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1 Introduction

Distributed messaging systems broadly fall into three different categories. Namely queuing systems, re-
mote procedure call based systems and publish subscribe systems. Message queuing systems with their
store-and-forward mechanisms come into play where the sender of the message expects someone to handle
the message while imposing asynchronous communication and guaranteed delivery constraints. The two
popular products in this area include IBM’s MQSeries [23] and Microsoft’s MSMQ [22]. MQSeries oper-
ates over a host of platforms and covers a much wider gamut of transport protocols (TCP, NETBIOS,
SNA among others) while MSMQ is optimized for the Windows platform and operates over TCP and
IPX. A widely used standard in messaging is the Message Passing Interface Standard (MPI) [16]. MPI
is designed for high performance on both massively parallel machines and workstation clusters. Mes-
saging systems based on the classical remote procedure calls include CORBA [30], Java RMI [26] and
DCOM [15]. Publish subscribe systems form the third axis of messaging systems and allow for decoupled
communication between clients issuing notifications and clients interested in these notifications.

The decoupling relaxes the constraint that publishers and subscribers be present at the same time, and
also the constraint that they be aware of each other. The publisher is also unaware of the number of
subscribers that are interested in receiving a message. The publish subscribe model does not require
synchronization between publishers and subscribers. By decoupling this relationship between publishers
and consumers, security is enhanced considerably. The routing of messages from the publisher to the
subscriber is within the purview of the message oriented middleware (MOM) which is responsible for
routing the right content to the right consumers. The publish subscribe paradigm can support both
pull and push paradigms. In the case of pull, the subscribers retrieve messages from the MOM by
periodic polling. The push model allows for asynchronous operations where there are no periodic pollings.
Industrial strength products in the publish subscribe domain include solutions like TIB/Rendezvous [14]
from TIBCO and SmartSockets [13] from Talarian. Variants of publish subscribe include systems based
on content based publish subscribe. Content based systems allow subscribers to specify the kind of
content that they are interested in. These content based publish subscribe systems include Gryphon
[5, 2], Elvin [33] and Sienna [8]. The system we are looking at, the grid event service, is also in the
realm of content based publish/subscribe systems with the additional feature of location transparency
for clients.

The shift towards pub/sub systems and its advantages can be gauged by the fact that message queuing
products like MQSeries have increased the publish subscribe features within them. This intersection
of mature messaging products with pub/sub features serves its purpose for a large number of clients.
Similarly OMG introduced services that are relevant to the publish subscribe paradigm. These include
the Event services [29] and the Notification service [28]. The push by Java to include publish subscribe
features into its messaging middleware include efforts like JMS [20] and JINI [3]. One of the goals of
JMS is to offer a unified API across publish subscribe implementations. Various JMS implementations
include solutions like SonicMQ [12] from Progress, JMQ [25] from iPlanet, iBus [24] from Softwired and
FioranoMQ [11] from Fiorano.

In the systems we are studying, unlike traditional group multicast systems, groups cannot be pre-
allocated. Each message is sent to the system as a whole and then delivered to a subset of recipients.
The problem of reliable delivery and ordering1 in traditional group based systems with process crashes
has been extensively studied [19, 7, 6]. These approaches normally have employed the primary partition
model [32], which allows the system to partition under the assumption that there would be a unique
partition which could make decisions on behalf of the system as a whole, without risk of contradictions
arising in the other partitions and also during partition mergers. However the delivery requirements
are met only within the primary partition [18]. Recipients that are slow or temporarily disconnected
may be treated as if they had left the group. This model works well for problems such as propagating

1The ordering issues addressed in these systems include FIFO, Total Order and Causal Order
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updates to replicated sites. This approach doesn’t work well in situations where the client connectivity
is intermittent, and where the clients can roam around the network. The main differences between the
systems being discussed here and traditional group-based systems are:

1. We envision relatively large, widely distributed systems. A typical system would comprise of
hundreds of thousands of server nodes, with tens of millions of clients.

2. Events are routed to clients based on their profiles, employing the group approach to routing
the interesting events to the appropriate clients would entail an enormous number of groups -
potentially 2n groups for n clients. This number would be larger since a client profile comprises of
interests in varying event footprints.

The approach adopted by the OMG [29, 28] is one of establishing channels and registering suppliers and
consumers to those event channels. The event service [29] approach has a drawback in that it entails
a large number of event channels which clients (consumers) need to be aware of. Also since all events
sent to a specific event channel need to be routed to all consumers, a single client could register interest
with multiple event channels. The aforementioned feature also forces a supplier to supply events to
multiple event channels based on the routing needs of a certain event. On the fault tolerance aspect,
there is a lack of transparency since channels could fail and issuing clients would receive exceptions. The
most serious drawback in the event service is the lack of filtering mechanisms. These are sought to be
addressed in the Notification Service [28] design. However the Notification service attempts to preserve
all the semantics specified in the OMG event service, allowing for interoperability between Event service
clients and Notification service clients. Thus even in this case the client needs to subscribe to more than
one event channel.
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2 The distributed model for the servers

One of the reasons why one would use a distributed model is high availability. Having a centralized
model would imply a single server hosting multiple clients. While, this is a simple model, the inherent
simplicity is more than offset by the fact that it constitutes a single point of failure. Thus all the clients
present in the system would be unable to use any of the services provided by the system till a recovery
mechanism kicks in.

A highly available distributed solution would have data replication at various server nodes in the network.
Solving issues of consistency while executing operations, in the presence of replication, leads to a model
where other server nodes can service a client despite certain server node failures. The underlying network
that we consider for our problem is one made up of the nodes that are hooked onto the Internet or
Intranets. We assume that the nodes which participate in the event delivery can crash or be slow.
Similarly the links connecting these node may fail or get overloaded. These assumptions are drawn
based on real life experiences. One of the immediate implications of our delivery guarantees and the
system behavior is that profiles are what become persistent, not the client connection or its active
presence in the digital world at all times.

2.1 The Server Node Topology

The smallest unit of the system is a server node and constitutes a unit at level-0 of the system. Server
nodes grouped together form a cluster, the level-1 unit of the system. Clusters could be clusters in the
traditional sense, groups of server nodes connected together by high speed links. A single server node
could also decide to be part of such traditional clusters, or along with other such server nodes form a
cluster connected together by geographical proximity but not necessarily high speed links.
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Figure 1: A Super Cluster - Cluster Connections

Several such clusters grouped together as an entity comprises a level-2 unit of our network and is referred
to as a super-cluster, shown in figure 1. Clusters within a super-cluster have one or more links with at
least one of the other clusters within that super-cluster. When we refer to the links between two clusters,
we are referring to the links connecting the nodes in those individual clusters. Referring to figure 1
Cluster-A has links to Clusters B, C and D while Cluster-B has links to Clusters A and C. For two
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clusters with at least one link between them, any node in either of the clusters can communicate with
any other node of the other cluster. In general there would be multiple links connecting a single cluster
to several other clusters. This approach provides us with a greater degree of fault-tolerance, by providing
us with multiple routes to reach nodes within other clusters.

SuperCluster-I

SuperCluster-II

SuperCluster-III

SuperCluster-IVSuperCluster-V

Figure 2: A Super-Super-Cluster - Super Cluster Connections

This topology could be extended in a similar fashion to constitute a super-super-cluster (level-3 unit) as
shown in figure 2, super-super-super-clusters (level-4 units) and so on. A client thus connects to a server
node, which is part of a cluster, which in turn is part of a super-cluster and so on and so forth. We limit
the number of super-clusters within a super-super-cluster, the number of clusters within a super cluster
and the number of nodes within a cluster viz. the block-limit to 64. In an N -level system this scheme
allows for 26

N × 26
N−1 × · · · 26

0 i.e 26∗(N+1) server nodes to be present in the system.

What we essentially have here is a set of strongly connected server nodes comprising a cluster and a set
of links connecting a cluster to other clusters. We are interested in the delays that would be involved in
connecting from one node in the network to another node in the network. This is proportional to the
server node hops that need to be taken en route to the final destination.

We now delve into the small world graphs introduced in [35] and employed for the analysis of real world
peer-to-peer systems in [31, pages 207 – 241]. In a graph comprising several nodes, pathlength signifies the
average number of hops that need to be taken to reach from one node to the other. Clustering coefficient
is the ratio of the number of connections that exist between neighbors of node and the number of
connections that are actually possible between these nodes. For a regular graph consisting of n nodes,
each of which is connected to its nearest k neighbors – for cases where n � k � 1, the pathlength is
approximately n/2k. As the number of vertices increases to a large value the clustering coefficient in
this case approaches a constant value of 0.75.

At the other end of the spectrum of graphs is the random graph, which is the opposite of a regular graph.
In the random graph case the pathlength is approximately log n/ log k, with a clustering coefficient of
k/n. The authors in [35] explore graphs where the clustering coefficient is high, and with long connections
(inter-cluster links in our case). They go on to describe how these graphs have pathlengths approaching
that of the random graph, though the clustering coefficient looks essentially like a regular graph. The
authors refer to such graphs as small world graphs. This result is consistent with our conjecture that for
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our server node network, the pathlengths will be logarithmic too. Thus in the topology that we have
the cluster controllers provide control to local classrooms etc, while the links provide us with logarithmic
pathlengths and the multiple links, connecting clusters and the nodes within the clusters, provide us
with robustness.

2.1.1 GES Contexts

Every unit within the system, has a unique Grid Event Service (GES) context associated with it. In an
N -level system, a server exists within the GES context C1

i of a cluster, which in turn exists within the
GES context C2

j of a super-cluster and so on. In general a GES context C�
i at level � exists within the

GES context C�+1
j of a level (� + 1). In an N -level system the following hold —

C0
i = (C1

j , i) (1)

C1
j = (C2

k , j) (2)
...

CN−2
p = (CN−1, p) (3)

CN−1
q = q (4)

In an N -level system, a unit at level � can be uniquely identified by (N − �) GES context identifiers of
each of the higher levels. Of course, the units at any level � within a GES context C�+1

i should be able to
reach any other unit within that same level. If this condition is not satisfied we have a network partition.

2.1.2 Gatekeepers

Within the GES context C2
i of a super-cluster, clusters have server nodes at least one of which is connected

to at least one of the nodes existing within some other cluster. In some cases there would be multiple
links from a cluster to some other cluster within the same super-cluster C2

i . This architecture provides
a greater degree of fault tolerance by providing multiple routes to reach the same cluster. Some of the
nodes in the cluster thus maintain connections to the nodes in other clusters. Similarly, some nodes in a
cluster could be connected to nodes in some other super-cluster. We refer to such nodes as gatekeepers.
Nodes, which maintain connections to other nodes in the system, have different GES contexts. Depending
on the highest level at which there is a difference in the GES contexts of these node, the nodes that
maintain this active connection are referred to as the gatekeeper at that level. Nodes, which are part of
a given cluster, have GES contexts that differ at level-0. Every node in a cluster is connected to at least
one other node within that cluster. Thus, every node in a cluster is a gatekeeper at level-0.

Let us consider a connection, which exists between nodes in a different cluster, but within the same super-
cluster. In this case the nodes that maintain this connection have different GES cluster contexts i.e. their
contexts at level-1 are different. These nodes are thus referred to as gatekeepers at level-1. Similarly,
we would have connections existing between different super-clusters within a super-super-cluster GES
context C3

i . In an N -level system gatekeepers would exist at every level within a higher GES context.
The link connecting two gatekeepers is referred to as the gateway, which the gatekeepers provide, to the
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unit that the other gatekeeper is a part of. A gatekeeper at level � within a higher GES context C�+1
j ,

denoted g�
i (C

�+1
j ), comprises of –

• The higher level GES Context C�+1
j

• The gatekeeper identifier i

• The list of gatekeepers at level � that it is connected to, within the GES context C�+1
j .
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Link connecting super-super-cluster gateways.
Link connecting super-cluster gateways.

Link connecting cluster gateways.

Figure 3: Gatekeepers and the organization of the system

It should be noted that a gatekeeper at level � can be a gatekeeper at any other level. In fact, every node
within the system is a gatekeeper at level-0. Figure 3 shows a system comprising of 78 nodes organized
into a system of 4 super-super-clusters, 11 super-clusters and 26 clusters. When a node establishes a
link to another node in some other cluster, it provides a gateway for the dissemination of events. If the
node it connects to is in a different cluster within the same super-cluster GES context C2

i both the nodes
are designated as cluster gatekeepers. In general, if a node connects to another node, and the nodes are
such that they share the same GES context C�+1

i but have differing GES contexts C�
j , C�

k, the nodes are
designated as gatekeepers at level − � i.e. g�(C�+1). Thus, in figure 3 we have 12 super-super-cluster
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gatekeepers, 18 super-cluster gatekeepers (6 each in SSC-A and SSC-C, 4 in SSC-B and 2 in SSC-D)
and 4 cluster-gatekeepers in super-cluster SC-1.

2.1.3 The addressing scheme

The addressing scheme provides us with a way to uniquely identify each server node within the system.
This scheme plays a crucial role in the delivery and dissemination of events to nodes in the system. As
discussed earlier, units at each level are defined within the GES context of a unit at the next higher

level. In an N -level system the GES context C�
j is C�

i =

N−l
︷ ︸︸ ︷

CN
j (CN−1

k (· · · (C�+1
m (C�

i )) · · ·)). Thus in a
4-level system, to identify a server node, the addressing scheme specifies the super-super-cluster C3

i ,
super-cluster C2

j and cluster C1
k that the node is a part of, along with the node-identifier within C1

k .
Thus for server node a, within cluster B, within super-cluster C and super-super-cluster D the logical
address within the system is D.C.B.a. This addressing scheme is very similar to the IP addressing
scheme.
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3 The problem of event delivery

Clients in the system specify an interest in the type of events that they are interested in receiving. Some
examples of interests specified by clients could be sports events or events sent to a certain discussion
group. A particular event may thus be consumed by zero or more clients registered with the system.
Events have explicit or implicit information pertaining to the clients, which are interested in (supposed
to receive) the event . In the former case we say that the destination list is internal to the event, while
in the latter case the destination list is external to the event. In the case of external destination lists, it
is the system that computes the clients that should receive a certain event.

An example of an internal destination list is “Mail” where the recipients are clearly stated. Examples
of external destination lists include sports score, stock quotes etc. where there is no way for the issuing
client to be aware of the destination lists. External destination lists are a function of the system and the
types of events that the clients, of the system, have registered their interest in. The problem of event
delivery pertains to the efficient delivery of events to the destinations which could be internal or external
to the event. In the latter case the system needs to compute the destination lists pertaining to the event.
The system merely acts as a conduit to efficiently route the events from the issuing client to the interested
clients. A simple approach would be to route all events to all clients, and have the clients discard the
events that they are not interested in. This approach would however place a strain on network resources.
Under conditions of high load and increasing selectivity by the clients, the number of events that a client
discards would far exceed the number of events it is actually interested in. This scheme also affects the
latency associated with the reception of real time events at the client. The increase in latency is due
to the cumulation of queuing delays associated with the uninteresting/flooded events. The system thus
needs to be very selective of the kinds of events that it routes to a client. In this section we describe a
suite of protocols that are used to aid the process of efficient dissemination of events in the system.

In section 3.1 we describe the Node Addition Protocol (NAP), which provides for adding a server node or
a complete unit to an existing system. The Gateway Propagation Protocol (GPP) discussed in Section
3.2 is responsible for the dissemination of connection information within relevant parts of the sub system
to facilitate creation of abbreviated system interconnection graphs. Providing precise information for
the routing of events, and the updating of this information in response to the addition, recovery and
failure of gateways is in the purview of the GPP. To snapshot the event constraints that need to be
satisfied by an event prior to dissemination within a unit and subsequent reception at a client we use the
Profile Propagation Protocol (PPP) discussed in Section 3.3.5. PPP is responsible for the propagation of
profile information to relevant nodes within the system to facilitate hierarchical dissemination of events.
Section 3.4 describes the Event Routing Protocol (ERP) which uses the information provided by PPP
to compute hierarchical destinations. Information provided by GPP, such as system inter-connections
and shortest paths, are then employed to efficiently disseminate events within the units and to clients
subsequently.

Different systems address the problem of event delivery to relevant clients in different ways. In [17]
each subscription is converted into a deterministic finite state automaton. This conversion and the
matching solutions nevertheless can lead to an explosion in the number of states. In [33] network
traffic reduction is accomplished through the use of quench expressions. Quenching prevents clients from
sending notifications for which there are no consumers. Approaches to content based routing in Elvin are
discussed in [34]. In [8, 9] optimization strategies include assembling patterns of notifications as close as
possible to the publishers, while multicasting notifications as close as possible to the subscribers. In [5]
each server (broker) maintains a list of all subscriptions within the system in a parallel search tree (PST).
The PST is annotated with a trit vector encoding link routing information. These annotations are then
used at matching time by a server to determine which of its neighbors should receive that event. [4]
describes approaches for exploiting group based multicast for event delivery. These approaches exploit
universally available multicast techniques.
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The approach adopted by the OMG [30] is one of establishing channels and registering suppliers and
consumers to those event channels. The channel approach in the event service [29] approach could entail
clients (consumers) to be aware of a large number of event channels. The two serious limitations of
event channels are the lack of event filtering capability and the inability to configure support for different
qualities of service. These are sought to be addressed in the Notification Service [28] design. However the
Notification service attempts to preserve all the semantics specified in the OMG event service, allowing
for interoperability between Event service clients and Notification service clients. Thus even in this case
a client needs to subscribe to more than one event channel. In TAO [21], a real-time event service
that extends the CORBA event service is available. This provides for rate-based event processing, and
efficient filtering and correlation. However even in this case the drawback is the number of channels that
a client needs to keep track of.

In some commercial JMS implementations, events that conform to a certain topic are routed to the inter-
ested clients. Refinement in subtopics is made at the receiving client. For a topic with several subtopics,
a client interested in a specific subtopic could continuously discard uninteresting events addressed to a
different subtopic. This approach could thus expend network cycles for routing events to clients where
it would ultimately be discarded. Under conditions where the number of subtopics is far greater than
the number of topics, the situation of client discards could approach the flooding case.

In the case of servers that route static content to clients such as Web pages, software downloads etc.
some of these servers have their content mirrored on servers at different geographic locations. Clients
then access one of these mirrored sites and retrieve information. This can lead to problems pertaining
to bandwidth utilization and servicing of requests, if large concentrations of clients access the wrong
mirrored-site. In an approach sometimes referred to as active mirroring, websites powered by EdgeSuite
[10] from Akamai, redirect their users to specialized Akamized URLs. EdgeSuite then accurately identifies
the geographic location from which the clients have accessed the website. This identification is done based
on the IP addresses associated with the clients. Each client is then directed to the server farm that is
closest to the client’s network point of origin. As the network load and server loads change clients could
be redirected to other servers.

3.1 The node organization protocol

Each node within a cluster has set of connection properties. These pertain to the rules of adding new
nodes to the cluster, specifically some node may employ an IP-based discrimination scheme to add or
accept new nodes within the cluster. In addition to this, nodes also maintain a connection threshold
vector, which pertains to the number of gateways at each level that the node can maintain concurrent
connections to at any given time.

Nodes wishing to join the network do so by issuing a connection set up request to one of the nodes in
the existing network. The organization and logical addresses assigned are relative to the existing logical
address of the node to which this request was sent to. Nodes issuing such a set up request could be a
single stand-alone node or part of an existing unit. New addresses are assigned based on whether the
node is either part of the existing system or is part of a new unit being merged into the system. In the
former case no new logical address are assigned, while in the latter case new logical addresses need to be
assigned. Clients of the merged system need to renegotiate their new logical address using an address
renegotiation protocol.
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3.1.1 Adding a new node to the system

Nodes which issue a connection setup request need to indicate the kind of gatekeeper that it seeks to be
within the existing system. An indication of whether it seeks to be a level-0 system or not dictates the
GES context, the requesting node seeks to share with the node, to which it has issued the request. If the
node wishes to be a level-0 gatekeeper with the node in question, the two nodes would end up sharing
a similar GES context C1

i . The level-0 indication establishes the to and from relationship between the
requester and the addressee. The GES context varies depending on this relationship. In the event that
the requester seeks to be a level-0 gatekeeper, the GES contextual information varies at the lowest level
C0

i . In the event that the requester seeks a to relationship with the addressee, the GES contextual
information of the requester varies starting from the highest level-� gatekeeper that it seeks to be. Thus
if the requester seeks to be a level-3, level-2 gatekeeper the GES contextual information vis-a-vis the
addressee varies from level-3 and above.

A node requests the connection setup in a bit vector specifying the kind of gatekeeper it seeks to be.
The position of 0’s and 1’s dictates the kind of gatekeeper that a node seeks to be. The first position
specifies the to/from characteristics of the node seeking to be a part of the system. A 0 signifies the to
relationship while the 1 specifies the from relationship. A connection request < 00000011 > from node s
indicates that it wishes to be configured as a cluster gatekeeper in cluster n to one of the clusters within
super-cluster SC-6. Similarly a connection request < 00000110 > from node s signifies that it wishes
to be configured as a level-2 gateway to supercluster SC-6 and as a level-1 (cluster) gateway within the
super-cluster (SC-4/SC-5) that it would be a part of.
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Figure 4: Adding nodes and units to an existing system

Figure 4 depicts a node s requesting a connection setup request. If s requests to be a level-0 node,
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then it needs to be part of the cluster n. Now, if node n.21 has not exceeded the connection threshold
limit for level-0 connections and also if the node s satisfies the IP-discrimination scheme for accepting
nodes within the cluster then node s is configured as a level-0 node with a connection to node n.21. If
however, node n.21 has reached its connection threshold for level-0 connections, but node s has satisfied
the IP-discrimination requirements for cluster n, then n.21 forwards the request to other nodes within
the cluster n. If there is a node within the cluster n, which has not reached the connection threshold
limit, then node s is configured as a level-0 gateway to that node in cluster n. If however, all the nodes
have reached their connection threshold limit, the node responds by providing a list of level-1 gatekeepers
that are connected to cluster n. Node s then proceeds with the same process discussed earlier.

If node s doesn’t seek to be a level-0 gatekeeper within cluster n but seeks to be a level-� ( � > 0),
gateway to cluster n the procedures for setting up connections are different. Depending on the kind
of gatekeeper that node s seeks to be, the location of suitable nodes, which could satisfy the request,
varies. If the node seeks to be a level-1 gatekeeper to cluster n, then node n.21 confirms the connection
threshold vector. If all the nodes have reached their connection threshold for level-1 gateways the cluster
returns a failed response. If however there is such a node in cluster n which has not reached its threshold
for level-1 connections node n.21 provides the address for such a node, and also the addresses of level-1
gatekeepers within supercluster SC-6 to which it is connected. Node s then tries to be a level-0 gateway
within cluster m which is also a level-1 gateway to the nodes in cluster n. If there are no clusters within
super-cluster SC-6 other than cluster n which can accept s as a level-0 gatekeeper, then the request
fails.

3.1.2 Adding a new unit to the system

A unit that can be added to the system could be a cluster, a super-cluster and so on. The process of
adding a new unit to the system must follow rules which are consistent with the organization of the
system. These rules are simple, a node can be a level-0 gatekeeper of only one cluster. Thus a node in
an existing cluster cannot seek to be part of another cluster in the system. In general for a unit at level-�
which is being added to the system, any node in the unit being added cannot seek to be a level-(� − i)
(where i = 1, 2, · · · , �) gatekeeper to any sub-system of the existing system.

The process of adding a unit to the system, results in the update of the GES contextual information
pertaining to every node within the added unit. This update is only for the highest level of the system,
lower level GES contextual information remains the same. Nodes within a cluster have a context with
respect to the GES cluster context C1

i . When this cluster is added to the system, what changes is the
GES context C1

i while the individual GES contexts C0 of the nodes with respect to newly assigned GES
cluster context C1

j remains the same.

Figure 4 depicts the addition of a super cluster SC-10 to the system. Only one node within the unit
that needs to be added can issue the connection setup request. The node which issues this request in
figure 4 is the node SC-10.v.23. Since this is a level-2 system that is unit-added, node 23 or any other
node within SC-10 can not be a level-1 (cluster) gateway to the other nodes within the super-super-
cluster SSC-B. Node 23 thus issues a request specifying that it seeks to be a level-3 gateway within
super-super-cluster SSC-B. Upon a successful connection set up, a new address is assigned for SC-10
(say SC-8), the identifiers for clusters within SC-10 remain the same. However, the complete address
of these clusters change to SSC-B.SC-8.w and so on.
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3.2 The gateway propagation protocol - GPP

The gateway propagation protocol (GPP) accounts for the process of adding gateways and is responsible
for the dissemination of connection information within relevant parts of the sub system to facilitate
creation of abbreviated system interconnection graphs. However, GPP should also account for failure
suspicions/confirmations of nodes and links, and provide information for alternative routing schemes.

3.2.1 Organization of gateways

The organization of gateways reflects the connectivities, which exist between various units within the
system. Using this information, a node should be able to communicate with any other node within the
system. Any given node within the system is connected to one or more other nodes within the system.
We refer to these direct links from a given node to any other node as hops. The routing information
associated with an event specifies the units, which should receive the event. At each g�+1(C�+1

i ) finer
grained disseminations targeted for units u� within C�+1

i are computed. When presented with such a list
of destinations, based on the gateway information the best hops to take to reach the destinations needs
to be computed. A node is required to route the event in such a way that it can service both the coarser
grained disseminations and the finer grained ones. Thus, a node should be able to compute the hops
that need to be taken to reach units at different levels. A node is a level-0 unit, however it computes
the hops to take to reach level-� units within its GES context C�+1 (where � = 0, 1, · · · , N – N being the
system level).

What is required is an abstract notion of the connectivities that exist between various units (sub-units
and super-units alike) within the system. This constitutes the connectivity graph of the system. At each
node the connectivity graph is different while providing a consistent overall view of the system. The view
that is provided by the connectivity graph at a node should be of the connectivities that are relevant to
the node in question. Figure 5 depicts the connections that exist between various units of the 4 level
system which we would use as an example in further discussions.

3.2.2 Constructing the connectivity graph

The organization of gateways should be one which provides an abstract notion of the connectivity between
units u� within the GES context C�+1 of the node. This interconnection can span multiple levels, where,
if the gateway level is �, a unit ux

i (x < �) within the GES context Cx+1 is connected to u�
j within

C�+1. Units ux
i and u�

j share the same C�+1 GES context. For any given node within the system, the
connectivity graph captures the connections that exist between units u�’s within the GES context C�+1

i

that it is a part of. Thus every node is aware of all the connections that exist between the nodes within
a cluster, and also of the connections that exist between clusters within a super cluster and so on. The
connectivity graph is constructed based on the information routed by the system in response to the
addition or removal of gateways within the system. This information is contained within the connection.

Not all gateway additions or removals/failures affect the connectivity graph at a given node. This is
dictated by the restrictions imposed on the dissemination of connection information to specific sub-
systems within the system. The connectivity graph should also provide us with information regarding
the best hop to take to reach any unit within the system. The link cost matrix maintains the cost
associated with traversal over any edge of the connectivity graph. The connectivity graph depicts the
connections that exist between units at different levels. Depending on the node that serves as a level-�
gatekeeper, the cluster that the node is a part of is depicted as a level-1 unit having a level-� connection
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Figure 5: Connectivities between units

to a level-� unit, by all the other clusters within the super cluster that the gatekeeper node is a part of.

3.2.3 The connection

A connection depicts the interconnection between units of the system, and defines an edge in the con-
nectivity graph. Interconnections between the units snapshot the kind of gatekeepers that exist within
that unit. A connection exists between two gatekeepers. A level-� node denoted n�

i in the connectivity
graph, is the level-� GES context of the gatekeeper in question and is the tuple < u�

i , � >.

A level−� connection is the tuple < nx
i , ny

j , � > where x | y = � and x, y ≤ �. Units ux
i and uy

j share the
same level-(� + 1) GES context C�+1

k . For any given node n�
i in the connectivity graph we are interested

only in the level �, � + 1, · · · , N connections that exist within the unit and not the � − 1, � − 2, · · · , 0
connections that exist within that unit. Thus, if a level-� connection is established, the connection
information is disseminated only within the higher level GES context C�+1

i of the sub-system that the
gatekeepers are a part of. This is ensured by never sending a level-� gateway addition information across
any gateway g�+1. Thus, in figure 5 for a super-cluster gateway established within SSC-A, the connection
information is disseminated only within the super-clusters SC-1, SC-2 and SC-3, and subsequently the
nodes in super-super-cluster SSC-A.
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When a level-� connection is established between two units, the gatekeepers at each end create the
connection information in the following manner —

(a) For the gatekeeper at the far end of the connection, the node information in the connection is
constructed using its level-� GES context.

(b) The other node of the connection is constructed as level-0 node using its level-0 GES context.

(c) The last element of the connection tuple, is the connection level �c.

When the connection information is being disseminated throughout the GES context C�+1
i , it arrives

at gatekeepers at various levels. Depending on the kind of link this information is being sent over,
the information contained in the connection is modified. Every gatekeeper gp � p ≤ �c, at which the
connection information is received, checks to see if any of the node information depicts a node nx where
x < �c. If this is the case the next check is to see if p > x. If p > x the node information is updated
to reflect the node as level-p node by including the level-p GES contextual information of gp. If p 	> x
the connection information is disseminated as is. Thus, in figure 5 the connection between SC-2 and
SC-1 in SSC-A, is disseminated as one between node 5 and SC-2. When this information is received
at 4, it is sent over as a connection between the cluster c and SC-2. When the connection between
cluster c and SC-2 is sent over the cluster gateway to cluster b, the information is not updated. As
was previously mentioned, the super cluster connection (SC-1,SC-2) information is disseminated only
within the super-super-cluster SSC-A and is not sent over the super-super-cluster gateway available
within the cluster a in SC-1 and cluster g in SC-3.

3.2.4 Link count

For every connection that is created there is a unique identifier associated with that connection. All
connections relevant for a node are maintained in a connection table. This scheme allows us to detect if
the connection table already contains a certain connection. There could be multiple connections between
two specific units, this feature provides for greater fault tolerance. However, what is maintained in the
connectivity graph is simply the connection, which exists between the two units. The edge thus created
also has a link count associated with it, which is incremented by one every time a new connection is
established between two units that were already connected. This scheme also plays an important role in
determining if a connection loss would lead to partitions.

3.2.5 The link cost matrix

The link cost matrix specifies the cost associated with traversing a link. The cost associated with
traversing a level-� link from a unit ux increases with increasing values of both x and �. Thus the cost of
communication between nodes within a cluster is the cheapest, and progressively increases as the level
of the unit that it is connected to increases. The cost associated with communication between units at
different levels increases as the levels of the units increases. One of the reasons why we have this cost
scheme is that the dissemination scheme employed by the system is selective about the links employed
for finer grained dissemination. In general a higher level gateway is more overloaded than a lower level
gateway. Table 1 depicts the cost associated with communication between units at different levels.

The link cost matrix can be dynamically updated to reflect changes in link behavior. Thus, if a certain
link is overloaded, we could increase the cost associated with traversal along that link. This check for
updating the link cost matrix could be done every few seconds.
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level 0 1 2 3 �i �j
0 0 1 2 3 �i �j

1 1 2 3 4 �i + 1 �j + 1
2 2 3 4 5 �i + 2 �j + 2
3 3 4 5 6 �i + 3 �j + 3
�i �i �i + 1 �i + 2 �i + 3 2 × �i �i + �j

�j �j �j + 1 �j + 2 �j + 3 �j + �i 2 × �j

Table 1: The Link Cost Matrix

3.2.6 Organizing the nodes

The connectivity graph is different at every node, while providing a consistent view of the connections
that exist within the system. This section describes the organization of the information contained in
connections (section 3.2.3) and super-imposing costs as specified by the link cost matrix (section 3.2.5)
resulting in the creation of a weighted graph. The connectivity graph constructed at the node imposes
directional constraints on certain edges in the graph.

The first node in the connectivity graph is the vertex node, which is the level-0 server node hosting the
connectivity graph. The nodes within the connectivity graph are organized as nodes at various levels.
Associated with every level-� node in the graph are two sets of links, the set LUL, which comprises of
connections to nodes na

i � a ≤ � and LD with connections to nodes nb
i � b > �. When a connection is

received at a node, the node checks to see if either of the graph nodes (representing the corresponding
units at different levels) is present in the connectivity graph. If any of the units within the connection is
not present in the connectivity graph, the corresponding graph node is added to the connectivity graph.
For every connection, < nx

i , ny
j , � > where x | y = � and x, y ≤ �, that is received; if y ≤ x then –

• Graph node ny
j is added to the set LUL associated with node nx

i

• Graph node nx
i is added to the set LD associated with node ny

j .

The process is reversed if x ≤ y. For the edge created between nodes nx
i and ny

j , the weight is given by
the element (x, y) in the link cost matrix.

Figure 6 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in figure 5. The
set LUL at the node SC-3 in the figure comprises of node SC-2 at level-2 and node b at level-1. The set
LD at SC-3 comprises of the node SSC-B at level-3. The cost associated with traversal over a level-3
gateway between a level-2 unit b and a level-3 unit SC-3 as computed from the linkcost matrix is 3,
and is the weight of the connection edge. There are two connections between the super-super-cluster
units SSC-B and SSC-D, this is reflected in the link count associated with the edge connecting the
corresponding graph nodes. The directional issues associated with certain edges are imposed by the
algorithm for computing the shortest path to reach a node.

3.2.7 Computing the shortest path

To reach the vertex from any given node, a set of links need to be traversed. This set of links constitutes
a path to the vertex node. In the connectivity graph, the best hop to take to reach a certain unit
is computed based on the shortest path that exists between the unit and the vertex. This process of
calculating the shortest path, from the node to the vertex, starts at the node in question. The directional
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Figure 6: The connectivity graph at node 6.

arrows indicate the links, which comprise a valid path from the node in question to the vertex node.
Edges with no imposed directional constraints are bi-directional. For any given node, the only links that
come into the picture for computing the shortest path are those that are in the set LUL associated with
any of the nodes in a valid path.

The algorithm proceeds by recursively computing the shortest paths to reach the vertex node, along every
valid link (LUL) originating at every node that falls within the valid path. Each fork of the recursion
keeps track of the nodes that were visited and the total cost associated with the path traversed. This
has two useful features -

(a) It allows us to determine if a recursive fork needs to be sent along a certain edge. If we do not
keep track of the nodes that were visited, we could end up in an infinite recursion where we revisit
the same node over and over again.

(b) It helps us decide on the best edge that could have been taken at the end of every recursive fork.

For example in the connectivity graph of figure 6 we are interested in computing the shortest path to
SSC-B from the vertex. This process would start at the node SSC-B. The set of valid links from
SSC-B include edges to reach nodes a, SC-3 and SSC-D. At each of these three recursions the paths
are reflected to indicate the node traversed (SSC-B) and the cost so far i.e 4,5 and 6 to reach a, SC-3
and SSC-B respectively. Each recursion at every node returns with the shortest path to the vertex.
Thus the recursions from a, SC-3 and SSC-D return with the shortest paths to the vertex. This along
with the shortest path to reach those nodes, provides us with the means to decide on the shortest path
to reach the vertex.

3.2.8 Building and updating the routing cache

The best hop to take to reach a certain unit is the last node that was reached prior to reaching the
vertex, when traversing the shortest path from the corresponding unit graph node to the vertex. This
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information is collected within the routing cache, so that messages can be disseminated faster throughout
the system. The routing cache should be used in tandem with the routing information contained within a
routed message to decide on the next best hop to take to ensure efficient dissemination. Certain portions
of the cache can be invalidated in response to the addition or failures of certain edges in the connectivity
graph.

In general when a level-� node is added to the connectivity graph, connectivities pertaining to units at
level �, � + 1, · · · , N are effected. For a level-N system if a gateway g� within u�+1

i is established, the
information contained in the routing cache to reach units at level �, � + 1, · · ·N needs to be updated for
all the units within u�+1

i . The cases of gateway failures, node failures, detection of partitions and the
updating of the routing cache in response to these failures are dealt with in a later section.

3.2.9 Exchanging information between super-units

When a subsystem u�
i is added to an existing system u�+j+1; information regarding g�+j , g�+j−1, · · · , g�

connections are exchanged between the system and the newly added sub system. Thus when a super
cluster is added to an existing system comprising of super-super-clusters, the existing system routes
information regarding super-cluster and super-super-cluster connections to the newly added super-cluster.
The way the set of connections, comprising the connectivity graph, is sent over the newly established link
is consistent with the rules, which we had set up for sending a connection information over a gateway
as discussed in section 3.2.3. Thus, if a new super cluster SC-4 is added to the SSC-A sub-system and
a super cluster gateway is established between SC-4 and node SC-1.c.6, then, the connectivity graphs
at node 6 would be as depicted in figure 7.(a) while the connectivity graph at the gatekeeper in SC-4
would comprise of the connections that were sent over the newly established gateway by node 6.
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Figure 7: Connectivity graphs after the addition of a new super cluster SC-4.

Figure 7.(b) depicts only the connections which describe the connections involving level-2 gateways and
upwards at node 99 in SC-4. There would be clusters comprising of strongly connected server nodes
in SC-4, we however do not need to depict these, in figure 7.(b), for the present discussion regarding
connection information exchange.
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3.3 Organization of Profiles and the calculation of destinations

Every event conforms to a signature which comprises of an ordered set of attributes {a1, a2, · · · , an}. The
values these attributes can take are dictated and constrained by the type of the attribute. Clients within
the system that issues these events, assign values to these attributes. The values these attributes take
comprise the content of the event. All clients are not interested in all the content, and are allowed to
specify a filter on the content that is being disseminated within the system. Thus a filter allows a client
to register its interest in a certain type of content. Of course one can employ multiple filters to signify
interest in different types of content. These filters specified by the client constitutes its profile. The
organization of these profiles, dictates the efficiency of matching content. A level-� gatekeeper snapshots
the profiles of all the level-(�-1) units that share the same GES context C�

i with it.

3.3.1 The problem of computing destinations

Clients express interest in certain types of content, and events which conform to that content need to
be routed to the client. A simple approach would be to route all events to all clients, and have the
clients discard the content that they are not interested in. This approach would however place a strain
on network resources. Under conditions of high load and increasing selectivity by the clients, the number
of events a client discards would far exceed the number of events it is actually interested in. This scheme
also affects the latency associated with the reception of real time events at the client. The system thus
needs to be very selective of the kinds of events that it routes to a client. In other words the system
should be able to efficiently compute destination lists associated with the event. Depending on the event
this destination list could be internal to the event or external to the event. In the case of events with
external destination lists, the system relies on information contained within the client’s profile and also
the content of the event to arrive at the set of destinations that need to receive the event.

These destinations should be computed in such a way that it exploits the network topology in place,
as also the routing algorithms that make use of abbreviated views of inter-connections existing within
the system. Profiles need to be organized so that they lend themselves to very efficient calculation of
destinations upon receiving a relevant event. In our approach a level-� gatekeeper maintains the profiles
of all the level-(�-1) units that share the same GES context C�

i with it. This scheme fits very well with
our routing algorithms, since the destinations contained within the event are those that are consistent
with the node’s abbreviated view of the system. To allow for a node to maintain profiles contained at
different units (clusters, servers, clients etc.) we need to be able to be able to propagate profile additions
and changes to nodes responsible for the generation of destination lists.

The problem of computing destinations for a certain event comprises of the following –

(a) Organization of profiles in a profile graph

(b) Propagation of profiles to the nodes that are responsible for the calculation of hierarchical desti-
nation lists.

(c) Navigation of the profile graph to compute the destinations associated with the content.

A given node can compute destinations only at certain level. Thus the computation of destinations is
itself a distributed process in our model.
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3.3.2 Constructing a profile graph

As mentioned earlier, events encapsulate content in an ordered set of < attribute, value > tuples. The
constraints specified in the profiles should maintain this order contained within the event’s signature.
Thus to specify a constraint on the second attribute (a2) a constraint should have been specified on
the first attribute (a1). What we mean by constraints, is the specification of the value that a particular
attribute can take. We however also allow for the weakest constraint, denoted ∗, on any of the attributes.
The ∗ signifies that the filtered events can take any of the valid values within the range permitted by the
attribute’s type. By successively specifying constraints on the event’s attributes, a client narrows the
content type that it is interested in. It is not necessary that a constraint be specified on all the attributes
{a1, a2, · · · , an}. What is necessary is that if a constraint is imposed on an attribute ai constraints
for attributes a1, a2, · · · , ai−1 must be in place, even if some or all of these constraints is the weakest
constraint ∗. Thus if a constraint is specified till attribute ai and no constraints are imposed on some
of the attributes a1, a2, · · · , ai−1, the system assigns these attributes the weakest constraint ∗. It makes
more sense imposing the constraint ∗ on higher order attributes ai+1 · · · an than on the lower order
attributes a1, a2, · · · ai−1. Such a scheme has the effect of narrowing content down to the ones which are
very closely related to each other. For every event type we maintain a profile chain. Different profile
chains when added up constitute the profile graph.

We use the general matching algorithm, presented in [2], of the Gryphon system to organize profiles and
compute the destinations associated with the events. Constraints from multiple profiles are organized
in the profile graph. Every attribute on which a constraint is specified constitutes a node in the profile
graph. When a constraint is specified on an attribute ai, the attributes a1, a2, · · · , ai−1 appear in the
profile graph. A profile comprises of constraints on successive attributes in an event’s signature. The
nodes in the profile graph are linked in the order that the constraints have been specified. Any two
successive constraints in a profile result in an edge connecting the nodes in the profile graph. Depending
on the kinds of profiles that have been specified by clients, there could be multiple edges, originating
from a node. Following the scheme in [2] we do not allow multiple edges terminating at a node since it
results in a situation where the event matching results in an invalid destination, due to that event having
satisfied partial constraints of different profiles from within the same unit.

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}
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Figure 8: The profile graph - An example.

Figure 8 depicts the profile graph constructed from three different profiles. The example depicts how
some of the profiles share partial constraints between them, some of which result in profiles sharing edges
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in the profile graph. A certain edge is marked as traversed by an event if the two successive constraints
that created the edge, have been satisfied by that event. The presence of an edge signifies the existence
of at least one client, which is interested in the content satisfying at least two of the constraints contained
in that edge. An event’s traversal along an edge simply indicates that the event’s content has satisfied
some partial constraint imposed by one or more of the clients. As we traverse further down the profile
chain, the events we are looking for get more fine grained. The final constraint on an attribute leads to
the creation of a destination edge. The edges arising out of node C in figure 8 are destination edges.

3.3.3 Information along the edges

To support hierarchical disseminations and also to keep track of the addition and removal of edges,
besides the basic organization of constraints, the graph needs to maintain additional information along
its edges. This additional information also plays a very important role in the reliable delivery of events to
clients (we discuss this in a later section). Along every edge we maintain information regarding the units
that are interested in its traversal. For each of these units we also maintain the number of predicates δω
within that unit that are interested in the traversal of that edge. The first time an edge is created between
two constraints as a result of the profile specified by a unit, we add the unit to the route information
maintained along the edge. For a new profile ωnew added by a unit, if two of its successive constraints
already exist in the profile graph, we simply add the unit to the existing routing information associated
with the edge. If the unit already exists in the routing information, we increment the predicate count
associated with that destination.

A

B

D C

C

C

a [s1,s2][1,1]

f [s
3][1]

d [s3][1] c [s3][1]

b [s2][1]
c [s2][1]

* [s1][1]
c [s2][1]

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}

Figure 9: The complete profile graph with information along edges.

The information regarding the number of predicates δω per unit that are interested in two successive
constraints allows us to remove certain edges and nodes from the profile graph, when no clients are
interested in the constraints any more. Figure 9 provides a simple example of the information maintained
along the edges. We discuss how the profiles are propagated, where they are propagated and how this
information along the edges is modified and updated in section 3.3.5.

3.3.4 Computing destinations from the profile graph

Once the profile graph has been constructed, we can compute the destinations that are associated with
an event. Traversal along an edge is said to be complete if two successive constraints at end points of the
edge have been satisfied by the content in question. When an event comes in we first check to see if the
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profile graph contains the first attribute contained in the event. If that is the case we can proceed with
the matching process. When an event’s content is being matched, the traversal is allowed to proceed
only if -

(a) There exists a wildcard (∗) edge connecting the two successive attributes in the event.

(b) The event satisfies the constraint on the first attribute in the edge, and the node that this edge
leads into is based on the next attribute contained in the event.

As an event traverses the profile graph, for each destination edge that is encountered if the event satisfies
the destination edge constraint, that destination is added to the destination list associated with the
event.

3.3.5 The profile propagation protocol - Propagation of ±δω changes

In the hierarchical dissemination scheme that we have, gatekeepers g�+1 compute destination lists for the
u� units that it serves as a g�+1 for. A gatekeeper g�+1 should thus maintain information regarding the
profile graphs at each of the u� units. Profile graph P�+1

i maintains information contained in profiles P�

at all the u� units within u�+1
i . This should be done so that when an event arrives over a g�+1 in u�+1

i –

(a) The events that are routed to destination u�’s, are those with content such that at least one
destination exists for those events within the sub-units that comprise the profile for u�.

(b) There are no events, that were not routed to u�
i , with content such that u�

i would have had a
destination within the sub-units whose profile it maintains.

Properties (a) and (b) ensure that the events routed to a unit, are those that have at least one client
interested in the content contained in the event. When an event is received over a cluster gateway, there
would be at least one client attached to one of the nodes in the cluster which is interested in that event.

When we send the profile graph information over to the higher level gatekeeper g�, the information
contained along the edges in the graph needs to be updated to reflect the nodes logical address at that
level. Thus when a node propagates the clients profile to the cluster gatekeeper, it propagates the edges
created/removed with the server as the destination associated with the profile predicate. Similarly, when
this is being propagated to a super-cluster gatekeeper the profile change is sent across as a profile change
in the cluster. Any change in the client’s profile is propagated to gatekeepers at higher levels, that the
server node in its abbreviated view of the system is aware of. What we are trying to do is to maintain
information in the profile graph, in a manner which is consistent with the dissemination constraints
imposed by properties (a) and (b). The reason we maintain destination information the way we do is
that this model ties in very well with our topology and the routing algorithms that are in place. The
connectivity graph provides us with an overall view of the interconnections between units at different
levels. The organization and calculation of destinations from the profiles comprising the profile graph,
feeds right into our routing algorithms that compute the shortest path to reach the units (destinations)
where an event needs to be routed. In general for a level-N system, if there is a subscribing client with
GES context CN

j and the issuing client has GES context CN
i the destinations are computed (N+1) times.

Thus, in a system comprising of super-super-clusters, the destinations are computed four times prior to
reception at the client.

For profile changes that result in a profile change of the unit, the changes need to be propagated to
relevant nodes, that maintain profiles for different levels. A cluster gateway snapshots the profile of

22



all clients attached to any of the server nodes that are a part of that cluster. Thus a change in the
profile of a client needs to be propagated to its server node. The change in profile of the server node
should in turn be propagated to the cluster gateway(s) within the cluster that the node is a part of.
Similarly a super-cluster gateway snapshots the profiles of all the clusters contained in the super-cluster.
When a profile change occurs at any level, the updates need to be routed to relevant destinations. The
connectivity graph provides us with this information. From the connectivity graph, it can be seen that
node 4 is the cluster gateway. Thus, changes in profiles at level-0 (i.e. δω0) at any of the nodes in cluster
SSC-A.SC-1.c are routed to node 4. δω1 changes need to be routed to level-2 gateways within SSC-A.
In general the gatekeepers to which the profile changes need to be propagated are computed as follows
—

(a) Locate the level-(�) node in the connectivity graph.

(b) The uplink from this node of the connectivity graph to any other node in the graph, indicates the
presence of a level-� gateway at the unit corresponding to the graph node.

This scheme provides us with information regarding the level-� gateway, within the part of the system
that we are interested in. We are not interested in the lateral links since they provide us with information
regarding all the level-� gateways within the next higher level GES context C�+1.
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Figure 10: The connectivity graph at node 6.

In the figure 10, any δω0 changes at any of the nodes within cluster c, are need to be routed to node
4. Any δω1 changes at node 4 need to be routed to node 5, and also to a node in cluster b. Similarly
δω2 changes at node 5 needs to be routed to the level-3 gatekeeper in cluster a and superclusters SC-3,
SC-2. When such propagations reach any unit/super-unit the process is repeated till such time that
the gateway that the node seeks to reach is reached. Every profile change has a unique-id associated it,
which aids in ensuring that the reference count scheme does not fail due to delivery of the same profile
change multiple times within the same unit.

Summarizing the discussion so far, the profile graph snapshots the profiles of units at a certain level, and
as such can compute destinations only for this set of units. The profile snapshot that is created ensures
that there is at least one sub-unit attached to one of the units within the super unit under consideration
which should receive the event. Thus the profile matching scheme ensures that there is at least one client
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which will receive the event when it is received within a unit. If we do not have a scheme which snapshots
profiles in the following manner, we could end up in a scenario where none of the events received in a
unit have any clients which are interested in that event.

3.3.6 Unit additions and the propagation of profiles

When a unit (with publishing and subscribing clients) is being added to a larger existing server network,
besides the sequence of actions pertaining to the generation/update of logical addresses and the exchange
of system inter connectivities, profiles would need to be propagated in exactly the same way that we
described. Thus when a cluster is added to the system, the server nodes within the cluster route their
profiles to the newly created cluster gatekeeper. This gatekeeper is in turn responsible for the propagation
of profiles to the super-cluster gatekeepers in the newly merged system.

3.3.7 Active profiles

The profile propagation protocol aids in the creation of destination lists at units within different levels.
These destination lists are then employed at each level for finer grained disseminations. Since the profile
add/change propagates through the system to higher level gateways, it is possible that a gateway at
a higher level has not yet been notified about the profile add/change. Thus though it may receive an
event which would match the profile change, the destination list may not include the lower level unit.
It is possible that a client may receive events issued by clients within a certain unit, though it may not
receive similar events from clients published by units within a different GES context.

What interests us is the precise instant of time from which point on we can say that all events that satisfy
the client’s profile will be delivered to the client. To address this issue we introduce the concept of active
profiles, which provides guarantees in the routing of events within a unit. The active profile approach
provides us with a unit-based incremental approach towards achieving system guarantees during a profile
add/change. If a profile is super-cluster active all events issued by clients attached to any of the server
nodes within a super-cluster C2

i will be routed to the interested client. Thus the first event that is
received by the client is an indication that all subsequent events routed to that unit, matching the same
profile would also be received by the client. When we say that a profile is unit-active2 what we mean is
that for every event that is being routed within that unit the destination lists calculated would include
information to facilitate routing to the client. Since a client profile is unit active, all events, issued within
the unit, will be routed to the client if it satisfies the client profile.

Events contain routing information in them, which indicate the units where these events were dissem-
inated. The routing information contained in an event thus includes the unit in which the event was
issued. Since the dissemination is hierarchical, an event will not be routed to a client till such time that
the client’s profile change has been propagated to higher level gatekeepers. If a profile change issued by
a client cA is routed to a super-cluster gatekeeper, all events issued by clients attached to any of the
nodes within this super-cluster, will be routed to the client cA if these events match the corresponding
profile change. The routing information, for events issued by clients in this super-cluster, indicate the
dissemination within the units in that super-cluster. If this event matches the profile change initiated by
one of the attached clients, and if this event is routed to such a client then the profile change associated
with that client is said to be super-cluster active. In an N -level system if the routing information depicts
the dissemination of the event within another level-N unit within the system, the profile change issued

2The unit we are referring to in this case are the clusters, super-clusters, super-super-clusters etc. Of course these units
are assumed to be within some higher level GES context of the server node to which the interested client is attached to or
was last attached to
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by the client is said to be system active. When a profile change initiated by a client is system active,
events issued by any other clients within the system will be routed to this client, if those events match
the system active profile change that was initiated by this client.

3.4 The event routing protocol - ERP

Event routing is the process of disseminating events to relevant clients. This includes matching the
content, computing the destinations and routing the content along to its relevant destinations by deter-
mining the next node that the event must be relayed to. Every event has routing information associated
with it, which could be used by the system to determine the route the event would take next. This
routing information is not added by the client issuing this event but by the system to ensure faster
dissemination and recovery from failures. When an event is first issued by the client, the server node
that the client is attached to adds the routing information to the event. This routing information is
the GES contextual information (see Section 2.1.1) pertaining to this particular node in the system. As
the event flows through the system, via gateways the routing information is modified to snapshot its
dissemination within the system. This information is then used to avoid routing the event to the same
unit twice. What a node also needs to decide is when it would be futile to try and find a higher order
gateway, and also when all the higher level units that could possibly be covered have been covered. Of
course it should also know if there is a higher order gateway that needs to be reached. This decision is
based on the event routing information and the information pertaining to gateways that’s available at
a node. If there are no such units that need to be reached, the event routing would proceed with lower
order disseminations. However if there is a unit that needs to be reached, gateways would have to be
employed to reach this unit as fast as possible. The event routing information contained with an event
simply indicates the units, which were present en route to reception at the node.

A gateway g�+1 in u�+1
i is responsible for the dissemination of events throughout the relevant u� units

within u�+1
i . This is a recursive process and the gateway g�+1 delegates this dissemination process to the

lower level gateways g�, g�−1, · · · , g1 to aid in finer grained disseminations. Thus a super-super-cluster
gateway is responsible for disseminating the event to all the super-clusters which comprise the super-
super-cluster that it is a part of. A gateway g� is concerned with the routing information from level-�
to level-N . When an event has been routed to a gatekeeper g� the routing information associated with
the event is modified to reflect the fact that the event was received at that particular unit. It is the
gatekeeper g�’s responsibility to ensure that the event is routed to all the relevant nodes within the level-�
unit, using the delegation mechanism described earlier. Prior to routing an event across the gateway a
level-� gatekeeper takes the following sequence of actions –

• Check the level-� routing information for the event to determine if the event has already been
consumed by the unit at level-�. If this is the case the event will not be sent over the gateway to
that unit.

There could be multiple links connecting a unit to some other unit. This scheme provides us with a
greater degree of fault-tolerance. This also leads to the situation3 where the event could be routed
to the same unit over multiple links. In this case the duplicate detection algorithm detects this
duplicate event and halts any further routing for this event.

• In case the gateway decides to send the event over the gateway, all routing information pertaining
to lower level disseminations are stripped from the event routing information.

This is because the routing information pertaining to the lower level disseminations is within the
GES context of a specific level-� unit and will not be valid within other level-� units. Also, in

3One of the reasons that this situation arises is a fork in the event’s routing which send it to two gateways within the
same unit
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Figure 11: Routing events

general a higher order gateway would be more overloaded4 compared to a lower order gateway.
Reducing the amount of information being transferred over the gateway helps conserve bandwidth.

Figure 11 depicts the routing scheme which we have discussed so far. The routings depicted in the figure
outline how routing information is updated to reflect the traversal at units in different levels.

In addition to the information regarding where the event has been delivered already, events also need
to contain information regarding the units which an event should be routed to. Gatekeepers g�(C�+1)
decide the level-(� − 1) units which are supposed to the receive the event. This decision is based on
the profiles available at the gatekeeper as outlined in the profile propagation protocol. This calculation
of the targeted units is a recursive process with the lower order disseminations being handled by the
corresponding lower order gatekeepers. Thus two levels of routing information are contained within an
event —

(a) Units where an event should be routed within a unit.
4This is because a lower order gateway is primarily employed for finer grained dissemination of events, and only rarely if

at all would be used to get to a higher order gateway. Besides this a higher order gateway g�
i (C

�+1
i ) is the one responsible

for deciding if the event needs to be routed to any of the lower units comprising the level-�.
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(b) Units which have already received the event.

This routing scheme plays a crucial role in determining which events need to be stored to a stable storage
during failures and partitions.

When a gatekeeper g� with GES context C�
i is presented with an event it computes the u�−1’s within C�

i

that the event must be routed to. At every node the best hops to reach the destinations are computed.
Thus, at every node the best decision is taken. Nodes and links that have not been failure suspected
are the only entities that can be part of the shortest path. The event routing protocol, along with the
profile propagation protocol and the gateway information ensure the optimal routing scheme for the
dissemination of events in the existing topology.

3.5 Routing real-time events

Real time events can have destination lists, which are internal or external to the event. In each case the
routing differs, in the case of internal lists the destination’s location needs to be precisely located by the
system. Routing events with external destination lists involves the system calculating the destinations
for delivery.

3.5.1 Events with External Destination lists

When an event arrives at a gatekeeper g�, the gatekeeper checks to see if the event satisfies its profile.
The profile maintained at g� snapshots the profile of the level-� unit that the gatekeeper belongs to.
This check is necessary to confirm if the event needs to be disseminated within the level-� unit. Routing
events based on the gatekeeper profile is the process which calculates the destination lists. This is a
recursive process in which each higher order gatekeeper performs this check before disseminating the
event to lower order gatekeepers.

When an event doesn’t match the gatekeeper g�’s profile, g� decides upon the next route that event
would take based on the routing information encoded into the event by the event routing protocol.

• The gatekeeper g�
j(C

�+1
i ) checks the routing information provided by ERP to see if it needs to relay

the event to other gatekeepers g� within the GES context C�+1
i .

• The gatekeeper also uses the information provided by ERP to check if it could route the event to
a higher order gateway which has not received the event.

In the event that these steps lead to no actions on part of the gatekeeper g� the gatekeeper takes no
further actions to route this event. If the gatekeeper decides to route this event to other level-� and
higher order gatekeepers, the system can employ lower order gateways within the GES context C�+1

i to
relay this event.

3.5.2 Events with Internal Destination lists

These are events which require the system to be able to route the event to a specific client in the system.
Clients which are interested in receiving point-to-point events thus need to include their identifier in
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their profile. The sequence of steps that are needed to route the event are similar to the steps we take
to route events with external destination lists as discussed in section 3.5.1.

3.6 Unique Events - Generation of unique identifiers

Associated with every event e sent by client nodes in the system is an event-ID, denoted e.id, which
uniquely determines the event e, from any other event e′ in the system. These ID’s thus have the
requirement that they be unique in both space and time. Clients in the system are assigned Ids, ClientID,
based on the type of information issued and other factors such as location, application domain etc. To
sum it up clients use pre-assigned Ids while sending events. This reduces the uniqueness problem, alluded
earlier to a point in space. The discussion further down implies that the problem has been reduced to
this point in space.

Associating a timestamp, e.timeStamp, with every event e issued restricts the rate (for uniquely iden-
tifiable5 events) of events sent by the client to one event per granularity of the clock of the underly-
ing system. Resorting to sending events without a timestamp, but with increasing sequence numbers,
e.sequenceNumber, being assigned to every sent event results in the ability to send events at a rate
independent of the underlying clock. However, such an approach results in the following drawbacks

a) If the client node issues an infinite number of events, and also since the sequence numbers are
monotonically increasing, the sequence number assigned to events could get arbitrarily large i.e.
e.sequenceNumber → ∞.

b) Also, if the client node were to recover from a crash failure it would need to issue events starting
from the sequence number of the last event prior to the failure, since the event would be deemed
a duplicate otherwise.

A combination of timestamp and sequence numbers solves these problems. The timestamp is cal-
culated the first time a client node starts up, and is also calculated after sending a certain num-
ber of events sequenceNumber.MAX. In this case the maximum sending rate is related to both
sequenceNumber.MAX and the granularity of the clock of the underlying system. Thus the event ID
comprises of a tuple of the following named data fields : e.P ubID, e.timeStamp and e.sequenceNumber.
Events issued with different times t1 and t2 indicate which event was issued earlier, for events with the
same timestamp the greater the timestamp the later the event was issued.

Systems such as Gnutella [1] propagate events through the network without duplication, using the IETF
UUID [27] which gives a unique 128-bit identifier on demand. The authors guarantee the uniqueness
until 3040 A.D. for the ID’s generated using their algorithm. Such a scheme of unique ID’s could also
be very conveniently incorporated into the Grid Event Service for a unique identifier for every event.

3.7 Duplicate detection of events

Multiple copies of an event can exist in the system. This occurs due to multiple gateways existing
between units and also due to events taking multiple routes to the reach destinations in response to

5When events are published at a rate higher than the granularity of the underlying system clock, its possible for events
e and e′ to be published with the same timestamp. Thus, one of these events e or e’ would be garbage collected as a
duplicate message.
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failure suspicions. Events need to be duplicate detected because for any event e that is a duplicate
event, the path taken by the event as dictated by ERP is exactly the same as that taken by the event e
which was previously received. In section 3.6 we discussed the generation of unique identifiers for events.
This scheme of unique ID generation provides us with information pertaining to unrelated events (events
issued by different clients) and in the case of related events (events issued by the same client) the order
of their occurrence. In our scheme of duplicate event detection we use this unique ID generation as the
basis for our duplicate event detection scheme.

A

B

C
e1,e2,e3,e4,e5

A

C

B

e 1,e
2,e

3

e1,e2,e3,e4,e5

(a) (b)

e1,e2,e3,e4,e5

Figure 12: Duplicate detection of events

Our unique ID generation scheme allows us to determine which of the two related events e and e′ was
issued earlier. If the last event received at a node is e and if the node receives a related event e′, then
our duplicate detection scheme works as follows –

• If e′ > e then e′ was not received earlier, else it was and it is duplicate detected. The > relation
between two related events is based on the timestamp and the sequence number that is associated
with the two events.

Consider the case in figure 12.(a), at nodes A and B events e1, e2, e3, e4 and e5 are all events issued by
the same client. Node C maintains the last event that was received. The links we assume in the system
are unreliable and unordered. Since these links allow the events to overtake each other, if node C receives
e3 first node C could errantly conclude that it had received e1 and e2. To resolve this we impose the
requirement that the events be received in order (this is more so in the case of events issued by the same
client), i.e. we do not let events overtake each other in the reception sequence at any node within the
system.

Now even though the events arrive at different times, since they arrive in order, the event e (either
from A or B) that arrives first is not duplicate detected while the event e that arrives later is duplicate
detected.

from-A e1 e2 e3 e4 e5

from-B e1 e2 e3 e4 e5

at-C eA
1 eB

2 eB
3 eA

4 eA
5

t → 1 2 3 4 5 6 7 8 9

Table 2: Reception of events at C

Consider the case in figure 12.(b), node A has sent events e1, e2 and e3 over link lAC at time t. At time
t + δ node A suspects a node C failure which could either be due to an overcrowded link lAC or a slow
process at C. Now if A were to compute the alternate route to C that goes via B; if it doesn’t send
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e1, e2, e3 prior to sending e4 and e5, the events e1, e2, e3 would be duplicate detected if e4 arrives before
e1. Once we make this minor change of resending unacknowledged events across the alternate route in
response to suspicions it simply reduces to the case depicted in figure 12.(a). As an optimization feature
we could also send anti-events down the failed/slow link whenever we resort to computing an alternate
route.

1 a

54

3

2
e1,e2,e3

e4,e5
a

Client a 'roam'

Slow /
Overloaded
Link

Figure 13: Duplicate detection of events during a client roam

Figure 13 depicts the scenario where a client roam could lead to duplicate detection of events which are not
truly duplicate events. The case in which our duplicate detection scheme breaks down, is detailed in table
3. To account for such a scenario we include the incarnation number in our duplicate detection scheme.
Incarnation numbers would be incremented for every roam and reconnection of the issuing client. The
events would then be treated as events with a different clientID thus preventing the duplicate detection
of events which should not have been duplicate detected in the first place.

t → t + ∆ t + 2∆ t + 3∆ t + 4∆ t + 5∆
at 2 e1, e2, e3

at 1 ACK(e1, e2, e3) roam + send(e4, e5)
at 4 e4, e5 e1, e2, e3

Table 3: Reception of events at 4: Client roam

3.8 Interaction between the protocols and performance gains

In our system the node organization protocol could be used in the creation of small world [35, 31]
networks. This organization, which comprises of strongly connected server nodes in clusters connected
by long links ensures that the pathlength increases logarithmically for geometric increases in the size of
the server node network. The feature of having multiple links between two units/super-units ensures a
greater degree of fault tolerance. Links could fail, and the routing to those units could still be performed
using the alternate links. The organization of connection information ensures that connection losses (or
additions) are incorporated into the connectivity graph hosted at relevant nodes. Certain sections of the
routing cache are invalidated in response to this addition (or loss) of connections. This invalidation and
subsequent calculation of best hops to reach units (at different levels) ensure that the paths computed
are consistent with the state of the network, and include only valid/active links. The ability to compute
routes to reach destinations at different levels lends the scheme very useful for hierarchical disseminations.

In our scheme for the organization of profiles we employ an approach where profiles of sub-units are
maintained at the unit gatekeeper. Events almost always arrive at the unit gatekeepers first, since they
provide a gateway to the unit. The only exception is in the cluster where a client issues an event. Having
this unit gatekeeper intelligently decide on the sub-units, which should receive an event helps eliminate
redundant routing of events. By maintaining sub-unit profiles at the unit gatekeeper we ensure that the
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only events that are routed to a unit are those for which there is at least one client, attached to one of
the server nodes in that unit, which is interested in the specific event. We obtain information regarding
the nodes/units to route profile changes based on the information contained in the connectivity graph.
We then employ hops (at every server node en route) obtained from the routing cache to ensure that
this profile dissemination is the fastest. The information maintained in the profile graph is consistent
with the dissemination scheme and can be used to compute destinations at different levels. In an N-level
system, an event is matched (N+1) times prior to routing the event to a client.

The event routing protocol uses the profile information available at the unit gatekeepers to compute the
sub-units that the event should be routed to. To reach these destinations every node, at which this event
is received, employs the best hops to reach the destinations. This best hop is computed based on the cost
of traversal as also the number of links connecting the different units. Thus in our system, based on the
organization of profiles and subsequent matching of events, the only units to which an event is routed
are those that have clients interested in that event. Further, based on the connectivity graph and the
associated routing cache we compute the fastest/reliable hops to take to reach the relevant destinations.
The routing information encoded into the event along with the duplicate detection scheme ensures that
we eliminate continuous event echoing, where the event is routed to the same unit over and over again.

These approaches result in only the relevant links and functioning nodes being employed for dissemi-
nations. The small world behavior that would exist in server network, when appropriately organized,
ensures that the pathlengths for these disseminations would only increase logarithmically with the num-
ber of server nodes.
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4 Results

In this section we present results pertaining to the performance of our protocols. We first proceed with
outlining our experimental setups. We use two different topologies with different clustering coefficients.
The factors that we measure include latencies in the delivery of events, variance in the latencies and
system throughputs among others. We measure these factors under varying publish rates, event sizes,
event disseminations and system connectivity. We intend to highlight the benefits of our routing protocols
and how these protocols perform under the varying system conditions, which were listed earlier.

4.1 Experimental Setup

The system comprises of 22 server node processes organized into the topology shown in the Figure 14.
This set up is used so that the effects of queuing delays at higher publish rates, event sizes and matching
rates are magnified.

Each server node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM, 333
MHz), with no SPARC Ultra-5 machine hosting two or more server node processes. For the purpose of
gathering performance numbers we have one publisher in the system and one measuring subscriber (the
client where we do our measurements). The publisher and the measuring subscriber reside on the same
SPARC Ultra-5 machine and are attached to nodes 22 and 10 respectively in the topology outlined in
figure 14. In addition to this there are 100 subscribing client processes, with 5 client processes attached
to every other server node (nodes 22 and 10 do not have any other clients besides the publisher and
measuring subscriber respectively) within the system. The 100 client node processes all reside on a
SPARC Ultra-60 (512 MB RAM, 360 MHz) machine. The publisher is responsible for issuing events,
while the subscribers are responsible for registering their interest in receiving events. The run-time
environment for all the server node and client processes is Solaris JVM (JDK 1.2.1, native threads, JIT).

4.2 Factors to be measured

Once the publisher starts issuing events the factor that we are most interested in is the latency in the
reception of events. This latency corresponds to the response times experienced at each of the clients.
We measure the latencies at the client under varying conditions of publish rates, event sizes and matching
rates. Publish rate corresponds to the rate at which events are being issued by the publisher. Event size
corresponds to the size of the individual events being published by the publisher. Matching rate is the
percentage of events that are actually supposed to be receieved at a client. In most publish subscribe
systems, at any given time for a certain number of events being present in the system, any given client
is generally interested in a very small subset of these events. Varying the matching rates allows us
to simulate such a scenario, and perform measurements under conditions of varying selectivity. For a
sample of events received at a client we calculate the mean latency for the sample of received events, the
variance in the sample of these events and the system throughput measured in terms of the number of
events received per second at the measuring subscriber. We also measure the highest and lowest event
latencies within the sample of events that have been received. Another very important factor that needs
to be measured is the change in latencies as the connectivity between the nodes in a server network is
increased. This increase in connectivity has the effect of reducing the number of server hops that an
event has to take prior to being received at a client. The effects of change in latencies with decreasing
server hops is discussed in section 4.3.4.
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4.2.1 Measuring the factors

For events published by the publisher the number of tag-value pairs contained in every event is 6, with
the matching being determined by varying the value contained in the fourth tag. The profile for all the
clients in the system, thus have their first 3 <tag=value> pairs identical to the first 3 pairs contained
in every published event. This scheme also ensures that for every event for which destinations are being
computed there is some amount of processing being done. Clients attached to different server nodes
specify an interest in the type of events that they are interested in. This matching rate is controlled by
the publisher, which publishes events with different footprints. Since we are aware of the footprints for
the events published by the publisher, we can accordingly specify profiles, which will allow us to control
the dissemination within the system. When we vary the matching rate we are varying the percentage of
events published by the publisher that are actually being received by clients within the system. Thus,
when we say that the matching rate is set at 50%, any given subscribing client within the system will
receive only 50% of the events published by the publisher. To vary the publish rates, we control the
sleep time associated with the publisher thread, and also the number of events that it publishes at a
time, once the publisher thread wakes up. This requires some preliminary tuning. Once the values for
the sleep time and the number of events that are published at a time have been fixed (for the publisher
and the server node that it is attached to), we proceed to compute the real publish rates for the sample
of events that we send. This is the publish rate that we report in our results.

For each matching rate we vary the size of the events from 30 to 500 bytes, and vary the publish rates
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at the publisher from 1 Event/Sec to around 1000 Events/second. For each of these cases we measure
the latencies in the reception of events. To compute latencies we have the publishing client and the
measuring subscriber residing on the same machine. Events issued by the publisher are timestamped
and when they are received at the subscribing client the difference between the present time and the
timestamp contained in the received event constitutes the latency in the dissemination of the event at
the subscriber via the server network. In case the publisher and the subscriber are on two different
machines, with access to different underlying system clocks, we would need to synchronize the clocks and
also account for the drift in clock rates prior to computing the latencies in event reception. Having the
publisher and one of the subscribers on the same physical machine with access to the same underlying
clock, obviates this need for clock synchronization and also accounts for clock drifts. It should be noted
that though the publisher and the measuring subscriber are on the same machine, they are connected
to two different server nodes within the server network, as depicted in figure 14. In fact it takes 9 server
hops for an event issued by the publisher to be received at the measuring subscriber.

4.3 Discussion of Results

In this section we discuss the latencies gathered for varying values of publish rates, event sizes and
matching rates. We then proceed to include a small discussion on system throughputs at the clients. We
also discuss the trends in the variance of the latencies, associated with the sample of events received at
a client. The results also discuss the latencies involved in the delivery of events to persistent clients in
units with different replication schemes.

4.3.1 Latencies for the routing of events to clients

At high publish rates and increasing event sizes, the effects of queuing delays come into the picture. This
queuing delay is a result of the events being added to the queue faster than they can be processed. In
general, the mean latency associated with the delivery of events to a client is directly proportional to
the size of the events and the rate at which these events were published. The latencies are the lowest for
smaller events issued at low publish rates. The mean latency is further influenced by the matching rates
for events issued by the publisher. The results clearly demonstrate the effects of flooding/queuing that
take place at high publish rates and high event sizes and high matching rates at a client. It is clear that
as the matching rate reduces the latencies involved also reduce, this effect is more pronounced for cases
involving events of a larger size at higher publish rates.

Figures 15 through 18, depict the pattern of decreasing latencies with decreasing matching rates. The
latencies vary from 391.85 mSecs to 52.0 mSecs, with the <publish rate, event size> varying from <952
events/Sec , 450 Bytes> for a matching rate of 100% to <952 events/Sec, 400 Bytes> for a matching
rate of 10%. This reduction in the latencies for decreasing matching rates, is a result of the routing
algorithms that we have in place. These routing algorithms ensure that events are routed only to those
parts of the system where there are clients, which are interested in the receipt of those events. The
routing algorithms are very selective about the links that are employed for event dissemination. Thus,
events are queued only at those server nodes which –

• Have attached clients interested in those events

• Are en route to server nodes which are interested in these events. These server nodes generally fall
in the shortest path to reach the destination node.

In the flooding approach, all events would still have been routed to all clients irrespective of the matching
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Figure 15: Match Rates of 100

Figure 15 depicts the case for matching rates of 100%. In this case the mean latency for the sample of
events varies from 15.54 mSec for <1 event/Sec, 50 Bytes> at a throughput of 1 event/Sec to 391.85
mSec for <952 events/Sec, 450 Bytes> with a throughput of 78 events/Sec at the client. The variance
in the sample of events varies from 2.3684 mSec2 to 69,713.93 mSec2 for the 2 cases respectively. The
maximum throughput achieved was 480.76 events/Sec at publish rates of 492 events/Sec with events of
size 75 bytes.

Figure 16 depicts the case for matching rates of 50%. In this case the mean latency for the sample of
events varies from 13.02 mSec for <20 events/Sec, 50 Bytes> to 178.66 mSec for <952 events/Sec, 350
Bytes>. The variance in the sample of events varies from 56.8196 mSec2 to 14,634 mSec2 for the 2 cases
respectively.

Figure 17 depicts the case for matching rates of 25%. In this case the mean latency for the sample of
events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 66.6 mSec for <961 events/Sec, 400
Bytes>. The variance in the sample of events varies from 0.24 mSec2 to 587.04 mSec2 for the 2 cases
respectively.

Figure 18 depicts the case for matching rates of 10%. In this case the mean latency for the sample of
events varies from 14.40 mSec for <20 events/Sec, 50 Bytes> to 52.0 mSec for <952 events/Sec, 400
Bytes>. The variance in the sample of events varies from 0.44 mSec2 to 103 mSec2 for the 2 cases
respectively.

4.3.2 System Throughput

We also depict the system throughputs at the client under conditions of varying event sizes and publish
rates. We choose to depict the system throughputs at a matching rate of 100%. At matching rates other
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22 Servers 102 Clients with Matching rate for events being 50%
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Figure 16: Match Rates of 50

22 Servers 102 Clients with Matching rate for events being 25%
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Figure 17: Match Rates of 25
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22 Servers 102 Clients with Matching rate for events being 10%
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Figure 18: Match Rates of 10

than 100% only the relevant events are being routed to the clients. The events received do not reveal the
true throughputs that can be achieved at a client. Figure 19 depicts the system throughputs achieved at
a client under conditions of different publish rates and event sizes. The maximum throughput achieved
was 480.76 events/Sec at a publish rate of 492 events/Sec with the sample of events being of size 75
bytes.

4.3.3 Variance

Variance for the sample of received events at a client, demonstrate how queueing delays can add up to
increase the mean latency. Variance also snapshots how this mean latency has high deviations from the
highest and lowest latencies contained in the sample of latencies, associated with the events that are
received at a client. The variance in the sample of events varies from 69713 mSec2 to 133.76 mSec2 for
<952 events/Sec , 450 Bytes> at matching rates of 100% to <877 events/Sec, 450 Bytes> at matching
rates of 5%. Thus variance in the sample of events for higher event sizes at higher publish rates also
reduces with decreasing matching rates for the published events.

4.3.4 Pathlengths and Latencies

The topology in figure 14 allows us to magnify the latencies, which occur by having the queuing delays
at individual server hops add up. In that topology the number of server hops taken by an event prior to
delivery at the measuring subscriber is 9. We now proceed with testing for the topology outlined in figure
20. The layout of the server nodes is essentially identical to the earlier one, with the addition of links
between nodes resulting in a strongly connected network. We have 5 subscribing clients at each of the
server nodes. The mapping of server nodes and subscribing client nodes to the physical machines is also
identical to the earlier topology. As can be seen the addition of super-cluster link between super-clusters
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22 Servers 102 Clients - System Throughput 
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Figure 19: System Throughput

SC-5 and SC-6, and level-0 links between nodes 8 and 10 in cluster SC-6.n reduces the number of
server hops, for the shortest path from the publisher to the measuring subscriber at node 10, from 9 to
4.

In this setting we are interested in the changes in latencies as the number of server hops vary. We
measure the latencies at three different locations, the measuring subscriber at node 10 has a server hop
of 4 while the measuring subscribers at nodes 1 and 22 have server hops of 2 and 1 respectively for
events published by the publisher at node 22.

In general, as the number of server hops reduce the latencies also reduce. The patterns for changes in
latency as the event size and publish rates increase is however similar to our earlier cases. We depict our
results, gathered at the three measuring subscribers for matching rates of 50% and 10%. The pattern of
decreasing latencies with a decrease in the number of server hops is clear by looking at figures 21 through
26. We had also made measurements for a matching rate of 25%, and the pattern is the same in those
results too. However, we have not included the figures for that case.
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Figure 20: Testing Topology - Latencies versus server hops

4.4 Summary of results

In this section we have seen how the latencies vary with event sizes, matching rates, publish rates and
connectivities. In general latencies decrease with increase in system connectivity, this being a result of
the decrease in average pathlengths as the connectivity increases. On the other hand, increase in event
sizes and publish rates result in an increase in the latency associated with event delivery. With decreasing
matching rates, the latencies in event delivery decreases.
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Subscriber 4 server hops from publisher - Matching 50%
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Figure 21: Match Rates of 50% - Server Hop of 4

Subscriber 2 server hops from publisher - Matching 50%
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Figure 22: Match Rates of 50% - Server Hop of 2
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Subscriber 1 server hop from publisher - Matching 50%
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Figure 23: Match Rates of 50% - Server Hop of 1

Subscriber 4 server hops from publisher - Matching 10%
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Figure 24: Match Rates of 10% - Server Hop of 4
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Subscriber 2 server hops from publisher - Matching 10%
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Figure 25: Match Rates of 10% - Server Hop of 2

Subscriber 1 server hop from publisher - Matching 10%
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Figure 26: Match Rates of 10% - Server Hop of 1
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5 Future Directions: The need for dynamic topologies

This pertains to the scheme for the dynamic creation of servers, to optimize the routing characteristics
for events. The routing characteristics pertain to the bandwidth usage, response times and also on the
protocols that would be employed for the dissemination of events. Consider the scenario where there are
server nodes at Syracuse and Rochester. A large number of client nodes attached to one of these servers
reside in Boston, Houston and Albany. For a set of clients at either of the aforementioned locations
this scheme has the obvious disadvantage that messages routed to each of the clients utilizes the same
bandwidth between the server and client’s location. For 10 clients (at the same geographic location)
attached to the same server node, for a certain event, the bandwidth could be utilized 10 times for the
same event.

The system in response to such a scenario should proceed with the instantiation of server nodes at the
client locations. In the present discussion we are referring to locations where a large number of clients
reside. Inducing a roam in clients based on their geographic location would then follow this dynamic
instantiation of a server node at one of the clients. The induced roam should be towards the newly
created server node. Thus in the scheme for routing messages the bandwidth between two locations is
utilized only once per message. The long links created between the original server node and the newly
created one would normally employ TCP for communication. The newly created server nodes could
employ a different approach, e.g. IP Multicast, for disseminating the received events to relevant clients.
This when employed with the routing schemes in place would greatly improve system performance, and
response times at the clients. Similarly publishing clients could be induced to roam to a location where
there is a high concentration of clients interested in receiving the published events.

Other schemes that could be employed include dynamically creating connections between nodes in differ-
ent units, to create small world networks. Further use of schemes to identify slow links, removal of these
links and the creation of new fast links would also greatly improve system performance. Interesting vari-
ances of parallel computing algorithms could be employed for this purpose. An analogy resides in hyper
cubes where links are created/removed from the 3D mesh of nodes to achieve logarithmic pathlengths.

In our failure model a unit can fail and remain failed forever. The server nodes involved in disseminations
compute paths based on the active nodes and traversal times within the system. The routing scheme is
thus based on the state of the network at any given time. Thus servers could be dynamically created,
connections established or removed, and the events would still be routed to the relevant clients. Any
given node in the system, would thus see the server network undulate as the servers are being added and
removed.
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6 Conclusion

In this paper, we have presented the Grid Event Service (GES), a distributed event service designed
to run on a very large network of server nodes. GES comprises of a suite of protocols, which are
responsible for the organization of nodes, creation of abbreviated system views, management of profiles
and the hierarchical dissemination of content based on these profiles. Creating small world networks,
using the node organization protocol ensures that the pathlengths would only increase logarithmically
with geometric increases in the size of the server network. The feature of having multiple links between
two units/super-units ensures a greater degree of fault tolerance. Links could fail, and the routing to the
affected units is performed using the alternate links. The protocols in the GES protocol suite exchange
information collected and processed by the other protocols. Thus when a new connection is added the
information is used to update the connectivity graph, which is used to identify the relevant nodes for
the propagation of profiles to. This information contained in the profile graphs is then used for the
hierarchical dissemination of content. All these protocols can run concurrently, adding a lot of flexibility
to the overall system.

The system views at each of the server nodes respond to changes in system inter-connections, aiding
in the detection of partitions and the calculation of new routes to reach units within the system. The
organization of connection information ensures that connection losses (or additions) are incorporated into
the connectivity graph hosted at the server nodes. Certain sections of the routing cache are invalidated
in response to this addition (or loss) of connections. This invalidation and subsequent calculation of
best hops to reach units (at different levels) ensure that the paths computed are consistent with the
state of the network, and include only valid/active links. The event routing protocol uses the profile
information available at the unit gatekeepers to compute the sub-units that the event should be routed
to. To reach these destinations every node, at which this event is received, employs the best hops to
reach those destinations. This best hop is computed based on the cost of traversal and also the number
of links connecting the different units. Thus, in our system, based on the organization of profiles and
subsequent matching of events, the only units to which an event is routed to are those that have clients
interested in that event. The protocols in GES ensure that the routing is intelligent and can handle
sparse/dense interest in certain sections of the system. GES’s ability to handle the complete spectrum
of interests equally well, lends itself as a very scalable solution under conditions of varying publish rates,
matching rates and message sizes.

The results in section 4 demonstrated the efficiency of the routing algorithms and confirmed the ad-
vantages of our dissemination scheme, which intelligently routes messages. Industrial strength JMS
solutions, which support the publish subscribe paradigm generally are optimized for a small network
of servers. The seamless integration of multiple server nodes in our framework provides for very easy
maintenance of the server network.
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