
CRPC Parallel Computing

Handbook

Jack Dongarra, Ian Foster, Geo�rey Fox, Ken Kennedy,

Linda Torczon, and Andy White

Editors

Final Draft

Final Draft

Limited Copies Distributed

Reproduction requires explicit permission

Copyright 2000, by the authors, all rights reserved

Chapter 5

The 2-D Poisson Problem

William Gropp

5.1 Introduction

In this chapter we brie
y describe how an approximate solution to the simple

partial di�erential equation introduced in the last two chapters can be found

when using parallel computing. This allows us to illustrate the issues involved

in parallelizing an application and to contrast the two major approaches.

5.1.1 The Mathematical Model

The Poisson problem is a simple elliptic partial di�erential equation. The Pois-

son problem occurs in many physical problems, including
uid
ow, electrostat-

ics, and equilibrium heat
ow. In two dimensions, the Poisson problem is given

by the following equations:

@2u(x; y)

@x2
+

@2u(x; y)

@y2
= f(x; y) in the interior (5.1)

u(x; y) = g(x; y) on the boundary (5.2)

To compute an approximation solution to this problem, we de�ne a discrete

mesh of points (xi; yj) on which we will approximate u. To keep things simple,

we will assume that the mesh is uniformly spaced in both the x and y directions

and that the distance between adjacent mesh points is h. That is, xi+1�xi = h

and yj+1�yj = h. We can then use a simple centered-di�erence approximation

to the derivatives in Equation 5.2 [?] to get

u(xi+1; yj)� 2u(xi; yj) + u(xi�1; yj)

h2
+

u(xi; yj+1)� 2u(xi; yj) + u(xi; yj�1)

h2
= f(xi; yj) (5.3)

7

CHAPTER 5. THE 2-D POISSON PROBLEM 8

real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 5.1: Sequential version of the Jacobi algorithm

at each point (xi; yj) of the mesh. To simplify the rest of the discussion, we will

replace u(xi; yj) by ui;j.

5.1.2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution

of the partial di�erential equation in Equation 5.2 and for solving the approxi-

mation in Equation 5.3. In this section we will describe a very simple algorithm

so that we can concentrate on the issues related to the parallel version of the

algorithm. In practice, the algorithm we describe here is obsolete and should

not be used (because it converges very slowly and better methods exist). How-

ever, many of the more modern algorithms use the same approach to achieve

parallelism, such as those described in Chapters 20 and 21.

The algorithm that we will use is called the Jacobi Method. This method is

an iterative approach for solving Equation 5.3 that can be written as

uk+1
i;j =

1

4

�
uk
i+1;j + uk

i�1;j + uk
i;j+1 + uk

i;j�1 � h2fi;j
�
: (5.4)

This equation de�nes the value of u(xi; yj) at the k + 1st step in terms of u at

the kth step; it also ignores the boundary conditions.

We can translate this into a simple Fortran program by de�ning the array

u(0:n,0:n) to hold uk and unew(0:n,0:n) to hold uk+1. This is shown in

Figure 5.1; details of initialization and convergence testing have been left out.

CHAPTER 5. THE 2-D POISSON PROBLEM 9

5.2 Parallel Solution of Poisson's Equation

We will look at two di�erent approaches to changing the sequential program

above into a parallel program.

5.2.1 Message Passing and the Distributed-Memory Model

One of the two major classes of parallel programming models is the distributed-

memory model, as discussed in Chapter ??. In this model, a parallel program

is made up of many processes1 , each of which has its own address space and

(usually) variables. Because each process has its own address space, special steps

must be taken to communicate information between processes. One of the most

widely used approaches is message passing. In message passing, information is

communicated between processes using a cooperative approach; both the sender

and the receiver make subroutine calls to arrange for the transfer of data between

them. Variables in one process are not directly accessible by any other process.

In creating a parallel program for this programmingmodel, the �rst question

to ask is: What data structures in my programmust be distributed or partitioned

among these processes? In our example, in order to achieve any parallelism, each

process must do part of the computation of unew. This suggests that we should

distribute u, unew, and f. One such partition is shown in Figure 5.2(a). The

part of the distributed data structure that is held by a particular process is said

to be owned by that process.

Note that the code to compute unew(i,j) requires u(i,j+1) and u(i,j-1).

This means that, in addition to the part of u and unew that each process has

(as part of the decomposition), it also needs a small amount of data from its

neighboring processes. This data is usually copied into a slightly expanded

array that holds both the part of the distributed array managed (or owned) by

a process with ghost or halo points that hold the values of these neighbors. This

is shown in Figure 5.2(b). A process gets these values by communicating with

its neighbors.

The code in Figure 5.3 shows the distributed-memory, message-passing ver-

sion of our original code in Figure 5.1.

The values of js and je are the values of j for the bottom and top of the

part of u owned by a process. The routine MPI Sendrecv is part of the MPI

message-passing standard [112]; it both sends and receives data. In this case,

the �rst call sends the values u(1:n-1,js) to the process below or down, where

it is received into u(1:n-1,je+1).

Note that though each process has variables js, je, u, and so on, these are

all di�erent variables (precisely, they are di�erent memory locations).

1In this chapter we are careful to refer to processes rather than processors. A processor

is a piece of hardware; zero, one, or more processes may be running on a processor. In most

parallel programs of the type described in this book, at most one thread should be running on

each processor; in the simplest programmingmodels, there is one thread per process, allowing

the terms process and processor to be used interchangably. However, the di�erence between

process and processor is real and important, and process rather than processor will be used

in this chapter.

CHAPTER 5. THE 2-D POISSON PROBLEM 10

j=4 j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=
0

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

(a)

j=3

Ghost Cells

Ghost Cells

(b)

Figure 5.2: Simple decomposition of the mesh across processes. Part (a) shows

the entire mesh, divided among three processes. Open circles correspond to

points on the boundary. Part (b) shows the part of this array owned by the

second process; the grey circles represent the ghost or halo cells.

There are many other ways to describe the communication needed for this

algorithm and algorithms like it. See [?, Chapter 4] for more details.

5.2.2 The Single Name-Space Distributed-Memory Model

High Performance Fortran (HPF) [?] provides an extension of Fortran (Fortran

90) to distributed-memory parallel environments. Unlike the message-passing

model, a single variable may be declared as distributed across all processes. For

example, rather than declaring the part of the u variable owned by each process,

in HPF the program simply declares u in the same way as for the sequential

program, and adds an HPF directive that describes how the variable should be

distributed across the processes. All communication required to access neighbor

values is handled for the programmer by the HPF compiler. The HPF version

of the Jacobi iteration is shown in Figure 5.4.

Variables that are not speci�cally distributed by the programmer with an

HPF directive behave just like variables in the message-passing program: each

process has a separate version of the variable. For example, the variable h is in

a di�erent memory location on each process (even though we give it the same

value).

Note also that the details of the distribution are controlled by HPF: the

BLOCK distribution is speci�cally de�ned by HPF and does not exactly match

the decomposition shown in Figure 5.2. For values of n that are much greater

than the number of processes (the only case where parallelismmakes any sense),

however, the HPF choice is as good as any.

CHAPTER 5. THE 2-D POISSON PROBLEM 11

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)

real f(1:n-1, js:je), h

integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr)

! Send up

call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&

MPI_COMM_WORLD, status, ierr)

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 5.3: Message-passing version of Figure 5.1

An advantage of HPF is that by changing the single line

!HPF$ DISTRIBUTE u(:,BLOCK)

to

!HPF$ DISTRIBUTE u(BLOCK,BLOCK)

we can change the distribution of the arrays to that shown in Figure 5.5. This

distribution is more scalable that that in Figure 5.2 because the amount of data

communicated per process decreases as the number of processes increases. The

relative advantages of di�erent decompositions is discussed in more detail in

Chapter 18.

We call this the single name-space, distributed-memory model because all

communication between processes is handled with variables (like u) that are

declared globally; that is, they are declared as if they were accessible to all

processes. This allows many programs to be written so that they are very

CHAPTER 5. THE 2-D POISSON PROBLEM 12

real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew WITH u

!HPF$ ALIGN f WITH u

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &

(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 5.4: HPF version of the Jacobi algorithm

similar to the sequential version of the same program. In fact, the program in

Figure 5.4 is nearly identical to Figure 5.1, particularly if the i and j loops in

Figure 5.1 are replaced with the Fortran 90 array expression used in Figure 5.4.

5.2.3 The Shared-Memory Model

The shared-memory model, in contrast to the distributed-memory model, has

only one process but multiple threads. All threads can access all of the memory

of the process. This means that there is only a single version of each variable.

This is very convenient; in some cases, a parallel, shared-memory version of

Figure 5.1 looks exactly the same: the compiler may be able to create a parallel

version directly from the sequential code.

However, it can be helpful, both in terms of code clarity and the generation

of e�cient parallel code, to include some code that describes the desired par-

allelism. One method that was designed for this kind of code is OpenMP [?].

The OpenMP version is shown in Figure 5.6. In this example, the code between

the comments !$omp parallel to !$omp end parallel is executed in parallel

using multiple threads. The comment !$omp do indicates that the next line

describes a do-loop that should be work-shared ; that is, the iterations speci�ed

by this do statement will be

See Chapter ?? for a more detailed discussion of OpenMP. A complete Open-

MPI code for the Jacobi example is available at the OpenMP web site [?].

OpenMP handles many of the details of multi-threaded programming for the

user. It is also possible to use threads directly; it may be necessary in cases where

an OpenMP-enabled compiler is not available. For Unix systems, Pthreads (for

CHAPTER 5. THE 2-D POISSON PROBLEM 13

j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=
0

i=
1

i=
2

i=
3

i=
4

i=
5

i=
6

i=
7

Figure 5.5: Decomposition of the mesh across a two-dimensional array of four

processes, corresponding to an HPF BLOCK,BLOCK distribution.

real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

!$omp end parallel

enddo

Figure 5.6: OpenMP (shared-memory) version of the Jacobi algorithm

CHAPTER 5. THE 2-D POISSON PROBLEM 14

POSIX threads [166]) de�nes a library interface to threads. In this approach,

the code to be executed by a thread is placed into a separate routine; the name of

that routine is passed to a thread-creation routine (e.g., pthread create) which

then starts that routine in a separate thread. The pthread join routine is used

to wait for the routine running in a thread to return. Using explicit threads

allows you to work with any compiler, but requires a great deal of care on the

part of the programmer. In addition, thread libraries are often not intended for

scalable parallel computing and may not provide scalable performance.

5.2.4 Comments

This chapter has described very brie
y the steps required when parallelizing code

to approximate the solution of a partial di�erential equation. While the algo-

rithm used in this discussion is ine�cient by modern standards, the approach

to parallelism is very similar to what is needed by state-of-the-art approaches

for both implicit and explicit solution methods. Other chapters in this book

discuss more modern techniques.

Because of the simplicity of the algorithm and data structures, these exam-

ples fail to address many of the issues that can arise in more complex situations.

These include unstructured grids, dynamic (runtime) allocation and manage-

ment of data structures, and more complex data dependencies between shared

data structures (either between processes or threads). Some of these issues are

discussed in more detail in Chapter 21 and others.

The algorithm above did not specify the test for convergence. The result of

such a test is a single value that all processes/threads contribute to and that

must be available to all processes. Computing it scalably and correctly requires

care. Each of the programming models illustrated above provides special fea-

tures to handle this and similar problems. These are discussed in the next

section.

Another discussion that focuses on some of the more subtle issues, par-

ticularly for the shared-memory case is given in [?]. Suggestions for choosing

between di�erent approaches to expressing parallel programs are given in Chap-

ter ??.

5.3 Adding Global Operations

The examples above showed how to compute with an array distributed across

many processes. Sometimes, all processes or threads will need access to a single

value. In this section, we discuss how each approach to parallel computing

provides this operation by describing the implementation of a convergence test.

A simple convergence test is to compute the two-norm of the di�erence

between two successive iterations. In the serial case, this can be accomplished

with the code shown in Figure 5.7.

CHAPTER 5. THE 2-D POISSON PROBLEM 15

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ...

twonorm = 0.0

do j=1, n-1

do i=1, n-1

twonorm = twonorm + (unew(i,j) - u(i,j))**2

enddo

enddo

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 5.7: Sequential code to compute the two-norm of the di�erence between

two iterations of the Jacobi algorithm

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), twonorm

integer ierr

! ...

twonorm_local = 0.0

do j=js, je

do i=1, n-1

twonorm_local = twonorm_local + &

(unew(i,j) - u(i,j))**2

enddo

enddo

call MPI_Allreduce(twonorm_local, twonorm, 1, &

MPI_REAL, MPI_SUMM, MPI_COMM_WORLD, ierr)

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 5.8: Message-passing version of Figure 5.7

5.3.1 Collective operations in MPI

In the MPI case, computing the two-norm of the di�erence of unew and u re-

quires two steps. First, the sum of the squares of the di�erences of the local part

of unew and u are computed. These are then combined with the contributions

from all of the other processes and summed together. Because the operation of

combining values from many processes is common and important and because

e�cient implementations of this operation can require very system-speci�c code

and algorithms, MPI provides a special routine, MPI Allreduce, to combine a

value from each process and return to all processes the result. This is shown in

Figure 5.8.

This operation is called a reduction because it combines values from many

CHAPTER 5. THE 2-D POISSON PROBLEM 16

real u(0:n,0:n), unew(0:n,0:n), twonorm

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew with u

!HPF$ ALIGN f with u

! ...

twonorm = sqrt (&

sum ((unew(1:n-1,1:n-1) - u(1:n-1,1:n-1))**2))

if (twonorm .le. tol) ! ... declare convergence

enddo

Figure 5.9: HPF version of the convergence test for the Jacobi algorithm

sources into a single value. MPI provides many routines for communication and

computation on a collection of processes; these are called collective operations.

5.3.2 Reductions in HPF

Fortran 90 and hence HPF contain built-in functions for computing the sum

of all of the values in an array. In HPF these functions work with distributed

arrays, so the code is very simple, as shown in Figure 5.9.

5.3.3 Reductions in OpenMP

The approach taken in OpenMP is somewhat di�erent from that in HPF. Like

MPI, OpenMP recognizes that reductions are a common operation. In OpenMP,

you can indicate that the result of a variable is to be formed by a reduction with

a particular operator. This is shown in Figure 5.10.

The e�ect of the reduction(+:twonorm) statement is to cause the OpenMP

compiler to create a separate, private version of twonorm in each thread. When

the enclosing scope ends, OpenMP combines the contributions in each thread

using the speci�ed operation to form the �nal value.

This code also illustrates the directive private to create a variable that

is private to each thread (i.e., not shared). Without this directive, the value

of ldiff added to the thread-private value of twonorm could come from the

\wrong" thread. This also illustrates a di�erence in the OpenMP and HPF

programming models. In OpenMP, most variables are shared by default, while

in HPF, most variables are not.

5.3.4 Final Comments

All of these approaches to �nding the two-norm exploit the associativity of

real arithmetic. Unfortunately, computers don't use real numbers; they use an

approximation called
oating-point numbers. Operations with
oating-point

numbers are nearly, but not exactly, associative. (See any introductory book on

Numerical Analysis.) Because of this lack of associativity, the value computed

by these methods may be di�erent. In a well-designed algorithm, the di�erence

CHAPTER 5. THE 2-D POISSON PROBLEM 17

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ..

twonorm = 0.0

!$omp parallel

!$omp do private(ldiff) reduction(+:twonorm)

do j=1, n-1

do i=1, n-1

ldiff = (unew(i,j) - u(i,j))**2

twonorm = twonorm + ldiff

enddo

enddo

!$omp enddo

!$omp end parallel

twonorm = sqrt(twonorm)

enddo

Figure 5.10: OpenMP (shared-memory) version of the convergence test for the

Jacobi algorithm

will be small (in relative terms). However, this di�erence can sometimes be

unexpected and hence confusing. It is also important to ensure that each process

computes the same result for the reduction, since the each process uses this value

to decide whether to stop. Carefully designed routines for reduction operations

will guarantee this result; programmingmodels such as MPI, HPF, and OpenMP

also guarantee that all processes receive the same result.

