end services comprise Tier 3. In particular, access to high performance computational resources is provided
by implementing the emerging standard for metacomputing API.

1. Introduction

The last few years have seen the growing power and capability of commodity computing and
communication technologies largely driven by commercial distributed information systems.
These can be all abstracted to a three-tier model with largely independent clients connected to a
distributed network of servers. High performance can be obtained by combining concurrency at
the middle tier with optimized parallel back-end servers. The resultant system combines the
needed performance for large-scale HPCC applications with the rich functionality of commodity
systems.

In each commodity technology area, we have impressive and rapidly improving software
artifacts. Perhaps even more importantly than raw technology, we have a set of standards and
open interfaces enabling distributed modular software development. These interfaces are at both
low and high levels and the latter generate a very powerful software environment in which large
preexisting components can be quickly integrated into new applications. We believe that that
there are significant incentives to build HPCC environments in a way that naturally inherits all
commodity capabilities so that HPCC applications can benefit from the impressive productivity
of commodity systems. We termed such approach High Performance Commodity Computing
(HPcc).

In several related papers [1] we have described NPAC’s HPcc activity that is designed to
demonstrate that this is possible and useful so that one can achieve simultaneously both high
performance and the functionality of commodity systems. One of these activities is a specific
high-level programming environment developed at NPAC – WebFlow [2] – which offers a user-
friendly visual graph authoring metaphor for seamless composition of world-wide distributed



high performance dataflow applications from reusable computational modules.

WebFlow front-end editor applet offers intuitive click-and-drag metaphor for instantiating
middleware or back-end modules, representing them as visual icon in the active editor area, and
interconnecting them visually in the form of computational graphs, familiar for AVS or Khoros
users. WebFlow middleware is given by a mesh of Java web servers, custom extended with
servlet based support for the WebFlow session, Module and Connection Management. WebFlow
modules are specified as Java interfaces to computational Java classes or wrappers (module
proxies) to backend services. The high performance part of the back-end tier is implemented
using the Globus metacomputing toolkit [3].

One of the most spectacular applications of the WebFlow is Quantum Monte Carlo Simulations
[4] developed in collaboration with the NCSA Condensed Matter Physics Laboratory. Here, a
chain of high performance applications (both commercial packages such as GAUSSIAN or
GAMESS, and custom developed) is run repeatedly for different data sets. Each application can
be run on several different multiprocessor platforms, and consequently, input and output files
must be moved between machines. The output file of one application in the chain is the input of
the next one, after a suitable format conversion.

In spite of the success of the WebFlow project we see that the original implementation, based on
Java web servers, suffers form severe limitations. Two the most obvious areas of improvement
we want to achieve are fault tolerance and security. However, instead of adding complexity to
already complex and to large extend custom protocol of exchanging data between the servers, we
have re-implemented the WebFlow middle-tier using industry standards distributed object
technologies: JavaBeans and CORBA and industry standard secure communication protocols
based on SSL.

The development of the new middle-tier of our system coincides with the JavaGrande [5]
initiative to develop international standards for seamless Desktop Access to Remote Resources
(DATORR). These standards replace the remaining two custom WebFlow interfaces:
computational graph generated by the WebFlow front-end by the Abstract Task Specification
and specific Globus interface by the universal metacomputing API.

The new implementation of WebFlow is a part of Aeronautical Systems Center (ASC) Major
Shared Resource Center (MSRC) Gateway project, sponsored by DoD HPC Modernization
Program, Programming Environment and Training. The objectives of this project are to provide
seamless and secure access to computational ASC MSRC resources through web-based
interfaces. The functionality of the Gateway system is specified in section 2. Section 3 presents
the system architecture and provides a high level description of its major components. In section
4 we discuss the Gateway security model and in section 5 we reveal the middle-tier
implementation details. Section 6 provides links to the related research. The paper is summarized
in section 7.

2. Overview of the Gateway functionality

The Gateway system offers a particular programming paradigm implemented over a virtual Web
accessible metacomputer. A (meta-) application is composed of independently developed
modules. The modules are implemented in Java, and they follow the distributed JavaBeans



model. This gives the user the complete power of Java, and object oriented programming in
general, to implement the module functionality. However, the functionality of a module does not
have to be implemented entirely in Java. Existing applications written in languages other than
Java can be easily encapsulated as JavaBeans.

The module developers have only limited knowledge of the system on which the modules will
run. They not need to concern themselves with issues such as: allocating and running the
modules on various machines, creating connections among the modules, sending and receiving
data across these connections, or running several modules concurrently on one machine. The
Gateway system hides these management and coordination functions from the developers,
allowing them to concentrate on the modules being developed.

Often, the modules serve as proxies for particular back-end services made available through the
Gateway system. For example, an access to a database is provided through JDBC API delegating
the actual implementation of the module functionality to a back-end DBMS. We follow a similar
approach to provide access to high performance resources: a Gateway module "merely"
implements an API of a back-end metacomputing services such as those provided by the Globus
metacomputing toolkit. In particular, a module that serves as the GRAM (Globus Resource
Allocation Manager) proxy generates a resource allocation request. The request essentially
defines an executable, its standard input, error and output streams, and the target machine where
the executable is to be run. The application represented by the executable is developed
independently of the Gateway system (for example, it may be a legacy parallel code written in
Fortran + MPI). The role of the Gateway module written in Java is reduced to generating the
request following the low level Globus Resource Specification Language (RSL) syntax. In this
sense the Gateway system can be regarded as a high level, visual user interface and job broker
for the Globus system.

The Gateway system supports many different programming models for the distributed
computations: from coarse-grain dataflow to object oriented to fine-grain data-parallel model. In
the dataflow regime, a Gateway application is given by a computational graph visually edited by
the end users. The modules comprising the application exchange data through input and output
ports, in a way similar to that used in AVS. This model is generalized in our new implementation
of the Gateway system. Thanks to the fact that modules behave as distributed JavaBeans, each
module may invoke an arbitrary method of the other modules involved in the computation.

3. Gateway Architecture

The Gateway system is implemented as a modern three-tier system, as shown in fig. 1. Tier 1 is a
high-level front-end for visual programming, steering, run-time data analysis and visualization,
built on top of the Web and OO commodity standards. Distributed object-based, scalable, and
reusable Web server and Object broker Middleware forms Tier 2. Back-end services comprise
Tier 3. In particular, high performance services are implemented using the metacomputing
toolkit of Globus.

 



Fig 1: Gateway system architecture

Front End

Different classes of applications require different functionality of the front-end. Therefore we
designed the Gateway system to support many different front-ends: from very flexible authoring
tools and problem solving environments (PSE) that allows for dynamical creation of meta-
applications from pre-existing modules, to highly specialized front-ends customized to meet the
need of particular applications. Also, we support many different computational paradigms, from
general object-oriented to data-flow to a simple "command line" approach. This flexibility is
achieved by treating the front-end as a plug-in implementing the Gateway API.

Gateway API

The Gateway API allows specifying the user’s task in the form of the Abstract Task Descriptor
(ATD), following the current DATORR recommendations. The ATD is constructed recursively,
and may comprise arbitrary number of subtasks. The lowest level, or atomic, task corresponds to
the atomic operation in the middle-tier, such as instantiation of an object, or establishing
interactions between two objects through event binding. However, in many cases such details
should be hidden from the end-user or even the front-end developer. Therefore the Gateway API
provides interfaces to higher level functionality, such as submit a single job or make a file
transfer.

When specifying the task, the user does not have to specify resources to be used to complete the
task. Instead, the user may specify requirements that the target resource must satisfy in order to
be capable of executing the job. The identification and allocation of the resources is left to the
system discretion. Typically, the middle-tier delegates it to the metacomputing services (such as
Globus) or and external scheduler (such as PBS). Once the resources are identified, the abstract
task descriptor becomes a Job Specification.

Middle Tier

The middle tier is given by a mesh of CORBA-based Gateway servers. A Gateway server
maintains the users sessions within which the users create and control their applications. The
middle-tier services provide means to control the lifecycle of modules and to establish
communication channels between them. The modules can be created locally or on remote hosts.
In the latter case the task of the module instantiation and initialization is transparently delegated
to a peer Gateway server on the selected host, and the communication channels are adjusted
accordingly. The services provided by the middle tier include methods to submit and control
jobs, methods for file manipulations, method providing access to databases and mass storage, as
well as methods to query the status of the system, status of the users applications and their
components.



Gateway Modules

The Gateway modules are CORBA objects conforming to the JavaBeans model. The
functionality of a module is implemented either directly in the body of the module or the module
serves as a proxy of specific backend services, such as DBMS or HPCC services.

Meta-computing Services

The metacomputing service is yet another standard being developed within the DATORR
initiative. It specifies all mandatory functionality of a metacomputing system and its interfaces.
The Globus toolkit is an example of such metacomputing services. The functionality it provides
include secure resource allocation (GRAM), secure file transfer (GASS), metacomputing
directory services (MDS), heartbeat monitor (HBM), and more.

4. Gateway Security Model

The Gateway system supports a three-component security model. The first component is
responsible for a secure web access to the system and establishing the user identity and
credentials. The second component enforces secure interactions between distributed objects,
including communications between peer Gateway servers, and delegation of the credentials. The
third component controls access to back-end resources.

Secure Web Transactions: Authentication and Authorization

To implement secure web transactions we use industry-standard https protocol and commodity
secure web servers. The server is configured to mandate a mutual authentication. To make a
connection, the user must accept the server’s X.509 certificate and she must present her
certificate to the server. A commercial software package (Netscape’s certificate server) is used to
generate the user certificates, and they are signed by the Gateway certificate authority (CA).

The authorization process is controlled by the AKENTI server [6]. It provides a way to express
and to enforce an access policy without requiring a central enforcer and administrative authority.
Its architecture is optimized to support security services in distributed network environments.

This component of security services provides access for authorized users only to the Gateway
server associated with the gatekeeper following policies defined in AKENTI (and thus
representing the stakeholders interests). Access to peer Gateway servers, and access to the back-
end services is controlled independently by the other two components of the Gateway security
services, and it is based on credentials generated during the initial contact with the gatekeeper.

Secure CORBA: middle tier security

Security features of CORBA are build directly into ORB and therefore they are very easy to use.
Once the user credentials are established, secure operations on distributed objects are enforced
transparently. This includes authorized use of objects, and optional per-message security (in
terms of integrity, confidentiality and mutual authentication).

The access control is based on the access control lists (ACL). These provide means to define
policies at different granularity: from an individual user to groups defined by a role, and from a
particular method of a particular object to computational domains. In particular, the role of a user



can be assigned according to policies defined in AKENTI. This way, the access to the distributed
objects can be controlled by the stakeholders.

In addition, for security aware applications, the CORBA security service provides access to the
user credentials. This way access to the back-end resources can be controlled by the owners of
the resources and not the Gateway system. The Gateway system merely forwards the user
credentials.

The CORBA security service is defined as an interface and the OMG specification is neutral
with the respect to the actual security technology to be used. It can be implemented on top of
PKI technologies (such as SSL), the private key technologies (such as Keberos), or may
implement GSS-API, to mention the most popular ones.

Distributed objects are inherently less secure than traditional client-server systems. Enhanced
risk level comes, among other factors, from the fact that objects often delegate parts of their
implementation to the other objects (which may be dynamically composed at runtime). This way
objects serve simultaneously as both clients and servers. Because of subclassing, the
implementation of an object may change over time. The original programmer neither knows nor
cares about the changes. Therefore, the policy of privilege delegation is a very important element
of the system security. CORBA is very flexible here, and supports no delegation model (the
intermediary object uses its own credentials), a simple delegation model (the intermediary object
impersonate the client), and a composite delegation (the intermediary object may combine its
own privileges with those of the client). We follow the composite model. For security unaware
applications, we use the intersection of the client and the intermediary privileges. However, if the
application applies its own security measures, we make the initiator’s credentials available to it.

Control of Access to Back End Resources

There are no widely accepted standards for a secure access to resources. Different computing
centers apply different technologies: SSH, SSL, Keberos5, or other. The design goal of the
Gateway system is to preserve the autonomy of the resources owner to define and implement its
security policies. At this respect, we are in a very similar situation as other research groups that
try to provide a secure access to remote resources. Our strategy is to participate in the process of
defining standards within DATORR and the common Alliance PKI infrastructure. It seems that
the current preference is to build the future standards on top of the GSS-API specification (and
thus to support simultaneously private and public key based technologies). The Globus project
pioneered this approach, and therefore we use Globus GRAM to provide a secure access to the
remote resources. To get access to resources available via GRAM the user must present a
certificate signed by the Globus CA (currently an additional item of the Gateway user set of
credentials).

5. Middle Tier

The Gateway middle tier is given by a network of Gateway servers (GS). A secure access to the
system is facilitated by a dedicated gatekeeper server, as shown in fig.2.

 



Fig 2.: the Gateway middle tier architecture

 

Gatekeeper Server

The gatekeeper comprises three logical components: a (secure) Web Server, the AKENTI server,
and CORBA based Gateway server. The user accesses the Gateway system through a portal web
page from the gatekeeper web server. The portal implements the first component of the gateway
security: user authentication and generation of the user credentials that eventually will be used to
grant access to resources. The authorization process is controlled by the AKENTI server. For
each authorized user, the web server creates a session (that is, it instantiates the user context in
the Gateway server, as described below) and gives permission to download the front-end applet.
The applet is used to create or restore, run, and control user applications. The applet
communicates directly with the CORBA-based Gateway server using IIOP protocol.

Currently we are using secure Apache web server [7] with servlets support [8]. Unfortunately,
for WindowsNT, the servlet support is based on the third party plug-in, and therefore it is
difficult to install and configure. We use Apache because it is the server of choice of the
AKENTI developers. We also experiment with the secure Jigsaw server [9], which is the W3C
reference web server implementation. It is written in Java, and therefore "natively" supports the
servlet mechanism. The Jigsaw https support is build on top of SSL library in Java by Institute
for Applied Information Processing and Communications (IAIK), Graz University of
Technology (Austria).

To implement Gateway server we use the ORBacus [10] (formerly known as OmniBroker)
secure ORB, for which we have obtained a free research license. The security services are
implemented on top of the IAIK SSL library, the same that is used by Jigsaw.

Gateway Server

The Gateway server initializes the ORB and several generic CORBA and specific Gateway
services. The main functionality of the Gateway server is managing Gateway sessions. A session
is established automatically after the authorized user is connected to the gatekeeper by creating a



user context. The user context is a container object that stores the user applications. The
application is another container object that stores components of the user application. The
application component is either a single Gateway module or another, finer grain application
context. This way, the Gateway server can manage simultaneously many sessions, and within
each session, the user can define many applications hierarchically composed of many modules.

Each Gateway server maintains a persistent directory of available modules (PMD). Currently it is
a list of modules read from a configuration file at the initialization of the Gateway server, to be
replaced by a database. In addition, at run time the Gateway server maintains the directory of
active Gateway servers (ASD). The services provided by these directories are made available to
the front end. This way the user can visually select modules (i.e., module name and host) to be
included in her application. The information on the module implementation is available from
PMD.

Life cycle of user modules

Creation of the user module is delegated to the Lifecycle service. The actual instantiation of the
module depends on whether it is a local or remote module. The local modules are created by a
local module factory that runs as a separate process. For the remote modules, a local proxy
module is created followed by copying the application context to the remote Gateway server and
instantiating the module on the remote host by its local lifecycle service.

Creation of the proxy modules breaks the CORBA object location transparency. As in Java RMI,
we make a difference between local and remote objects. There are two reasons to introduce
proxy modules. One is that we are providing support to control the behavior of the back end
modules using the front-end applet. A direct communication between the (unsigned) applet and a
host other than the gateway (from which the applet is downloaded) violates the Java sandbox
security model. Employment of signed applets potentially solves this problem, however use of
the proxy modules to forward messages results in more consistent security model. The other
reason to use the proxy modules is that it gives us a better control over the application container
and simplifies implementation of fault tolerance.

After local Gateway server gets the reference of the newly instantiated module, from the module
Factory (local module) or the Proxy object (remote module), the reference is returned to user.
Therefore, user will have access to his own remote modules through their proxies.

The process of a module creation is finalized by registering the module reference (IOR) under its
name within the application and user contexts into the module directory. This operation is
performed by the name service.

The reverse operation, the RemoveModule method, removes the object reference form the
directory, and destroys the module. In case of the remote module, its proxy is destroyed as well.

Interactions between Gateway Modules

The Gateway modules follow the JavaBeans model, and they interact with each other using
JavaBeans methods: through event binding, property binding, and vetoable property binding.

In JavaBeans, events are used to communicate information about the changing state of a bean.



Events form a core component of the JavaBeans architecture in that they are largely responsible
for enabling beans to be plugged together as building blocks in an application builder. The event
notification in Java works using method invocation. The object that is a source of an event calls a
method on the destination object for one event when the event is triggered. The destination of the
message must implement the method (or methods) to be notified when the event occurs. The
event object encapsulates all the information about an event.

Event targets are connected to event sources through a registration mechanism. The Gateway
applications are created dynamically from independently developed Gateway modules.
Therefore, we provide a support for a dynamical event binding based on the standard CORBA
dynamic interface invocation (DII) and dynamic stub invocation (DSI) mechanisms. This is
implemented by introducing an event adapter associated with the application context. The
adapter maintains a binding table to associate the event sources with the actual event
destinations.

6. Related Work

There are several other projects addressed to solving the problem of seamless access to remote
resources. A comprehensive list of these is available from the JavaGrande web site [11]. Here we
mention the three that are most closely related to this project.

The UNICORE project [11] introduces an excellent model for the Abstract Task Descriptor that
most likely will strongly influence the DATORR standard, and consequently we are taking a
very similar approach. The UNICORE middle-tier is given by a network of Java web servers
(Jigsaw). The WebSubmit project [12] implements web access to remote high performance
resources through CGI scripts. Both projects use https protocol for user authentication (as we
do), and implement custom solutions for access control. The ARCADE project [13] is in a very
early stage, and its designers intend to use CORBA to implement the middleware. As of now,
there is no available description of the ARCADE security model.

7. Summary

To summarize, exploiting our experience developing the WebFlow system, we designed a new
system, Gateway, to provide seamless and secure access to computational resources at ASC
MSRC. While preserving the original three-tier architecture, we re-engineered implementation of
each tier in order to strictly conform to the standards. In particular, we use CORBA and the
JavaBeans model to build the new middle tier, which facilitates seamless integration of
commodity software components. Database connectivity is a typical example of a commodity
software component. However, the most distinct feature of the Gateway system is that we apply
the same commodity components strategy to incorporate HPCC systems into Gateway
architecture. By implementing emerging standard interface for metacomputing services, as
defined by DATORR, we provide a uniform and secure access to high performance resources.
Similarly, by conforming to the Abstract Task Descriptor specification we enable seamless
integration of many different front-end visual authoring tools.

The prototype Gateway system is now available [14] and the fully functional version is expected
to be deployed by November 1999.



 

References

 

1. G. C. Fox, W. Furmanski, "High Performance Commodity Computing" in "The Grid.
Blueprint for a New Computing Infrastructure", a book edited by C. Kesselman and
I. Foster, Morgan-Kaufmann Publishers, Inc., San Francisco, 1998;
G. C. Fox, W. Furmanski, T. Haupt, "Distributed Systems on the Pragmatic Object Web
– Computing with Java and Corba"

2. D. Bhatia, V. Burzewski, M. Camuseva, G. C. Fox, W. Furmanski, G. Premchandran,
"WebFlow – A Visual Programming Paradigm for Web/Java based coarse grain
distributed computing", Concurrency Practice and Experience, 9, 555-578 (1997)
(http://tapetus.npac.syr.edu/iwt98/pm/documents/)

3. Globus Metacomputing Toolkit, home page: http://www.globus.org

4. E. Akarsu, G. C. Fox, W. Furmanski, T. Haupt, "WebFlow - High-Level Programming
Environment and Visual Authoring Toolkit for High Performance Distributed
Computing", in proceedings of Supercomputing ‘98

5. Java Grande Forum, home page: http://www.javagrande.org

6. S. S. Mudumbai, W. Johnston, M. R. Thompson, A. Essiari, G. Hoo, K. Jackson, Akenti
– A Distributed Access Control System, home page:
http://www-itg.lbl.gov/Akenti

7. Apache http server, home page: http://www.apache-ssl.org

8. Java Apache Project, home page: http://java.apache.org

9. Jigsaw http server, home page: http://www.w3.org/Jigsaw

10. Object Oriented Concepts, Inc., ORBacus SSL, home page: http://www.ooc.com/ssl/

11. http://www-fp.mcs.anl.gov/~gregor/datorr/datorr.html

12. UNICORE: Uniform Access to Computing Resources,
home page: http://www.fz-juelich.de/unicore

13. WebSubmit: A Web-based Interface to High-Performance Computing Resources,
home page: http://www.itl.nist.gov/div895/sasg/websubmit/websubmit.html

14. ARCADE, home page: http://www.icase.edu:8080

15. Gateway project home page http://www.npac.syr.edu/users/haupt/WebFlow/demo.html


