Replied: Sat, 01 Sep 2001 21:51:42 -0400 Replied: e6d@ornl.gov Return-Path: e6d@ornl.gov Return-Path: Delivered-To: fox@csit.fsu.edu Received: from msr.CSM.ORNL.GOV (msr.csm.ornl.gov [160.91.76.66]) by mailer.csit.fsu.edu (Postfix) with ESMTP id 2745723A0C for ; Mon, 20 Aug 2001 14:47:44 -0400 (EDT) Received: from ornl.gov (alcor.csm.ornl.gov [160.91.76.148]) by msr.CSM.ORNL.GOV (8.9.1/8.9.1) with ESMTP id OAA17375; Mon, 20 Aug 2001 14:47:43 -0400 (EDT) Sender: efdazedo@msr.CSM.ORNL.GOV Message-ID: <3B81692E.E9D1E88E@ornl.gov> Date: Mon, 20 Aug 2001 14:46:54 -0500 From: "Ed D'Azevedo" Reply-To: e6d@ornl.gov Organization: Computer Science and Mathematics Division, ORNL X-Mailer: Mozilla 4.77 [en] (X11; U; Linux 2.4.3-20mdk i686) X-Accept-Language: en MIME-Version: 1.0 To: Geoffrey Fox Subject: Re: Request to review a paper C517: Automatic DeterminationofMatrix-Blocks References: <200108201703.NAA102050@dirac.csit.fsu.edu> Content-Type: multipart/mixed; boundary="------------1F857648186AF07891E2708C" This is a multi-part message in MIME format. --------------1F857648186AF07891E2708C Content-Type: multipart/alternative; boundary="------------B429108C3EC0070D6D6EFD65" --------------B429108C3EC0070D6D6EFD65 Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: 7bit Geoffrey Fox wrote: > Thanks! > > Geoffrey Fox gcf@indiana.edu FAX 8128567972 > Phones Cell 315-254-6387 Home 8123239196 Lab 8128567977 CS 8128553788 -- Ed D'Azevedo Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831--6367 email: e6d@ornl.gov tele:(865) 576-7925, FAX: (865) 574-0680 --------------B429108C3EC0070D6D6EFD65 Content-Type: text/html; charset=us-ascii Content-Transfer-Encoding: 7bit Geoffrey Fox wrote:
Thanks!

 Geoffrey Fox  gcf@indiana.edu FAX 8128567972
 Phones Cell 315-254-6387 Home 8123239196 Lab 8128567977 CS 8128553788

-- Ed D'Azevedo 
   Computer Science and Mathematics Division 
   Oak Ridge National Laboratory
   Oak Ridge, TN 37831--6367 
   email: e6d@ornl.gov   tele:(865) 576-7925,  FAX: (865) 574-0680
  --------------B429108C3EC0070D6D6EFD65-- --------------1F857648186AF07891E2708C Content-Type: text/html; charset=us-ascii; name="ref_report.html" Content-Transfer-Encoding: 7bit Content-Disposition: inline; filename="ref_report.html" CandC:PandE Referee Report Form

CandC:PandE Referee Report Form -- Electronic Transmission to gcf@indiana.edustrongly preferred

Referees Home Page: http://aspen.csit.fsu.edu/CandCPandE/
Email gcf@indiana.edufor URL of full paper to be reviewed

WILEY Journal Home Page

John Wiley and Sons, Ltd.
Baffins Lane, Chichester
West Sussex, PO19 1UD, England
Telephone: (01243) 779777
Fax: (01243) 770379

REFEREE'S REPORT

Concurrency and Computation:Practice and Experience

A: General Information

Please return to:
Geoffrey C. Fox
Electronically Preferred gcf@indiana.edu
Concurrency and Computation: Practice and Experience
Computer Science Department
228 Lindley Hall
Bloomington
Indiana 47405
Office Phone 8128567977(Lab), 8128553788(CS) but best is cell phone 3152546387

Please fill in Summary Conclusions (Sec. C) and details as appropriate in Secs. D, E and F.

B: Refereeing Philosophy

We encourage a broad range of readers and contributors. Please judge papers on their technical merit and separate comments on this from those on style and approach. Keep in mind the strong practical orientation that we are trying to give the journal. Note that the forms attached provide separate paper for comments that you wish only the editor to see and those that both the editor and author receive. Your identity will of course not be revealed to the author.

C: Paper and Referee Metadata

  • Paper Number Cnnn:
  • Date:
  • Paper Title:  Automatic Determination of Matrix-Blocks
  • Author(s): Victor Eijkhout
  • Referee:  Ed D'Azevedo  (email: e6d@ornl.gov)
  • Address: Ed D'Azevedo, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Bldg 6012, MS6367, Oak Ridge, TN 37831.

  •  

     

Referee Recommendations. Please indicate overall recommendations here, and details in following sections.
  1. publish as is
  2. accepted provided changes suggested are made
  3. reject

  4. My recommendation is reject or resubmit with major modifications.

D: Referee Comments (For Editor Only)

I feel the paper is not written well enough to convey to the reader what is the key problem and what is done to solve the problem.  The paper could be improved if the author uses more precise definitions for terms and description of the algorithms. Some work is needed to hold the reader's attention by describing the impact or motivation of the problem.
 
 
 

E: Referee Comments (For Author and Editor)

Many PDE problems have multiple variable or degrees of freedom at each grid point (say u,v,w,p) and taking advantage of such dense block structures in the sparse matrix is key to achieving good performance. In this paper, the block structure refers to subdomains decretized by a regular stencil on a logically rectangular grid.  The author suggests some heuristic to identify such subdomains based on the symmetrized graph structure but does not use numerical entries of the matrix.

The author might consider using matlab-like matrix notation to describe the intended algorithm, then separately address the issue of efficient implementation in a distributed memory parallel environment. The author might also specify what assumptions are made in the parallel implementation such say matrix is stored in compress block row format and the upper triangular part is distributed in  block rows.

The author might consider giving definitions of some terms such as "split point" or "beginnings/endings" of blocks.

The impact of the automatic block repartition can be judged by the effectiveness of the preconditioner as given by number of iterations, and on the overall run time. The first can be determined even using MATLAB on a serial machine. The second issue has to take into account the effect of possible load imbalance or higher message volume. The author might also consider expanding the numerical experiments on more test cases perhaps obtained from the Fortran Market or the Harwell Boeing library. The author might comment on the class of problem (say finite difference on elliptic problem on a "brick" domain) that this heuristic might be useful.

The  example problem used is based on a two-material problem (heat conduction?) with large differences in material properties. The discretization used for each material seems to product different sparsity pattern. If the same discretization technique were used on a similar grid (say both are logically rectangular grid with same grid dimensions), then the heuristic on automatic block detection that is based only on the graph structure would fail to identify the two sub-domains.
 
 
 
 
 
 

F: Presentation Changes

The author might consider adding a figure to describe the two-material problem used to generate the sparse matrices.

The author might help the reader by adding  in the caption what the main point or what the reader should find or focus on each figure. --------------1F857648186AF07891E2708C Content-Type: application/pdf; name="ref_report.pdf" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="ref_report.pdf" JVBERi0xLjIKJcfsj6IKNiAwIG9iago8PC9MZW5ndGggNyAwIFIvRmlsdGVyIC9GbGF0ZURl Y29kZT4+CnN0cmVhbQp4nJVW227bOBB911fMWx0gVnS/+Gm3jtN219s6jougQF4YiYpVSKIq 0Wn893tIyrLjzRYoElgjcjgzZ+bMUI7tkqP+hmdWWz+sq3VAT711CzEMHIo9h2orDBMjVqOo 5WAUt9Y9NZZLpVl0oRs6kFzfTtM0oY5bhfWDXO3v8Mhqer+Bx5TcgDaFZcJwKQwoShzbp01t TeasyeezFX4XtOYF7zjHsxWdpBvR1TSd0qLimexEU2a06VjT12Xfl6IhKS423y03os3Smjxl xR9lk5esYTbPdxfvLNdx4cOhTW5NenX+qdpT2ykfHc/V0au165LrqdimRnvqxVp/iKSnj6Lm tGJPfEbamRPZ6WBzK2U7u7pifcsbO+tLaRf9Tvm+0pg0pCt9KAl1CdQhbWXqpR5NkTtfry1q VlZ6w3ftaFA8x4PdxBv2CtHR1/WSREHFrqqoZS3vkA565KjEc8l/8pwMwHTEB3eRwodQlI37 T8vFt7MkBMeE6eOenTqOc/D6l9h1DauOKVEqqT/mw0Bz/QQepl4Eb+bUtqH7suJ7QkLoTjT9 JS1lbpt86hygfO9ZUZRNT0vW8Euab8tsy3sJVCjk5B4i3e36nr9c0uqLC1Bfry9pgYoqm0pl wyvebkWDOj1MHNcL/IcLiuM0jmO9f8NeXu84fpyqnRN6+iGwTL0Ev5oDi5vFerF4d0frxerL enOWUOiZfIZaey6abAdiNZkBOhd1u5NMgqizVccyWWZcbyxeUKwSejp/iw3d6p4KQiT6t3rK O+upwDv01J8z+sAb3qFYnxqQpdZhnBXb9byRbLoWSaLhHwq3qjjrFZ8kyg5ymQaYOsB7pO4H LoqiQ23nNtr1xahEjh2c0ntsX1ahA1eHDjQEcOORQL+i/NA3vuqko+lfJZ3+J+vaUuSe2VHn wLa7zOhc85Z1suaNNH3pnyh7XkJLxKko/RGQtEZqn6q8r4Soy+ZJYkqZwO3kZPuTAUlBHDjh fxo1dlQdoJxo5S9oDES0UuQ+K2EUHfs1cb0kjBThHyZL9vhwcWmWQj9OkofJ/A6sf9xJjAj0 UtmfefV8byxDxtVIecNdeJxO5LuhFwaRn8Qan5+Gb5GnKGGqbNC7dc06sAT1qnZqePdoxjue 2TRHXKpAOZeYgj0x/LdtJ9quZJLrwzzrbVL9rhVv7PPY9UhTM2R2uEGQeiSsrEQv2u1ed/kJ 79PzkaVXjsHfcwIJMO0w44jRYydYTrh48IaJ23GW867XsWSikV2JtIoOIQ6gv+9yaOqZ3JO6 pra8xHTm2Va3ANUgonw1/JSpXjFOIc5ErXg3HEWlik7UkARMY6mX+8pQWqeJZVub/ua8VZkC 5XLljsx1h8tOdwCr1AQUiv6mN6DDJP2EmY6T7PYqXbg9nspnro9/N5Peps9CcqOsltUkAW4p 4RTtC+/PZc6PkZtrCFrK3QhDH9+LHf0s+y0QYAQoYzwvkTXltucGj4Go1R+F3J5qabg7KHRI f8YRp03fEKRyhBAaWco97INsKJCqHAw1Qg73IWcVwoUnZdGYscfR/5pCc4wNjUJ5PHyO/ANq 5kyyMx5Fvv1qOulRHmMQu7hb8FVlxDC0PY9iP8UjxHusvqlcI2RW7Hh2HA/rUZKMB4wMO5ll RDeBIh31nWCwAwF2RvtqXTseDhziyX5xmRwxDbcJxm6aqm7AZWLy8XlXP+Ixb5pmZj6E3Ndd NKJPEYEBn+KGUUEdgksRhoo51eEcoKg3BfGgrWUNSkkJvp2U1kE7iV1tQz2PsPUqPI7aQxy/ CzqJhhv0GnzWOL3wDZg/4DA0pzw/pSBKcPumif7EhmGPrgW+sG+tfwEX8BaCZW5kc3RyZWFt CmVuZG9iago3IDAgb2JqCjEzODEKZW5kb2JqCjE3IDAgb2JqCjw8L0xlbmd0aCAxOCAwIFIv RmlsdGVyIC9GbGF0ZURlY29kZT4+CnN0cmVhbQp4nJVWTW/bOBC961cMcmkCOKol25Kd07ZN FijQ9CM1di+50BItMZFEl5ScdX/9viElf7VdbFGkHlGc4cybN48ahxGN+V//m9XBt+AL/mbT MaXxmOpgNpt7s9qbzp7uzTL4m5ogIhWksymlUTyHmzenSRhPKJ0swjie4TmJ4BR5IwvScRym ab+ezOd7B28jThZ4c7zARtrvHy9mPg4biDPEd+vu4N5hyCcL1sE3ilypw09W09tl8PoBpUUx LdeBhyCieYxI8zClZR1cfhYbaWip2kreEF0tn9gj7j2SOJzAZZkHl2+6VteiVRndylaaWjV4 0A3pNd2L1qh/rt9WOnu2fYThzDiOwqQP4aLfLemLAy9ZoJgex3E0OcFxjJJ8/a62Ay54dID1 Dmy7OB7HZJEmxzgmiyR2cZxxwNGvuxx6hyGf38UxWczCqcMR+JTaPF7ax6sb+ktlrTZ0p56e S921XDd36acwzJFL3Zvz8TEMybyngTMOMLhHV2/v4G1XojenkxMY5vGijwPjCAa37g7uHYZ8 fhuGeYwBYxge5FoayVS6y+n21ZvvcitzTfR4KWuhqhuSSf6HNk0VFnr7eMVQxJNJuPg5NikS 7LFJp+kJNunQ2tS3dqiVHx0IvYO3Xd3ejMYn2IALPg4bR9i4dXdw7zDk89vYJPNw7imS50Za e3MCzYje6XrTYaToa6Zkk0kSTc4zVUo3b5Zu1VZZzNqIPolnelB5Iemjmz5ROWpNMKXLD8Hl B7HSRoB5uxG9rfKCknEUj+j+azJJ0iPvES0/0iSdT6Lw6lUQp/HpiF77lWsfl1fdcpxgkY8h OF2Dztd+Jd93nR5kputaNrnLzob0uZLCSlJNrjLRStJbaURVkTndSCXcR67wXLbgiYULrXVV 6RfVFCdFWpn1wZFGFIezozxQD2+dYdHXs+lWlbIlCQR00jRb7BXN15pO0Z1DqfF5BJFlctPK nDZGb1UOIytFU0hLtivww6+EkVSLXDqUkEx8iuY0gtYejpicH2HkE2raQ3ziywvX4OTCLd7v zpBDVeTdCXoDdnWrWrX0otoSGT1hrda5WjP4DrMzffddTHl2Ef32hoZGvnNntBZz+ycLWa5Y zz411c7P7LHCj9PTpE/iu5eHI97TWsqKwG3auIsH+TcaCRvVtrKhFwlyyEZ3RUmtpkw3W7lj iz2MBMaGXkrRsh8vPeMtGrOqZM3s6Ykyd0QZ9uW6kRzC6mor/dHeIyRa7hPJdFfltAJXa+40 uqrWbrNwwk6dRctrbdhbZspKsO8yl2vVKE/hNTbxxWh7GtvMqM1wRbpAVaFRZlmDul91LelF m2cHgJTMK6RYauRwKPWV5UMEI+MCrXZ93BWGwu1DssL3vtat2orj84YqEeOoXZP4fAL8yvm0 7+eNeM78/0ed9R3F67tfksbfiA4Nzx9Q5yQVHoz4l8xxLw/MuRfNjj7f3g1lQTME2ll3Vas2 laStMErgBWORywL5WAZiDSPXIEdLUmQlFUZhlLVqWmRpxY660Xb0Mtp4Wu+5w0m34plhFvlW NK2A5iKc7RAjlw00bcWfO2Rb02Vth8ljxWLY7UYYy3rAH0Xc3mfPYJyu5JYjFlrnjCloB9LU Apof0nv2xm7HxpGLdHYCSAGcraNyt0JRQoF2ucyMbNV3EAj0ENhUdJUwHB/a1GSqIlBCUKUL qEBVOQVpoWC8y8HRj0HP817VIG9M0VJ2Rln+6sOpUD/wcL1zKLgDDmmsIPM5n+Qg2IEIKJ+T KozYlEdFrLoWEyn92GOoqOlqaTg1zD18fNsQhQ/wIJ4z+D/0ZnIqN0d11aooWxYUq1hEOsud QPxKrK4r9bxvGNLyU4SC+2HzogHKQHVZ7Yc5HvHpl3jXkJXoOi44wCv8Le99rO0cb+QaGozb veWJBXth9frNvckBMc7p+C6pJUQGoib4npQVoyCbrTK6YaeQfihJVBaE2ECT0BmneQKn1huv SsPVNLDzOO5ZKo7bPBIH6lpMLSthA+Agi1yWJ6XRL+S427r55sjdhmUUnj23HMOF8RJ8VCCC HYLYs95G6fhUnY6b61/+n+4Wyg3asTzz8DKjvUS7WvFRcGE3Fe5LJwgXkA7X0YuVLFTTIIJ9 jZbz7wX7u6x/yDiZ/PDt+iX4F08NHA9lbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjE2MTQK ZW5kb2JqCjI1IDAgb2JqCjw8L0xlbmd0aCAyNiAwIFIvRmlsdGVyIC9GbGF0ZURlY29kZT4+ CnN0cmVhbQp4nH1VTW8bNxC9768Y5BIZiBR9WJHaSxEXDVogAZpAQC++cLmjXcZLck1yrbq/ vm9IybKcuhCk5ZKcmTdv3ozmswXN5XN8alvdV1/xXV/PabOck63W621Z9k/LvL5+WnbVX+Sq e1pkT6eHtnSzq95/W25psaTdvioRFrS+ps18O9vQzlaTXcdk7KB0Ir+nhDc1Jm9VMprq3us7 CjyokEwy3pFWjmqm72PTckP1Yzbg/Z51Mg/sOMajl6vd92qxmm1p97maDIG1d012wYFUpFZu i70bbY0tGJnEQcmN+I6UawjRxLl/wHbfUxjxbizPSBDvTYjpiObqbTVpGNbWOIBi8TxG41r6 8nH3+eONeFIUORjVk1W6w7XiJWZYZGIcmTrASp6SugMhDiultR9dEvfnLAXp4GM0dc/UewVr W6teOQ2ogTrTdkjHggjVMj34fjxBBq0dbljcSKT66AnBo2k4SAT+e0DSAlpigRXA1cCLfaws uxQlD+sDU+Kce+RIOOzUgKM6qZz9PnibXXzyIQXlxPcXFe44CTw5+F2FA4PQG88Srjd1UOHx PzBqbyXuqRC6V6W6Q/BI3tLtJKpH8b83DsWjxoChwJkJRwhhBhHR6Xquwpsaad29oQYKM+72 Cp5Vwo+J1PEYTBSLEh4yGyPvx36GGO+/reZHFV9vlrMVdLxrqgmJzJ4pfFoOp8sN2kkuSFLg UNkB5TohgVspOtVKFhlXOvgpNF80ck6wYyU8uGbUosxfAPhgUke9Cm2W+OScdIRq6LkP1CYZ joXZxkQdOJl/ssQLhD2oZujxbBWZbVYhzCVmlvYxQqKIPowmPdKgEgzcjP4oHRuV/SFCYt05 cw9hH2BdApZGMNYAP7XBNOca1h5pqSCabkV4/SP6Xifl2vHpck49x8qvjcgySsPeXr0THEUn 5zpKuNMsyTHyOJFW1QWi1P5ZHRDzqLU2qAGhUgAHI0Ad/NiDL2V6IQc945LZl+GDyonvONbT Iqr4Qi8ftpdymeaNKYbTqmzScVat8qzC69tXf59JrUgMBp9+pj8DR0AqxP/agTSOlyAWy/Xs p9dEWw4vRfuiE8ugINXkEaEw/1rhBWQ0jLIbNMuRjB9lnEuPmy3mMybs5WjO8hFdsagQzckv +VvMF7MPr0LPh/8DveN+yNACK8kAI/+YhLRLnitqyLwdyiQQHDgZvHF5ZJ22c7cdncSu6MHI 30RAH+kxT8fcTIWaF0ksF5tLFfy2o6/4n/0X8qljsmVuZHN0cmVhbQplbmRvYmoKMjYgMCBv YmoKOTQxCmVuZG9iago1IDAgb2JqCjw8L1R5cGUvUGFnZS9NZWRpYUJveCBbMCAwIDYxMiA3 OTJdCi9Sb3RhdGUgMC9QYXJlbnQgMyAwIFIKL1Jlc291cmNlczw8L1Byb2NTZXRbL1BERiAv SW1hZ2VDIC9UZXh0XQovRXh0R1N0YXRlIDEzIDAgUgovWE9iamVjdCAxNCAwIFIKL0ZvbnQg MTUgMCBSCj4+Ci9Db250ZW50cyA2IDAgUgo+PgplbmRvYmoKMTYgMCBvYmoKPDwvVHlwZS9Q YWdlL01lZGlhQm94IFswIDAgNjEyIDc5Ml0KL1JvdGF0ZSAwL1BhcmVudCAzIDAgUgovUmVz b3VyY2VzPDwvUHJvY1NldFsvUERGIC9UZXh0XQovRm9udCAyMyAwIFIKPj4KL0NvbnRlbnRz IDE3IDAgUgo+PgplbmRvYmoKMjQgMCBvYmoKPDwvVHlwZS9QYWdlL01lZGlhQm94IFswIDAg NjEyIDc5Ml0KL1JvdGF0ZSAwL1BhcmVudCAzIDAgUgovUmVzb3VyY2VzPDwvUHJvY1NldFsv UERGIC9UZXh0XQovRm9udCAzMSAwIFIKPj4KL0NvbnRlbnRzIDI1IDAgUgo+PgplbmRvYmoK MyAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWwo1IDAgUgoxNiAwIFIKMjQgMCBSCl0g L0NvdW50IDMKPj4KZW5kb2JqCjEgMCBvYmoKPDwvVHlwZSAvQ2F0YWxvZyAvUGFnZXMgMyAw IFIKPj4KZW5kb2JqCjQgMCBvYmoKPDwvVHlwZS9FeHRHU3RhdGUvTmFtZS9SNC9UUi9JZGVu dGl0eT4+CmVuZG9iagoxMiAwIG9iago8PC9TdWJ0eXBlIC9JbWFnZQovQ29sb3JTcGFjZSAv RGV2aWNlUkdCCi9XaWR0aCAxMjUKL0hlaWdodCAxNzcKL0JpdHNQZXJDb21wb25lbnQgNAov RmlsdGVyIC9GbGF0ZURlY29kZQovRGVjb2RlUGFybXMgPDwvUHJlZGljdG9yIDE1Ci9Db2x1 bW5zIDEyNQovQ29sb3JzIDMKPj4KL0xlbmd0aCAxMjcwMj4+c3RyZWFtCnic7X0LeFXXdebe F3um38Sgs8+FTNI45j756rQxQldCzjS1cSUBcqYJsRHE4NQ4Dq8MLzsNMkwTIEljkOMYYfrF oMTGD1xAsi23n3lJMiKJOyDpSnJiO1N0X8R1Z1pzzz4XJ+20NnfPWmvvc3UFOsJJ4yb+Pp8E +eroPNZeez3+9dj7cqUUe48eBcYqftM0/KoHd5V6zxL/HmY8V656zxL/HmY8V8p9zxJ/EeMH U0kpYUgMRmSpd/CBveMrfT6wX/oWUVcdQVqB7+pi4rOuR9JYwpgPqUx7CD8yLvsnn+H7vc7l 4tZE5HKMZz4MZuUMU8x6h3wdjx++8+b3OvyTYTzy/SLiR5KycMm7yn5exA8/tk1ERukYe1Jf PHrNpU8wE+VJzSWMf8/QTny/RGpQ4uG0koNZCerAK6Q8HwlPkXZIOj+LgMBVTWc9g0mLC7gG 7wlEXCcD70gkEr4q4ZExmE46kgm4a1KET86A7sHtFpNZJxO2GLwaziSukwPDik2KRq/JgAhb kyISns9YFJ5frq7+Eq9kejAjXcanZNUVdZHJGSFE97BMRBP2NZmBF4BYoEAKDqcjmXQSHllf n7gs74F2YTEnC7Qn+ORuxiPqfERUZDMZB8678D8eTlTKgRMut6uqrskM5qSwI0CSklI/n2lt 1Xz3k5pLIaa/Evop9vjG0HsaSspYORrz0ktMhhZYf4lP9rdncpdQ/Vt1cNG0sN7wfSzxh780 KdULQ3Vd4omwLCmlBfNZYJbFXRek3DGsFSjxbo7YAqc4sRfMJlzslpjNrQrlumXzwzmvAL/C 4RyICb5IFvFqjjLImG1ZysyfVTZTUiIGEEAAvDa67pU+Q+5FtAf7n5XwVKnfBRRJRQ8SrtZN utzQYpyTwsvUKIFMiw791aKzrr6GCatCwlCEsJEeqSzjJbhrTIyFFgC0CKVDKrxJwHUiLIAD XA+oEF73isf3i4hfHRg5KYDtwgKuclGBFwHXL/Kg+E8VLQgCNKnIbEU0G/l16Z8VwquR8XBB jqGJ8RRAzw/QAi93L3Ln5jIb3kGvhclRQuBvwH43UL3ldT/Gj5yQbgGpxrHj9KPoKBgJjkCZ 2VCGtQJfBL9JV9LkIIv1IOilcG9IyRwrTQueh7knQUF+exe7pSmlXzjOvLJEAOWPxIuBtc6R FIqq9SW+jyX+yJemjvQywvaSFYAYkCCBlLse4xkNgQfMBzoJ1yD1yFgkEEQD/ysYjsjy5o2m y7KQ1/Q4Ug8ciLL0AEDowSCCQCkHPk+aFVM4RrqyYAM9KufgO3lk/Sv94zH+yOapZ551aDoF eiaXeewB6QwYPsF7CnhyjIgLlFcXVJv0kWYMaHGYCJRJnCXgmQWcfksT602UkRtOKlGAISbi tyRcHo7NzDo5Cx4ON5/+/g54gjwbGeX7pRLfi4/l4BHKBZ2V617ppGeLjPZ6VLHRywxT9RxW oBjqM3omwbspkmhmlJbpeeM8Gru1KZOz5n2+Lf/acq4y6aHMGy90uwUhwol1Lx5/r9LOG5Qa l3iQmpFeVDDLIrsEQiuNpHgTSwbAMxegjyjMCm2wWzZMTT8ORI+X85Iaa8vDkWxXi7v292Ah UVQtM+jArGgxCyKOA+EhprIZhUrFZKFqy+vjSvzhzcH+RyX4ABAtUhQH2G9VaD6RyQXmjZ7x ZqDk/Y01KbP3BACRLpJuVFjvPuMEmLGu4LT4dGKbsHmFo3J4qSoIHuIy55BN047wY9VqfHU9 vCkwsg9nExkEngTtlXYaZRwtnwckQqHfpfN4fcEQjW614MkaSISrPNEQYDz1SPQI0HiDkhuQ BdTqSTSj9C4T9D7FhK/Ea+cqBNoK4Ba6BXSDJUNnhJ6PjsMIR8n1lwEDLcQlrWDaKCJjUBiR jwg2yFGQfMIgJMi0NWqNuUc9sF/lcJp4639r8CH+yObgSCcRyzmNU40aaRIc0Bb06ORWYUaQ TotbZZRrRfXOeHBRj4WAEE0CUAiaJLimGUQUToUslYO3SoI0oELAN05QwQFFQIAC/wnZIEfr XhzXuQLtffuYxh5m3hCf8RJfzTzygNCGvESXmX+P3yXd5IS0BCqJOUgx0WhYrgdjuDd35NYs BACGcFcFQjZzHWWgNJ/a+rFZ617xs5P9z5WpHxs1axYrgyjMw1HeNaMIDWlzzHx7T0EPTToE H3hIFXOMhIUDpABXj2oJUpQjBEBCzQ3T0NCh5IY4p8AIrpdn67a8Pi7tT30p8MaznsHgYsZd zcFKluq5d6TTmn3XvcFKefrbO4pvrrj+T7uPPphhgUTt3fWs2PF3D6aD1c3xBUI57emf1Uev SR57MBm/dYV9TY9lLwSSrQuHjrXa87++EKXswqG+x6pr76nCN8CYnDYWWHj6+y0wwnjdcja5 ZaRTTU1sj83hTqZdhCOnv9MBFMY/Gx05AcHiJ4KtvMrfQfV3auAkplYfYlctyneKm/fJI9/c Y39kUf7HTbefZA9d17Xu5fYn/rABpCb2x/X2Nd19TzQveaT9qWUyVr8n1cvm/89Fp1sFm9TM r7o3Nncg1b+opqmrv726pul43/1zZyzvH2mfPXv58ZGuxcifO9L5v82z/xJEEzd1D79qE5v6 3fgfrD6zj9Xes1Bd0Zzuq3HOivnrnSM7yVPw6Lrnj00gNOQ1lz4X2X0DhKQsNkfU3p3Y/+ku OB9fnM8fC9Z+a6B4JgG8jM6KBKYn1ZX9+eM1qACTFgl7Ye2axad3wuf7+EdbojXHUl1z+bSU /ZFYMHboTMci/sGU/buz7fiBM3trwGcE58CV25d8reOhz2TYpBV88o75X9545KttoCiBcFS9 +ZX5a1Yd+cbG4Mdb8sNgZz4R4yKydnzij6wO9D1H/ufNpqXPdBy+AxRLsUD1mhPp3TMJ2X0w M3tptR2OzFhg7bquJ1qVCFyTrLl1xVN/2mYRLFNXPFx7+8pjO10reF9gckus/uBIx1y7ZsR9 o7Z64YG+760K1hx3RmrgfKpjMQiFlJlopH5q3VdOt81Tr21kU9o+3ymevEOSxkoAj/Dr81+o cy60ca1bhfcm7Ty267YJiNcSjwI/dU/jn688spUhXJm0fM3Te3cvIIv8i6759zfABfKfUyPt NdyKREKD12+re2hmUhsKdsXB2jWrTu9TbNJKfmFvtP6gk9xbu8E9siUze/mBdPLbsz/jHNky EG/ocvI74jfVn3qgZWpVIv/axtqlc0891MxVcukzyf3LlDJGjV//Z/ept3f07XOVq7FCeEI4 iU7853uXfG/l4bsJlL+5Yk3P3t1z6IorD81fsxIm7/TuPY3fXnl0px2rdK6/p/6JP2pH5w4W Ghi/ZlNfp1RvbuST22INBxiPOmdiTo7H6w+oQMI5U+PkWKzhmMq3xP+4/ui3V0Wr6tNDcs1j 4d13RpnMLH2m+8ll6Lc4RWdiWt+MT8VP7QTL2xjbhdroy3hABp0uhmw/W7HmhfbdN+o0WP3X hpJfr3Qx/LnyePAP58Yq+el91u1/3XD4jgF7Zqb21ub9a3cYP4pSs+n0PsmCG/mFFiBy5JnB pQ/c/9RWp2bhwf5O2fjVzUe2OHi+a14wnHCyGRC99GB3zaKRVM/3wDau7VUP3eiSlxXEroOx 35+bGmb0q1QFQDXjSzxErr3g1QDWiXUvJXZd047Bi2Xd/oNFT376EAZn/2mAvdVQu4H3dYrY 7H4GVs05xKYN5PtnQ6SDjnTqw9evWXVqp8UnNQNrQVD62j53+xPL969tq2k60N+xeunj9fs/ 316z8OG+7y1mmOBgNjB+sFv9/cM3PyoPr91x8+7tR/58E2KDnJ7q4/FPLR7pZHzXbXGVk1xU +alry1SwtejzmBVvSqk3YqAA0UoWnJ1y/mlqvtea31p97MFM7Qbn1FYOlnDtD5uObo6nXj6w 5Kst+9cnuV0P7Ln90cwTn8mAgxp5eu+MpoNn2hdPnd2n/q02VnPgdNvnYnNPy3+Kg/3sa5sH b5y9TDg/q0+/0A4+9fbn+578VNyO98/41DycOl6l5CD7xbH4UiIeoQ5A/agf7RCDdAImheHZ rFDV+FAzU5lUz6aRH9TfvKvJyTpnnm5xXmtq3JI5sg5N/s1PHjw3sLq/UwEjp1ZKx+k4/UhP TcOx+ByW6lrc91wEDHZqYHXqh1+cv2WInf9iamDVyN8sb3xwUJ5fDsINuJW93SLfXA6Phbjd jvc5b8xnBav2rvvskMynNp3eKeMLD8Y+3nZkC9iZRgQQDKTmlfElHrjYq4McjXUVfUbJA9kh 9CiIAaT1ruKWrW/U0Y0+tJohPiE4TmEHZbn0XzEpoPQtiAzwp5ZmuL6CcKyDuDJEaTO4ICfp pWj0EAtzEJqD4zM+PjKs4Snd6hIhpZgHSRAm3kHBokSNGQf9LEuUep/xUfRZEhC3TWgG/w9R WoZpTE35JVcHDPZolOW9FO1Mq46NCxE/dcXI1RCMqoHxAHCOKxeCyAg8h0JooSSxmXAbKJUd phNC2BYHydJoFzNgdL++GMgTISZzSp8j2Et1Rz2cHDPs98jG1HfOixUx6lQO0gM23g+RHb1/ xsgJVYocGreyI1uVHT/GPzA//5I1f1vE+clGVewIhtjRB9r1LbPvWg4vCX60Lf+TFfDm2HUd fX/zregfrEJkd+XxqZ/cVHtL1ZmTicxQNvYn209tsxu3RWQhEq20UicGTz/Tw6/4rnp7Ve2t K3gokh+W6nydfGOuHVzBWDj4Ry0jzx8UH5iXfqmKn+lafOQ7g5zl1dmED44/tXdGf6+i2QO2 VS1pjexf182vuG/JAy1PrZc1C1jq5YflwCoWuy929aqRYdH4Z/f1d2/K53i0qio4JdnXyWLV 288NyZsf2LF/A4s3HE+1z13ymNj/hfrrt8jiYDtcMPtOkR5itXeKIzuFyian1hxTb6HNCUZX nHkmI2Ib3Xxb7Lr2kZN27T1fOb2PLf1O2/47MvEFdqqXuOrrn35baefBwzsuS/yRlhmpl5jK gmwBLFlhh+vyqdU8+MWamyL9HZuQ+B89LN9exc4n5n8teWSDWrr/0FP/YzFK8BU77KvvdXIu u7KPFdvmr88c+VoSvFN/+7wlOyP776qfsYBZkw8BOIkvYOBGbn4scmRLFuR99i0JPqUHUFCs biM4V3blAdAQ++pVmO68sp8V22M3VaW6V8OrQQwxs+3vn8DU9Eo0fpYSk5bLQsK+erXz2kIm qmo+uQlMQ+pHB+S5VYAs0MxvizR++SuHv70aMwFXHrc/shgUik07bk/pgDfkBzvs6EYQ3yWt iZEfJPqfVTWfbuvv5EjFPta40zq8AdRcBKdLcFH7l8n4rctHetr4lWQC31qMavuL4xheuZHZ fE/wfzHR30vpex5e+/z4KYOWeGqYTEFBxP54hRDhwFWrTz+xkF3oXtIqRk5kUy9/l4ivmn/H 4NFWsWT3w8R4gJ8PB65eda7XYT8/xKf3MF5nV/Tkf7aQf2Tekq3h/QsgVGyqXdcNUqNZ2LhN HHlQzoZwj7mxGyXI5uxbm/qfbmfTkHj7rbmOK9QvDrJiN5/csWRXZOSFJAycbEjYn/HnclwX BmqXsdOdYslW96kvA+0d0ZoDwY8sBol3Blap4MbYxzelh8WSvzx4um1xGoYb/GLtn7SBgAKz nVwWbGPjVnX4G8v5G/OW7Is8tUECrKv9025w90A7jODmbSA0svaujRCzBqsfzg+sqrl1eX/P 96wrDzAnOeNPWgCQ2tFmMGKA7Pn+ryWjv/+5M53k5PyDEGB8LzGeJ2rvGDi9jzd+o+nUvohM bmLB5Uu/337qL4/Jc5tiN9l9z3SDexFhu/ELdceezYgp3fHEiqPfSdbcIfueWM4utCzZqp76 CxCleY3bwvvXZ1VBLG2tOtoaEZNb0i9FluwUT90djs8RZ1542p52lH9gXizRfKZnB8BV9vbn rr+n7vSjmdgNyb4n7xNXbZIQEX2/GySLMnzRtfuP+mjruWFKfxbC0Zkyf5ZNAgfNRdFJOsMy WCnAtXEsiwxK16aMBFPnE7PvYP3PQoybiFXK1FBSiDqmetCb2wlAoDzEzp1IoihEFsZuzPY9 muHgyUIR5ywLzmT5oaRdleAqa7Gwk+0JiCqlkup8Q+xG1X8iaYuIzBKeCc7i+SFKJRZ8paaF UI130CwZUIEHlbuUlwTTJ1UJRmDVziZHbsqkhEy8bCsmuhwveyMIJWG0U3KGlAmlPI0yuUuu k4NnIRBymIZP8EpXTES7dtk2H1O+JVSNOSGuHTqwk7AS4ybhi2QCPYDXijlRjsI8gHbRQQhP d4joQ+iqHCgLjqBUVmT8tjjGTcQ0fC5PrH3+gB/xJ2HoDnFAI0BlIpecrspJAjlWGQzDzL3O UzLmgI0tA2OjbB5bQoNw2DIzyUze0xRZ4YkVyD2LYQXSMsUISj8D03LYheBPO6F9pGv2lxtS T3fFbm1wkl3pl+zoTCd10p59T13/o9nqz0bYhUPOTxbxinTqhWT81kVOfo8dXGRN7hropTdx u+bOcP8jSSKQiUmLYp9J9u8TrCIdDXEQ8VRPdzTRBOMbeGag+pZqCKBsu4lNxmdGb0imfhAp KMeaMgjX8Oc31YhoA7xv4DkQH1bBw5/f7yc1v23Ey3TXO6UdAiiULh6OQcxnz0zjlHPRt6u6 dm133xNN4KlZhSPsBpkZUJMW8QuHWKBaTDku3UDNAkunSnD6AwnBhcx3G1k5X8+mdGMKDT4X u4MhJaZjNnjgWasiEA1Mz4BZG/kb9ILcjoKNZ1c08+lJEH0xhccev43HbrIGTri6jjyBqSEc jwQLEZsjRMUAFxGYhf4nGsDi5s9WOYMAgXkwUu84A0CMyu/hwZXswsMqZ8/eFk2fSKNLQbWz Zy9jI886koyGHV1kT+nO5wCPRY4/mK5eYPMKcLdV6SFXnhXhkLKvSQ78cBFzukSkAa6EWDZ6 owOzrfIQY7L4LdHUCwP4KJD4cGLtfh+Jn5rqNQap5s5o/yPHZ3/53nM9e+XPV8ZuGADX5QwO cAzyE/nBbswkTW63JjW5+UMoZHdH00NpZ5juDjZU35AEJYapQN0ONvEpXU5Wzrvb7tvJ4ndG Rh5Jxm5B2otnrfhnq/uf3gvPKRSRdlEE2hPROQyct8uXgJ2xaj4bSQ9lVFbXRCKf9yNe23gM uGJzZGoYQnoYS9E5G0z/oA5l+QJG23Yk4WSA+BUgiOrNJvHRva4rapZxwFpMT1ugXrJw9KNt 6WGy1eE66fRYgUQwXJXPdECADk8GKRt4lqHUhIUoDmR+1lBxoQukRsok3M5EglckVRr5XbPM BVkuUIOAYJHbfWhHoSELzXl0pkoNq5rPZDI/mRu9Lt33RAOcr17A0j3whoTjJCOxlYULA+d6 M7PvqXbSXXa0AX6mwcpWgHo2Aef45K7+fRKzlsFF0ZkD6ZNRqUC4MxDJDXS6NXfVw3QlTzhi ehbe5by8kl21w3ltRfS67vSPE9IVYko7P9W9Op/stqMLVb5joFOn/MJrJzA1FCCiFedUKnTA n+nwHo0G4+gCdbUDgn8qVmG5TToWFumZLiyhDVdFWQgo6QTCEQxb0XKDy5P0PtC8DLBHt4hj gSTMdEsJBrYVSFSp/dQiZy4pB0C2IzKhjSd6A+QUHQzXTSQMd+uo2DTvYLkXXZRtek4ID1hU QfPqqZaL4Tq2U1DBCXEA8gXnH8ZqI3lSGVRgOiywxMPD6B2Vy2t23eaST0SPTg9mE6QMWqaN dFpj0w3c6wsE/1oaCGISjP9DnmsnQdO+k1PjNxYMgdAsuluabHOe64SHm0cOYCWz9CKlkY9y I9g8UUGsLzCq7yMWkzCoENA7gZn0cpgaE5WKjrprSZfCqN/G0nphSaoAaohCrDHVL4Pfsg4L RzD74Zo5QabDHRX4QK4IkboUK1smsQThD1wmcJhgZzTKkKXXY9rPL4DaTA5KV3dxfjnxQFFV mHp+THFVUecMvr2ChFPDFyzOFuh6DZ5A6lyHaxFjdJUsDdOh4h8nqdGZHLCKiFwoQ0ZlXa7r pqatjXJyXBVCvvVi7Z8wFWxyV4QcNaWgglaFi48kRuK8VAD+pQFRmZ1rdSZOUdcAeJSiCHF4 B8ox1oszlEyCC/Mu4GZd2QVwrueWkDfqGL2RP35bDTUQ6bqtVRx2A5Vioujvt4h4i+Tol6E9 lRPlhW0dFHho1Ksia5ytjOhoFK/QsEijcfCQEHbi4RljRZhupKCsoFVQAPe5CRUExE+KJEQ/ X1JrAtiZJVqLMa+JjWdUvp+gELI5mOrkaEBA0oBVldyAbFZqbStdO9om4bVFcNINlwIoSv9i SxmcsUvtqKhCljIDcbWsa8HWIUYpSxwBGM+p7YMssCx1e0xUxJk00guxKTzG9TLWSjsneptj Cis6dCt40mMVsQsgJynCovSvHpzOhZtIqqz1Fsv1+EsxJ8vCK23W9DPBojQGW+H3nBdphnQO 2lGF6PrxGz+pvYNjtjnndYS4wswW/jrKeM/dwszoEdEYWQCtMdkYPUxhScru6lAVuyq4wCYo qcUY7wInECx1X3oihj6wrNNSspxA6wMO82y1Ty3hqS8Fzw1JAD/StUTIphIWUkCTjXKM5GsB QvuGYbZXEkASPFrsMeNDD23jjSABYPLpDJFm3IAXEuKIzSuAzF2NMXK7nCaCRDh0mYKxZryR Lh2n6sSBNjvkTb1aiHdoj0sUekkEIwsunkS2adulW1Ix0Y7ksBCcpMeTGij0YI4c9d/M0GuE LsxYFh5bPBte79uaMnLSJswZMI3GYDe4bsEVHs+Yh5YIyWB7TMQTLOIizq6eeEEyrSUZfo1q g2d4rPESED8Mtg9xjk49kIvmwdZPAPIQdqXhhpdSEexs2Ccf/xSo67NoFbHFTknw3dTZQrkP ygyw8iUQBs+IUT1wlUmquJTQQpkCISLhUmkuopqLpCpAqq0fWhyWoIw8RJDPFIpQIyCeAY/L DQgEPjgB0EBet278ChQyvpO6fLGLR3EDEb3iFYEZSrJgqYhbAWcoDyMLhIRXPdPWSerxKWbM HpCmsmnGoySFgnTTQXHPwaMCqO+VeujaUoEd/0R0l+UC8XalGQ7XjmAWkOTnoLDVuRd71Kj/ TVDlGAaCnoiTjGrZ1SRpHcAzIWaag6m1jRqf6IWzRHFIBkI069jlFOWW10+PBiqoZw/8bqDS a0/UoHUW/hdpn0OFsBCG6/IlzmcqgpP+zVichFuV+pqwiS8nRKXpYyYXi4CQ8mHUpRgCiXeK WazUeuVMsN8wIYgHAiFK+YGLLOgpAjEKoObAPBCaKA4roF0ZnZXYXL6rMQ4UOL1APCE0CxkI Y0EuCQigfquJr2C/Iu1mfRAuHyArAbGGXalbF7EpkTJ9qInMynOIC5nuGVTUFKD77hi5Z1IM su7wQWXzTEQDllEhMlnaJ2Djuw2uM2Qa/mAQ8V2NTBsjrToEUECaLLTSwjdy/dKkvk5a1GAw jNdjYXnQAlOTtDIipCvgguReGldjGdEnr4wd/EAYtajCEBw0HZXUv4KgPA/spykSo/YHggbs g9dJT2kMGKJLxJbFYR4ITVTE2RToe4yLkKUZVlZ6xmFT2IZPIs8BnBZiVkAHEWP6hMkQwRAB MDIdjYAJCtlMgbWxlbd2CMedc3iI2A8fwraoQBjg8E/EdqHLsEmIMpSELTX8clmI+K6qmNT/ LMqBHen73Z3mhjFx7EXH2LWT5RiaFTf9/R3UFY7RorDn0FKJnNKtCl4eGO4Mgi7Js4obKpRX +kcLpobSitMKHC9ixtLf+AEU9k72ooUMzDp+7YZRH1qOBd3SshNWttySeYModW0XN7+yIQOE oFMBDQU9zY02aesmBdQE1wqENFsFwy56hXjGQwPCaw0iOJcjnMbDvl0GGtXwQOTohzd4ZLOx NJcPZOxa0dHR4V33v7plEMOHkBxNN2i0g4g/zwpBhQkCRckEQsfaj7oa0TkmmWLEBc1EAKyG f8rgS1NHhlHKA5EDQDsr5/GlBHqMv3hCzLDuf319N3MNAtWCTtS58H4+3VNG7LFwUB8YKUcF 1Zv0mxWqupf4oTOY7/Evdm+mbiyQmvCxa+/2EZZxGV/q1C5dXNz86oYkNsZotIvOVXNRAxVX Gy6YiHyvE7wJl39KU6IyMQCgHQhVNRxDTIwOFnB8xGfxGdB+phNv5+HjH9vqT/KEE2Kmq7j5 9Q1JjYmpD0lAEE5ZFwSbXiJI6XyVHbZd3cTCb4vtYjrlQbECDtxmxmARCvXtTfFSBmBtj31s mz/N5Wo5rsjgh/tfuaPbiAOKwABBMpM4AtQJp3BhHPiCXidQSYk0KmdZtBoFcc8JQGRKx7io 6rMooC/UrXtx/IamlmmpTgsLkOIgCM1luF4OjC/9k2p5dUOPQi+vFT7NrKiBhhgo2Z4mGMwF Lk2A/Wm9NoagvgJDvUyvAutKb/DqfrjsL+TbZfAbJt4Ztn512nX1DCTvlxOaS3+6quUfwExi MSuAwL4ixc7HmB6Hq9MQKE8gK5leGbkpgtkqyaO7GimJTMXjImJhkh8EzjYu1Z6uJopcp430 FkHsAlXHtJ0cXX7Dyuz3WDt5kX81Ayy2vNqaVdmMHbIpJ51iLEbarGNuTOdTctN1jMQ7rmtT WoHr1CZIfHQOxp+0vFQ4QwiWmH+SDEt/SJs2kx09yXAFpUFlVgTC3rrw8SWGXTQn7P7/8+Cg JJYhH2VKFaI6chEh7jKympRyKvam7TlBxEL85ppdAMnOkp3BIIRH5lAehBNMHQLCASJMXMXB xnr72Ie3soGepKhgdpilB7ORsIjE6sa3k5caeJyT+//hwUEMlCzh8TtowgNGpQ2XsjFcFLMZ TDtSmliSG7ZDKGcgNMFKyyxDhVA35+J53yLOqb1T+3baLKQC9oFr15cZ7PHkhqmJfwVgkCy7 3+RnPMBlGi+wSDCseCXBdYyb9AEIR1n5YRfsJK4VxsDHUjmXVlb7F0JAXTGQ4TYig3QyQ+Aq oxcsu8VsWIABxg0I0sOs/o8Gs+erMkMZULnoJRsZMGK8yuVJLbmSKXKuGtu4GFAYTMGcYQnR NXJdpycLmJFmKuOctO3pCgIGSZlnlWUAwJmI+MUgWAjBudS0Dwwk5XkhpjhuAWSNsQtJiKrs 6Y51RVPmrIhc3SF/XpdMJkGF6urrLlJkZPyDSUQs1AYBtlBRSgfTjHpJHpbgMAdqk4bCDMSf uM2siPcSfgBEQWa5XjWpcB6Y9LeTm+OpHE0gSU3PQAc7H7amZPnUOqSnmGHFbCQSZoFEe09P 000Wm5To7h4AniWqExdJDUr8lm6Ck7ZBvnpFn9IZGsditkvG2w5xp6yY5aWOuTCD0k6XoRbP VOpsla9zBVOD82qHD3zoTjbmGMPUss90lOuGZyY3/egzXXpdsx2OWgjW825WFgu6QAX+idaG hjDEABQj+JKaJ+gpUmL4jjqBRbiUM2RWZOGKZ1zo2rDuxQl7U+B1xz60jCWTPZmcikzHopeF i6UVKHt4WlNWysjVPfIXCzOpJKPwJnM+0XTTxXaSpAZENkCBNRkNvX4PYwqsQFGvfgQRrvRa mYgpFD8JUSEdCDBDTNcrlU4ZTNgTNIwwjtvHIIBqb+9gU9L11fXJwQxoqHy7u74qyqctTA/J 6MeTyR/VO291AB3RaMI5K+rnjPW+QPvODLaQhsHhZ3Rq3LL03hUg1RCTB0BFHeAyiRjftaSG Y+VNylKFhOosjMoiykTEnJaz+HZj/YaIZ1gk/vfQfhSEptfFaJICKNxrRTFa9ipZUdLL4P5I ciiTmCkHfpyIVGQwmC5EhEDrMTY8uf+fH0zismisuUlJuV8TuSqTJqcVo5Iy57zm8du0dNDf qcJKphne7ZrklqIWLS78uwxSvRgla+daro1W2YdyGHOxhSlHNVuHcEhKB3pe2odKBbQ4VOp1 TlKH47SjgKUo2eSatjPDDEoN0Xk5oX9KvYRQH4QGo+5yAssoLa06uCjqHqutLa9sGOIhC0uV rtDb9pgcPMf0LObQdAkYfqKdsWgNPLZZgDEGs8lwYwYcNWW0yEBhmO6/jqhlBkk8POLAtVsn jo/GA/EXoRpABugoqaRK9sPSDXxuRvdJWSTaMAYq4mNOWJoACp+B6x8KNEW4ZJ+KgAjN/FHN jJFOMGC2Hfmr31k24ZY5l9r7cVBNF+NBNH5Ua6bJp+QSrXTGZKQpN1u4vonGJeVLNq+UeqSE 2IyigiCTHxMTLLdExlOSzPorsPHji/I75H0RpGaQOll1kRP7WkgMcY8LsCm0uYBbANUtWHoL A0X7y7ACarWlsIcU+FiqUps0KA+v89m9A2g/SfV2oP1OH1Ee4/3H5mrKP4DErx8E8yKwKC5c yu+BPEAwBMYSay1YDqYV7y6PP7TE1M6xYoSdRqgIgAyKmBl2dQCly1f+SxZRanqx/qbt5Pii fOmv4/Je3f8vGIR4Ox0ULBIThDHYKVKgalhFqeUHrsDADRPpmPbAyDVgKWwI9KC4KRSJqnXj IzKzIgRjngOG8RMkycZNepSlO159cNAUPdF8hMjuZXTd3ipANA4SAP4J5uDmmsdxFT/gBkw3 CeXoFUSAQuBDCfKjBQDkFk5crj8eIdmyMbZx/CGMl1otc66DGjyasj71g3ktzVjXohViuqqi dL8IOq0Kh9SVBzCxxrzACvPeeCX3W0b0G6Gd77o5/usg/tTeeP9J9AsifODDd44xI5dN1IyD 47dm0LN6Le+UqLF5mI16ajIhlgYE1ONi0XYzdLvCWF3XcTR6lnmVm2CjoMGRlhe3fA8Zbx/4 HWK8r6m5JOq+ZAT3/3TnoDI7xrgyV2SFBl6ZxMGAtnLK1hGzY7s+gZUehbl2IAd8lqOpN9hA BKiHi6A0o+WW4zvX7LnBdLblp1t6uH0UAihfav2SSxfBSUw06Y4Jx2vXoAvNIgVdChejcb2p GTAeKr1sFAspveqP+9E+mMpAPPD24Oo3Tn53jKn5ZeUGQ/RNLy/oNjUgHg3cxLnKFyF6OasL OFRfYm6Qr47tKtAayFInIqWCkX4EA3lniDa74bTSvwCGtN6nNwUYn8WJkv/UaX3wxneqrj4X YL5DuaalUExHMAPYzArRth/6vFtahsmoS4Jmhlr4wGthxoxlcAc6geiHlmpK/5T24LmMdM32 RoQ9LpeQ8Z8WhtnJISMWzAOSQu/dRe1wHEEZb22McbJAuDkYxw6soqsXdBg0gINihMr0oF6K +DB+8Fya0KeuZ0mz0PiXz8ebyHVrFheX6LUvQ2kejmrQ4kk+Y6avBoXCClHXq1JeIwr15whK 5ytGG7PRgLiff9JCM3rQLrK/osQjFB5EtF7g+lHGumP0pFOTeHXs8dsIt5ibNfQx64uCFtM2 HkdpUV0w53BR7UM8qKvua1Nvd+x9qG7l3Zi0msgeTiDxxU2v3J2jyg3uFYVY2CoZFIG0IMDF zDbmmmbZFCjhHkXURI291sot1XupAgWIKAeyVjeRxBMd/7aneV1m0ao9VZWuXl7+K9h4zE4a 1wL/8tSYwElDVSDMUWqofwbXV4vK0t5f3Gy3oyjBMctrEtbxN5hXsPGXYXz3sR1VVfaObVbz Nxdid7i8jMSPb+PXd+sia1nvol5zRgOhxgJ4fXHIEZU2MzEIx4DRIlCv7Y/XTuyt8vaLQf6D aeePL4n/+og36qpk85ruRH09+9ftyb9dsWNXVJFBGE8nfSv1XhXHVGuYladGGnQ2lCOQEG5Q 9hRoV4FKLz1PMQlYfV3uE5XUuy2p7QxfBsan3idJRhKv+L+1HHoEE0vRWSL9csOiO8P4TNor 75dyrv+wNQu0UxMLR2Zz6r5CQwjCjaXh+K5GTAXpji1zgAKcZaTkDJuFZmnGo8SDjWdWmvF6 P2RwLuNSJnCgp0cW0+2Pib37V6jSn/UWBpdEf/6MBwdVxPYlbOfQkkLtBpjWzmDZlZ6ghpVu HaNVG9LzScw5QaU/V79fdyWBgfXLrHrAAGd277e72YWk/HnTvd+I6r86OSWsdxD8sZKpGUQs hjoJopECg45sL1B9STmWXkcJ0u0M6yoOyFHENf3Hum7pUAsfxVC4dAaQQUadrfPB8cc7kldU MtqzwuUXBg4d2pv5caRhcXOiEoLkzL3r5L3fiIyLjscBEAyxcDHrYOkPn43E4wIR3CCNUaFP 0IoQp4j5Xt0exakUb5PQ6E4y3d+E2IDaxidsuI3/vOpgsNITkv/bvOehhMwnQfq3/8WK7lMr 5b/uaVpQtgp0YueKRRzsVCKMYpmeSkvPjIP1JgRluIyCGqUsuk83T2LSAh9Fm+CQzGC3h4MX 8Mi6F33yHfHUyaprt93H9W61SmbO7JBvVh961KlvWtFww+ChtkPV85qxovNO4CSW/swv2B2e s1H7KvTKkTwjz6Q3NaVmBK4bO/SqZurVggmhfmNDu6Tyc7VvTxBum8L58t9vrccnYEY3m+nb kxzmiZomO1Kl3mjb0Sru/Wa9twXLhM5VMx51U+qUF8q63kPG5cFdtxks7LUsmoZQZZqCSl3W uuqjm4LYBEtxgPGdSE2wCsPu5jU923cvZG+17fhamk9bGQmrulkR+Y872p9var5HXMZBqU0/ giAEq8X4N5JpnHVw93ipENilJXX7ACJlO0w2XlE/vaCdkCuA3pQ2b4ybnTqFXe3fV5MaBihk 2bMg6ubZf9zefnjFxrttfiHdvJVVXzeYfmV58xbZcWCl+s/3LrolrPcoHT+6pb4a78G639ih vitiNL820GqFaaAYiKtsirCZ8Jbe0V2jKwdwHpxhsHRSFhq2vO5fTMBmM27/FXWS8fZj29k/ r1i0TOx5YLD6k4fSryUS8RWR65Lth/Y2zN+BPY4XZQpKvC9ufnVr0uzCaLYhNkvU6UKHiSAj xo/qo0b8MDMhyb1RMw8VFHMOtrr7Bn//cbTvarR/3cSbda4AHvgx3VcjpmS2b967YtUO90Ja 5rv3fCcj/uv27dsEm5zc+0B3U1OTjft0j6OujPLx3lIY5QxlcCGbFSSNZQSNCanrOy3bq1ig f6KOT42ZdPsxrnuUWEXEAMo3sxrv79QJqgOm/RAe8VbH9q1s++76niHZ1dYO7xDTFt379Ujm zJ7tX002rT5UX2n2/hybp9dm0nRIKJVm2N6hV30BnrktT3lKlGnqg7e92cGVKzyEZTCZk55z BUjGJWbL0E76brYztW8fvMsZ2wYnsv94757dTdtbRUdHO0JCO4Jm0+JdHV3dL2S2f2slu1R8 0EElVc7b+aqC2m1z3n5VaA45mXbH6QWOMtJWzDJRdI3YRmJ3MW39gKsYLOrfheDPj/HYjNWL SwoDkQPXbijHjLzj6Er1//Y0/Pdk9w/DA8f3Ilzevgch/hvt7pVNgsz0WLND6Q4vgsdmLFwR wmnFZKPdipfYeq89Z9gRIdpbvNTIQt4ZFxmHSP/QkCqZRfjMw34BFKkrakdw1picNrKuQoLo NyzeLq7qTqd7ErGF3YODDfUL9a7SSK+rVDnvMQjpIVmiLWtxyyxb5z7Qg8o0rgmlpnWAvKQG ZkEtdXZz+qAbDVyYFur+xiVU9iw/oaFCPSLs8r7PUfZPTrY/kq2vX5g913GokznJgdhNkfp5 zRDd0koXCBf07v4ax29+fdkAijSt6KLWlKkMy8SMtzYGNUe06QE4icu/6QnSxV3fGXiznEOj cIn9WGzGFnVrgo2RS10GaGq2skvcDnchHL8nsefxaM+Q09W2NxKJiA+ubFpmRANBdClWKTV+ WhTA4B67eh2RMZme3ycazXoePc0wLQ7lXpWYZXvaz2gojPlmJ7E1ZRgfHrCNqbnEd/KeU83O v2xvuCHT9QIKjd6kufQGpE566Y5lg15x0OYVaYWFG/gDt1uv1VdzQojClbJEAZ0W2ExcsMHU YPRl6d3XBBaEQG4C9T778x7ZPC01jHIbAMZvGx/k8snJQ99PRmastK9zwrbNWdnhWrQNP9Gv Nr28LKm9UymK1pQxDfYIsWJ2prSntWfncRAcx2SFbb25NNN1ZXjI+Yb14wMD7KvpxYcExFFD +3i855PTzWu7m7/VLCyzqqt0GN8E/3NaXt3aoXK4lTYr7chfAcbxwzaIY2njaAOWdSVZmEmg z9zNYlxLY3R1yzRCsgmw8NTUMLa7BMIHP7RBme3K9TJWY3R0qcViH2jPvLKoeo6m3GxZY1b9 6SUHDkjNAP5KKky2VujPbMyO20biLGbeQl8bgfUHN2dhytJMHddQeKI27Xeddr7z9/i7SHxp pVD5pCrvG1J0hUhM+8LxDy4QzGwAXuaHvF9BbH66du6FYX2Ft3G/930DFv1zzddJeF83or+3 gHYGp8tcveCHNnCgrQdAjAIJn437qeFWeVtAMrJhXsKWGn1db1gWD//u4112aHT7/bLD7GjO VNvLn96jmN7326u+bv3QaMRLkat3V+n7OkpnCkLQ6idaNkm74yPsT/h9zwaugcLluQTrsHqo d74nxtDg9fcNGKPT9Mm/3shpi3KP5otUlxWdVS96tRwjItzsbODqze+lXttO1rD8TjVqe+mr Gbgmxj+AOrw6kOrV1QeblhBjQIPD1jvgl9wQM9wOiPCHvn4oWMlZiWp6IS+j440Xmv43bhao zfeH+E5tEgusjMHMCgm9l39pmPizQBZKn9RzW+Au9/26h9WB/scQVChd9WG0/wnj+gtTXPpq Ilz8Sg1WujWTBRb94XMbA2WKWi4/Omf1dw/UvPGc3nVMf8cJ7YVfwCAPcJaRubKvs2CaVy7X G2Vgp42ujijHClSvH5/2021zaa8dnfVxWWmVvrd0tZREGj0Q9N/3ext0ED76V2/G6Yzq+ekW 3CCUP7mkoUwqShdepO3muaNs4PTtFS7T2y8t3f3weMS/x47/SNr5r/t7b99n/Ds6fu18f5/x 7+j49fP9fca/k+Nd4Pv7jH8Hx7vB9/cZf/njXeH7+4y/7PHu8P19xl/ueJf4/t5m/P8H99fp UwplbmRzdHJlYW0KZW5kb2JqCjEzIDAgb2JqCjw8L1I0CjQgMCBSPj4KZW5kb2JqCjE0IDAg b2JqCjw8L1IxMgoxMiAwIFI+PgplbmRvYmoKMTUgMCBvYmoKPDwvUjkKOSAwIFIvUjExCjEx IDAgUj4+CmVuZG9iagoyMyAwIG9iago8PC9SMjIKMjIgMCBSL1IyMAoyMCAwIFI+PgplbmRv YmoKMzEgMCBvYmoKPDwvUjI4CjI4IDAgUi9SMzAKMzAgMCBSPj4KZW5kb2JqCjI3IDAgb2Jq Cjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvVGltZXMtQm9sZD4+CmVuZG9iagoy MSAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL1RpbWVzLUJvbGQ+Pgpl bmRvYmoKOCAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL1RpbWVzLUJv bGQ+PgplbmRvYmoKMjggMCBvYmoKPDwvU3VidHlwZS9UeXBlMS9CYXNlRm9udC9UaW1lcy1C b2xkL1R5cGUvRm9udC9OYW1lL1IyOD4+CmVuZG9iagoyMiAwIG9iago8PC9TdWJ0eXBlL1R5 cGUxL0Jhc2VGb250L1RpbWVzLUJvbGQvVHlwZS9Gb250L05hbWUvUjIyPj4KZW5kb2JqCjkg MCBvYmoKPDwvU3VidHlwZS9UeXBlMS9CYXNlRm9udC9UaW1lcy1Cb2xkL1R5cGUvRm9udC9O YW1lL1I5Pj4KZW5kb2JqCjI5IDAgb2JqCjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5h bWUvVGltZXMtUm9tYW4+PgplbmRvYmoKMTkgMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRv ci9Gb250TmFtZS9UaW1lcy1Sb21hbj4+CmVuZG9iagoxMCAwIG9iago8PC9UeXBlL0ZvbnRE ZXNjcmlwdG9yL0ZvbnROYW1lL1RpbWVzLVJvbWFuPj4KZW5kb2JqCjMwIDAgb2JqCjw8L1N1 YnR5cGUvVHlwZTEvQmFzZUZvbnQvVGltZXMtUm9tYW4vVHlwZS9Gb250L05hbWUvUjMwPj4K ZW5kb2JqCjIwIDAgb2JqCjw8L1N1YnR5cGUvVHlwZTEvQmFzZUZvbnQvVGltZXMtUm9tYW4v VHlwZS9Gb250L05hbWUvUjIwPj4KZW5kb2JqCjExIDAgb2JqCjw8L1N1YnR5cGUvVHlwZTEv QmFzZUZvbnQvVGltZXMtUm9tYW4vVHlwZS9Gb250L05hbWUvUjExPj4KZW5kb2JqCjIgMCBv YmoKPDwvUHJvZHVjZXIgKEFGUEwgR2hvc3RzY3JpcHQgNy4wKQovQ3JlYXRvciAoTW96aWxs YSBcKE5ldFNjYXBlXCkgSFRNTC0+UFMpCi9UaXRsZSAoQ2FuZEM6UGFuZEUgUmVmZXJlZSBS ZXBvcnQgRm9ybSkKPj5lbmRvYmoKeHJlZgowIDMyCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAw MDAwNDc3MSAwMDAwMCBuIAowMDAwMDE4Nzg3IDAwMDAwIG4gCjAwMDAwMDQ2OTggMDAwMDAg biAKMDAwMDAwNDgxOSAwMDAwMCBuIAowMDAwMDA0MjI2IDAwMDAwIG4gCjAwMDAwMDAwMTUg MDAwMDAgbiAKMDAwMDAwMTQ2NiAwMDAwMCBuIAowMDAwMDE4MDk2IDAwMDAwIG4gCjAwMDAw MTgzMDQgMDAwMDAgbiAKMDAwMDAxODUwMCAwMDAwMCBuIAowMDAwMDE4NzEyIDAwMDAwIG4g CjAwMDAwMDQ4NzQgMDAwMDAgbiAKMDAwMDAxNzc4NSAwMDAwMCBuIAowMDAwMDE3ODE1IDAw MDAwIG4gCjAwMDAwMTc4NDcgMDAwMDAgbiAKMDAwMDAwNDQxMCAwMDAwMCBuIAowMDAwMDAx NDg2IDAwMDAwIG4gCjAwMDAwMDMxNzIgMDAwMDAgbiAKMDAwMDAxODQzOCAwMDAwMCBuIAow MDAwMDE4NjM3IDAwMDAwIG4gCjAwMDAwMTgwMzUgMDAwMDAgbiAKMDAwMDAxODIzMCAwMDAw MCBuIAowMDAwMDE3ODg4IDAwMDAwIG4gCjAwMDAwMDQ1NTQgMDAwMDAgbiAKMDAwMDAwMzE5 MyAwMDAwMCBuIAowMDAwMDA0MjA2IDAwMDAwIG4gCjAwMDAwMTc5NzQgMDAwMDAgbiAKMDAw MDAxODE1NiAwMDAwMCBuIAowMDAwMDE4Mzc2IDAwMDAwIG4gCjAwMDAwMTg1NjIgMDAwMDAg biAKMDAwMDAxNzkzMSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDMyIC9Sb290IDEgMCBS IC9JbmZvIDIgMCBSCj4+CnN0YXJ0eHJlZgoxODkyMQolJUVPRgo= --------------1F857648186AF07891E2708C--