
Parallel Algorithms in Data Mining �

Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar
Department of Computer Science,

University of Minnesota, Minneapolis, MN 55455, USA.

1 Introduction

Recent times have seen an explosive growth in the availability of various kinds of data. It has resulted in

an unprecedented opportunity to develop automated data-driven techniques of extracting useful knowledge.

Data mining, an important step in this process of knowledge discovery, consists of methods that discover

interesting, non-trivial, and useful patterns hidden in the data [SAD+93, CHY96]. The �eld of data mining

builds upon the ideas from diverse �elds such as machine learning, pattern recognition, statistics, database

systems, and data visualization. But, techniques developed in these traditional disciplines are often unsuit-

able due to some unique characteristics of today's data-sets, such as their enormous sizes, high-dimensionality,

and heterogeneity.

To date, the primary driving force behind the research in data mining has been the development of algo-

rithms for data-sets arising in various business, information retrieval, and �nancial applications. Businesses

can use data mining to gain signi�cant advantages in today's competitive global marketplace. For example,

retail industry is using data mining techniques to analyze buying patterns of customers, mail order business

is using them for targeted marketing, telecommunication industry is using them for churn prediction and

network alarm analysis, and credit card industry is using them for fraud detection. Also, recent growth

of electronic commerce is generating wealths of online web data, which needs sophisticated data mining

techniques.

Due to the latest technological advances, very large data-sets are becoming available in many scienti�c

disciplines as well. The rate of production of such data-sets far outstrips the ability to analyze them manually.

For example, a computational simulation running on the state-of-the-art high performance computers can

generate tera-bytes of data within a few hours, whereas human analyst may take several weeks or longer to

analyze and discover useful information from these data-sets. Data mining techniques hold great promises for

developing new sets of tools that can be used to automatically analyze the massive data-sets resulting from

such simulations, and thus help engineers and scientists unravel the causal relationships in the underlying

mechanisms of the dynamic physical processes. Some other recently emerging applications of data mining

can be found in the analysis and understanding of gene functions in the �eld of genomics, and categorization

of stars and galaxies in the �eld of astrophysics.

The huge size of the available data-sets and their high-dimensionality make large-scale data mining

applications computationally very demanding, to an extent that high-performance parallel computing is fast

becoming an essential component of the solution. Moreover, the quality of the data mining results often

depends directly on the amount of computing resources available. In fact, data mining applications are

poised to become the dominant consumers of supercomputing in the near future. There is a necessity to

develop e�ective parallel algorithms for various data mining techniques. However, designing such algorithms

is challenging. In the rest of this chapter, we will describe the parallel formulations of two important data

mining algorithms: discovery of association rules, and induction of decision trees for classi�cation.

�This work was supported by NSF CCR-9972519, by Army Research O�ce contract DA/DAAG55-98-1-0441, by the DOE

grant LLNL/DOE B347714, and by Army High Performance Computing Research Center contract number DAAH04-95-C-0008.

Access to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute. Related papers are available

via WWW at URL: http://www.cs.umn.edu/~kumar

1

Table 1: Transactions from supermarket.

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

2 Parallel Algorithms for Discovering Associations

An important problem in data mining [CHY96] is discovery of associations present in the data. Such

problems arise in the data collected from scienti�c experiments, or monitoring of physical systems such as

telecommunications networks, or from transactions at a supermarket. The problem was formulated originally

in the context of the transaction data at supermarket. This market basket data, as it is popularly known,

consists of transactions made by each customer. Each transaction contains items bought by the customer (see

Table 1). The goal is to see if occurrence of certain items in a transaction can be used to deduce occurrence

of other items, or in other words, to �nd associative relationships between items. If indeed such interesting

relationships are found, then they can be put to various pro�table uses such as shelf management, inventory

management, etc. Thus, association rules were born [AIS93b]. Simply put, given a set of items, association

rules predict the occurrence of some other set of items with certain degree of con�dence. The goal is to

discover all such interesting rules. This problem is far from trivial because of the exponential number of

ways in which items can be grouped together and di�erent ways in which one can de�ne interestingness of

a rule. Hence, much research e�ort has been put into formulating e�cient solutions to the problem.

Let T be the set of transactions where each transaction is a subset of the itemset I . Let C be a subset

of I , then we de�ne the support count of C with respect to T to be:

�(C) = jftjt 2 T;C � tgj:

Thus �(C) is the number of transactions that contain C. An association rule is an expression of the form

X
s;�

=) Y , where X � I and Y � I . The support s of the rule X
s;�

=) Y is de�ned as �(X [Y)=jT j,
and the con�dence � is de�ned as �(X [Y)=�(X). For example, for transactions in Table 1, the support

of rule fDiaper, Milkg =) fBeerg is �(Diaper;Milk;Beer)=5 = 2=5 = 40%, whereas its con�dence is.

�(Diaper;Milk;Beer)=�(Diaper;Milk) = 2=3 = 66%.

The task of discovering an association rule is to �nd all rules X
s;�

=) Y , such that s is greater than or

equal to a given minimum support threshold and � is greater than or equal to a given minimum con�dence

threshold. The association rule discovery is usually done in two phases. First phase �nds all the frequent

itemsets; i.e., sets satisfying the support threshold, and then they are post-processed in the second phase to

�nd the high con�dence rules. The former phase is computationally most expensive, and much research has

been done in developing e�cient algorithms for it. A comparative survey of all the existing techniques is given

in [JHKKar]. A key feature of these algorithms lies in their method of controlling the exponential complexity

of the total number of itemsets (2jIj). Brie
y, they all use the anti-monotone property of an itemset support,

which states that an itemset is frequent only if all of its sub-itemsets are frequent. Apriori algorithm [AS94]

pioneered the use of this property to systematically search the exponential space of itemsets. In an iteration

k, it generates all the candidate k-itemsets (of length k) such that all their (k � 1)-subsets are frequent.

The number of occurrences of these candidates are then counted in the transaction database, to determine

frequent k-itemsets. E�cient data structures are used to perform fast counting.

Overall, the serial algorithms such as Apriori have been successful on a wide variety of transaction

databases. However, many practical applications of association rules involve huge transaction databases

which contain a large number of distinct items. In such situations, these algorithms running on single-

processor machines may take unacceptably large times. As an example, in the Apriori algorithm, if the

2

number of candidate itemsets becomes too large, then they might not all �t in the main memory, and

multiple database passes would be required within each iteration, incurring expensive I/O cost. This implies

that, even with the highly e�ective pruning method of Apriori, the task of �nding all association rules can

require a lot of computational and memory resources. This is true of most of the other serial algorithms as

well, and it motivates the development of parallel formulations.

Various parallel formulations have been developed so far. A comprehensive survey can be found in

[JHKKar, Zak99]. These formulations are designed to e�ectively parallelize either or both of the computation

phases: candidate generation and candidate counting. The candidate counting phase can be parallelized

relatively easily by distributing the transaction database, and gathering local counts for the entire set of

candidates stored on all the processors. The CD algorithm [AS96] is an example of this simple approach. It

scales linearly with respect to the number of transactions; however, generation and storage of huge number

of candidates on all the processors becomes a bottleneck, especially when high-dimensional problems are

solved for low support thresholds using large number of processors . Other parallel formulations, such as

IDD [HKK97], have been developed to solve these problems. Their key feature is to distribute the candidate

itemsets to processors so as to extract the concurrency in candidate generation as well as counting phases.

Various ways are employed in IDD to reduce the communication overhead, to exploit the total available

memory, and to achieve reasonable load balance. IDD algorithm exhibits better scalability with respect to the

number of candidates. Moreover, reduction of redundant work and ability to overlap counting computation

with communication of transactions, improves its scalability with respect to number of transactions. However,

it still faces problems when one desires to use large number of processors to solve the problem. As more

processors are used, the number of candidates assigned to each processor decreases. This has two implications

on IDD. First, with fewer number of candidates per processor, it is much more di�cult to achieve load

balance. Second, it results in less computation work per transaction at each processor. This reduces the

overall e�ciency. Further lack of asynchronous communication ability may worsen the situation.

Formulations that combine the approaches of replicating and distributing candidates so as to reduce the

problems of each one, have been developed. An example is the HD algorithm of [HKK97]. Brie
y, it works

as follows. Consider a P -processor system in which the processors are split into G equal size groups, each

containing P=G processors. In the HD algorithm, we execute the CD algorithm as if there were only P=G

processors. That is, we partition the transactions of the database into P=G parts each of size N=(P=G), and

assign the task of computing the counts of the candidate set Ck for each subset of the transactions to each

one of these groups of processors. Within each group, these counts are computed using the IDD algorithm.

The HD algorithm inherits all the good features of the IDD algorithm. It also provides good load balance

and enough computation work by maintaining minimum number of candidates per processor. At the same

time, the amount of data movement in this algorithm is cut down to 1=G of that of IDD. A detailed parallel

runtime analysis of HD is given in [HKK00]. It shows that HD is scalable with respect to both number of

transactions and number of candidates. The analysis also proves the necessary conditions under which HD

can outperform CD.

Sequential Associations The concept of association rules can be generalized and made more useful by

observing another fact about transactions. All transactions have a timestamp associated with them; i.e. the

time at which the transaction occurred. If this information can be put to use, one can �nd relationships such

as if a customer bought [The C Programming Language] book today, then he/she is likely to buy a [Using Perl]

book in a few days time. The usefulness of this kind of rules gave birth to the problem of discovering sequential

patterns or sequential associations. In general, a sequential pattern is a sequence of item-sets with various

timing constraints imposed on the occurrences of items appearing in the pattern. For example, (A) (C,B)

(D) encodes a relationship that event D occurs after an event-set (C,B), which in turn occurs after event A.

Prediction of events or identi�cation of sequential rules that characterize di�erent parts of the data, are some

example applications of sequential patterns. Such patterns are not only important because they represent

more powerful and predictive relationships, but they are also important from the algorithmic point of view.

Bringing in the sequential relationships increases the combinatorial complexity of the problem enormously.

The reason is that, the maximum number of sequences having k events is O(mk2k�1), where m is the total

number of distinct events in the input data. In contrast, there are only (m
k
) size-k item-sets possible while

3

Outlook Temp(F) Humidity(%) Windy? Class
sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play

overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false Play

Play Dont’ Play Dont’ Play Play

Windy

sunny
overcast

rain

<= 75 > 75 true false

Play

Outlook

Humidity

Figure 1: A small training data set [Qui93] and its �nal classi�cation decision tree.

discovering non-sequential associations from m distinct items. Designing parallel algorithms for discovering

sequential associations is equally important and challenging. In many situations, the techniques used in

parallel algorithms for discovering standard non-sequential associations can be extended easily. However,

di�erent issues and challenges arise speci�cally due to the sequential nature and various ways in which

interesting sequential associations can be de�ned. Details of various serial and parallel formulations and

algorithms for �nding such associations can be found in [JKK99, JHKKar].

3 Parallel Algorithms for Induction of Decision Tree Classi�ers

Classi�cation is an important data mining problem. The input to the problem is a data-set called the training

set, which consists of a number of examples each having a number of attributes. The attributes are either

continuous, when the attribute values are ordered, or categorical, when the attribute values are unordered.

One of the categorical attributes is called the class label or the classifying attribute. The objective is to

use the training set to build a model of the class label based on the other attributes such that the model

can be used to classify new data not from the training data-set. Application domains include retail target

marketing, fraud detection, and design of telecommunication service plans. Several classi�cation models like

neural networks [Lip87], genetic algorithms [Gol89], and decision trees [Qui93] have been proposed. Decision

trees are probably the most popular since they obtain reasonable accuracy [DMT94] and they are relatively

inexpensive to compute.

Most of the existing induction{based algorithms like C4.5 [Qui93], CDP [AIS93a], SLIQ [MAR96], and

SPRINT [SAM96] use Hunt's method [Qui93] as the basic algorithm. Here is its recursive description for

constructing a decision tree from a set T of training cases with classes denoted fC1; C2; : : : ; Ckg.

Case 1 T contains cases all belonging to a single class Cj . The decision tree for T is a leaf identifying class

Cj .

Case 2 T contains cases that belong to a mixture of classes. A test is chosen, based on a single attribute, that

has one or more mutually exclusive outcomes fO1; O2; : : : ; Ong. Note that in many implementations,

n is chosen to be 2 and this leads to a binary decision tree. T is partitioned into subsets T1; T2; : : : ; Tn,

where Ti contains all the cases in T that have outcome Oi of the chosen test. The decision tree for T

consists of a decision node identifying the test, and one branch for each possible outcome. The same

tree building machinery is applied recursively to each subset of training cases.

Case 3 T contains no cases. The decision tree for T is a leaf, but the class to be associated with the leaf

must be determined from information other than T . For example, C4.5 chooses this to be the most

frequent class at the parent of this node.

Figure 1 shows a training data set with four data attributes and two classes and its classi�cation decision

tree constructed using the Hunt's method. In the case 2 of Hunt's method, a test based on a single attribute

4

(a) Synchronous Tree Construction (b) Partitioned Tree Construction

���� �� ���� ��

Proc 0

Proc 0 Proc 1 Proc 2 Proc 3

Proc 1 Proc 2 Proc 3

Class Distribution Information

Class Distribution Information

Proc 0 Proc 1 Proc 2 Proc 3

Proc 0 Proc 1 Proc 2 Proc 3

Data Item

Data Item

Proc 0 Proc 1 Proc 3Proc 2

Figure 2: Synchronous Tree Construction Approach and Partitioned Tree Construction Approach

is chosen for expanding the current node. The choice of an attribute is normally based on the entropy

gains [Qui93] of the attributes. The entropy of an attribute, calculated from class distribution information,

depicts the classi�cation power of the attribute by itself. The best attribute is selected as a test for the node

expansion.

Highly parallel algorithms for constructing classi�cation decision trees are desirable for dealing with large

data sets in reasonable amount of time. Classi�cation decision tree construction algorithms have natural

concurrency, as once a node is generated, all of its children in the classi�cation tree can be generated

concurrently. Furthermore, the computation for generating successors of a classi�cation tree node can also

be decomposed by performing data decomposition on the training data. Nevertheless, parallelization of the

algorithms for construction the classi�cation tree is challenging for the following reasons. First, the shape of

the tree is highly irregular and is determined only at runtime. Furthermore, the amount of work associated

with each node also varies, and is data dependent. Hence any static allocation scheme is likely to su�er

from major load imbalance. Second, even though the successors of a node can be processed concurrently,

they all use the training data associated with the parent node. If this data is dynamically partitioned and

allocated to di�erent processors that perform computation for di�erent nodes, then there is a high cost for

data movements. If the data is not partitioned appropriately, then performance can be bad due to the loss

of locality.

Several parallel formulations of classi�cation decision tree have been proposed recently [Pea94, GAR96,

SAM96, CDG+97, Kuf97, JKK98, SHKS99]. In this section, we present two basic parallel formulations for

the classi�cation decision tree construction and a hybrid scheme that combines good features of both of these

approaches described in [SHKS99]. Most of other parallel algorithms are similar in nature to these two basic

algorithms, and their characteristics can be explained using these two basic algorithms. For these parallel

formulations, we focus our presentation for discrete attributes only. The handling of continuous attributes is

discussed separately. In all parallel formulations, we assume that N training cases are randomly distributed

to P processors initially such that each processor has N=P cases.

Synchronous Tree Construction Approach In this approach, all processors construct a decision tree

synchronously by sending and receiving class distribution information of local data. Figure 2 (a) shows the

overall picture. The root node has already been expanded and the current node is the leftmost child of the

root (as shown in the top part of the �gure). All the four processors cooperate to expand this node to have

two child nodes. Next, the leftmost node of these child nodes is selected as the current node (in the bottom

of the �gure) and all four processors again cooperate to expand the node.

5

Partition 1 Partition 2

Computation Frontier at depth 3

Synchronous Tree

Construction Approach

Partitioned Tree

Construction Approach

Figure 3: Hybrid Tree Construction Approach

Partitioned Tree Construction Approach In this approach, whenever feasible, di�erent processors

work on di�erent parts of the classi�cation tree. In particular, if more than one processors cooperate to

expand a node, then these processors are partitioned to expand the successors of this node. Figure 2 (b)

shows an example. First (at the top of the �gure), all four processors cooperate to expand the root node just

like they do in the synchronous tree construction approach. Next (in the middle of the �gure), the set of four

processors is partitioned in three parts. The leftmost child is assigned to processors 0 and 1, while the other

nodes are assigned to processors 2 and 3, respectively. Now these sets of processors proceed independently

to expand these assigned nodes. In particular, processors 2 and processor 3 proceed to expand their part of

the tree using the serial algorithm. The group containing processors 0 and 1 splits the leftmost child node

into three nodes. These three new nodes are partitioned in two parts (shown in the bottom of the �gure);

the leftmost node is assigned to processor 0, while the other two are assigned to processor 1. From now on,

processors 0 and 1 also independently work on their respective subtrees.

Hybrid Parallel Formulation The hybrid parallel formulation has elements of both schemes. The Syn-

chronous Tree Construction Approach incurs high communication overhead as the frontier gets larger. The

Partitioned Tree Construction Approach incurs cost of load balancing after each step. The hybrid scheme

keeps continuing with the �rst approach as long as the communication cost incurred by the �rst formulation

is not too high. Once this cost becomes high, the processors as well as the current frontier of the classi�cation

tree are partitioned into two parts. Figure 3 shows one example of this parallel formulation. At the classi�-

cation tree frontier at depth 3, no partitioning has been done and all processors are working cooperatively

on each node of the frontier. At the next frontier at depth 4, partitioning is triggered, and the nodes and

processors are partitioned into two partitions.

A key element of the algorithm is the criterion that triggers the partitioning of the current set of processors

(and the corresponding frontier of the classi�cation tree). If partitioning is done too frequently, then the

hybrid scheme will approximate the partitioned tree construction approach, and thus will incur too much

data movement cost. If the partitioning is done too late, then it will su�er from high cost for communicating

statistics generated for each node of the frontier, like the synchronized tree construction approach. In the

hybrid algorithm, the splitting is performed when the accumulated cost of communication becomes equal to

the cost of moving records and load balancing in the splitting phase.

The size and shape of the classi�cation tree varies a lot depending on the application domain and training

data set. Some classi�cation trees might be shallow and the others might be deep. Some classi�cation trees

could be skinny others could be bushy. Some classi�cation trees might be uniform in depth while other trees

might be skewed in one part of the tree. The hybrid approach adapts well to all types of classi�cation trees.

If the decision tree is skinny, the hybrid approach will just stay with the Synchronous Tree Construction

Approach. On the other hand, it will shift to the Partitioned Tree Construction Approach as soon as the

tree becomes bushy. If the tree has a big variance in depth, the hybrid approach will perform dynamic load

balancing with processor groups to reduce processor idling.

6

Handling Continuous Attributes The approaches described above concentrated primarily on how the

tree is constructed in parallel with respect to the issues of load balancing and reducing communication

overhead. The discussion was simpli�ed by the assumption of absence of continuous-valued attributes.

Presence of continuous attributes can be handled in two ways. One is to perform intelligent discretization,

either once in the beginning or at each node as the tree is being induced, and treat them as categorical

attributes. Another, more popular approach is to use decisions of the form A < x and A � x, directly on the

values x of continuous attribute A. The decision value of x needs to be determined at each node. For e�cient

search of x, most algorithms require the attributes to be sorted on values, such that one linear scan can be

done over all the values to evaluate the best decision. Among various di�erent algorithms, the approach

taken by SPRINT algorithm[SAM96], which sorts each continuous attribute only once in the beginning, is

proven to be e�cient for large datasets. The sorted order is maintained throughout the induction process,

thus avoiding the possibly excessive costs of re-sorting at each node. A separate list is kept for each of the

attributes, in which the record identi�er is associated with each sorted value. The key step in handling

continuous attributes is the proper assignment of records to the children node after a splitting decision is

made. Implementation of this o�ers the design challenge. SPRINT builds a mapping between a record

identi�er and the node to which it goes to based on the splitting decision. The mapping is implemented as

a hash table and is probed to split the attribute lists in a consistent manner.

Parallel formulation of the SPRINT algorithm falls under the category of synchronous tree construction

design. The multiple sorted lists of continuous attributes are split in parallel by building the entire hash table

on all the processors. However, with this simple-minded way of achieving a consistent split, the algorithm

incurs a communication overhead of O(N) per processor. Since, the serial runtime of the induction process

is O(N), SPRINT becomes unscalable with respect to runtime. It is unscalable in memory requirements

also, because the total memory requirement per processor is O(N), as the size of the hash table is of the

same order as the size of the training dataset for the upper levels of the decision tree, and it resides on

every processor. Another parallel algorithm, ScalParC [JKK98], solves this scalability problem. It employs

a distributed hash table to achieve a consistent split. The communication structure, used to construct and

access this hash table, is motivated by the parallel sparse matrix-vector multiplication algorithms. It is

shown in [JKK98] that with the proper implementation of the parallel hashing, the overall communication

overhead does not exceed O(N), and the memory required does not exceed O(N=p) per processor. Thus,

ScalParC is scalable in runtime as well as memory requirements.

4 Conclusion

This chapter presented an overview of parallel algorithms for two of the commonly used data mining tech-

niques. Key issues such as load balancing, attention to locality, extracting maximal concurrency, avoiding

hot spots in contention, and minimizing parallelization overhead are just as central to these parallel formu-

lations as they are to the traditional scienti�c parallel algorithms. In fact, in many cases, the underlying

kernels are identical to well known algorithms, such as sparse matrix-vector product.

To date, the parallel formulations of many decision-tree induction and association rule discovery algo-

rithms are reasonably well-understood. Relatively less work has been done on the parallel algorithms for

other data mining techniques such as clustering, rule-based classi�cation algorithms, deviation detection,

and regression. Some possible areas of further research include parallelization of many emerging new and

improved serial data mining algorithms, further analysis and re�nements of existing algorithms for scalability

and e�ciency, designs targetted for shared memory and distributed shared memory machines equipped with

symmetric multiprocessors, and e�cient integration of parallel algorithms with parallel database systems.

References

[AIS93a] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE

Transactions on Knowledge and Data Eng., 5(6):914{925, December 1993.

7

[AIS93b] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

databases. In Proc. of 1993 ACM-SIGMOD Int. Conf. on Management of Data, Washington,

D.C., 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th

VLDB Conference, pages 487{499, Santiago, Chile, 1994.

[AS96] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE Transactions on Knowl-

edge and Data Eng., 8(6):962{969, December 1996.

[CDG+97] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Huning, M. Kohler, J. Sutiwaraphun,

H.W. To, and D. Yang. Large scale data mining: Challenges and responses. In Proc. of the Third

Int'l Conference on Knowledge Discovery and Data Mining, 1997.

[CHY96] M.S. Chen, J. Han, and P.S. Yu. Data mining: An overview from database perspective. IEEE

Transactions on Knowledge and Data Eng., 8(6):866{883, December 1996.

[DMT94] D.J. Spiegelhalter D. Michie and C.C. Taylor. Machine Learning, Neural and Statistical Classi-

�cation. Ellis Horwood, 1994.

[GAR96] S. Goil, S. Aluru, and S. Ranka. Concatenated parallelism: A technique for e�cient parallel divide

and conquer. In Proc. of the Symposium of Parallel and Distributed Computing (SPDP'96), 1996.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimizations and Machine Learning. Morgan-

Kaufman, 1989.

[HKK97] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. In

Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of Data, Tucson, Arizona, 1997.

[HKK00] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. IEEE

Transactions on Knowledge and Data Eng., 12(3), May/June 2000.

[JHKKar] M. V. Joshi, E.-H. Han, G. Karypis, and V. Kumar. E�cient parallel algorithms for mining

associations. In M. J. Zaki and C.-T. Ho, editors, Lecture Notes in Computer Science: Lecture

Notes in Arti�cial Intelligence (LNCS/LNAI), volume 1759. Springer-Verlag, To Appear.

[JKK98] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and e�cient parallel clas-

si�cation algorithm for mining large datasets. In Proc. of the International Parallel Processing

Symposium, 1998.

[JKK99] M. V. Joshi, G. Karypis, and V. Kumar. Universal formulation of sequential patterns. Technical

Report TR 99-021, Department of Computer Science, University of Minnesota, Minneapolis,

1999.

[Kuf97] R. Kufrin. Decision trees on parallel processors. In J. Geller, H. Kitano, and C.B. Suttner,

editors, Parallel Processing for Arti�cial Intelligence 3. Elsevier Science, 1997.

[Lip87] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 4(22),

April 1987.

[MAR96] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classi�er for data mining. In Proc.

of the Fifth Int'l Conference on Extending Database Technology, Avignon, France, 1996.

[Pea94] R.A. Pearson. A coarse grained parallel induction heuristic. In H. Kitano, V. Kumar, and C.B.

Suttner, editors, Parallel Processing for Arti�cial Intelligence 2, pages 207{226. Elsevier Science,

1994.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA,

1993.

8

[SAD+93] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. DBMS research at a

crossroads: The vienna update. In Proc. of the 19th VLDB Conference, pages 688{692, Dublin,

Ireland, 1993.

[SAM96] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classi�er for data mining. In

Proc. of the 22nd VLDB Conference, 1996.

[SHKS99] A. Srivastava, E.-H. Han, V. Kumar, and V. Singh. Parallel formulations of decision-tree classi�-

cation algorithms. Data Mining and Knowledge Discovery: An International Journal, 3(3):237{

261, September 1999.

[Zak99] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency (Special

Issue on Data Mining), December 1999.

9

