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man and Greg Bryan)

1.1 Problem to be Solved

The universe is homogeneous and isotropic on scales exceeding one billion

light years, but on smaller scales it is clumpy, exhibiting a hierarchy of struc-

tures which includes individual galaxies, groups and clusters of galaxies, and

superclusters of galaxies. Understanding the origin and cosmic evolution of

these structures is the goal of cosmological structure formation{CSF. CSF is

inherently nonlinear, multidimensional, and involves a broad range of phys-

ical processes operating on a range of length{ and time{scales. Numerical

simulation is the only means we have of studying it in any detail.

Simulations of CSF have grown in size and complexity as computer power

has grown. The largest N-body CSF simulations of the day has increased

from N=323 particles on VAXs in the mid `80s to 10243 particles on today's

MPPs|an astounding factor of over 32,000. Today, CSF simulations are

among the largest consumers of supercomputer cycles at the NSF centers,

rivaling CFD, condensed matter physics, and lattice gauge theory.

Two parallel applications described here simulate CSF in three spatial

dimensions and time within an expanding background spacetime consistent

with our understanding of the Big Bang origin of the universe. The �rst

code, called Kronos [4], uses a uniform Cartesian grid comoving with the

expanding universe as the basis for discretizing the equations of matter

and gravitational dynamics. The second code, called Enzo [5, 7, 14], adds

structured adaptive mesh re�nement (SAMR) to the Kronos algorithm for

improved spatial and temporal resolution in high density regions (galaxies,

clusters, etc.) Sequential and parallel versions of both codes have been devel-

oped and optimized for vector multiprocessors, SMPs, MPPs, and clusters

of PCs and SMPs. The message{passing parallel version Enzo, which can

be run with and without mesh re�nements, is our computational workhorse

and is the main focus of this report.

1.2 Computational Issues

Matter in the universe is of two basic types: ordinary \baryonic" matter

composed of nucleons and electrons out of which stars and galaxies are

made, and non-baryonic \dark" matter of unknown composition, which is

nevertheless known to be the dominant mass consituent in the universe
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on scales of galaxies and larger. Kronos and Enzo self-consistently simu-

late both components, which evolve according to di�erent physical laws and

therefore require di�erent numerical algorithms.

Baryonic matter is evolved using a �nite volume discretization of the

Euler equations of gas dynamics cast in the comoving frame including energy

source and sink terms due radiative heating and cooling processes, as well

as changes in ionization state of the gas [4]. In some calculations involving

nonequilibrium chemistry, separate chemical/ionic species are evolved by

solving their kinetic rate equations [2]. Radiation �elds are modeled as

evolving but spatially homogeneous backgrounds; true radiative transfer is

not yet included but is on the horizon [1].

Dark matter is assumed to behave as a collisionless phase 
uid, obey-

ing the Vlasov-Poisson equation. Its evolution is solved using particle-mesh

algorithms for collisionless N-body dynamics [11]. Dark matter and bary-

onic matter interact only through their self-consistent gravitational �eld.

The gravitational potential is computed by solving the Poisson equation

on the uniform or adaptive grid hierarchy using Fourier transform tech-

niques. In generic terms, our CSF codes are 3-D hybrid codes consisting of

a multi-species hydrodynamic solver for the baryons coupled to a particle-

mesh solver for the dark matter via a Poisson solver.

Matter evolution is computed in a cubic domain of length L = a(t)X,

where X is the domain size in comoving coordinates, and a(t) is the ho-

mogenous and isotropic scale factor of the universe which is an analytic or

numerical solution of the Friedmann equation, a �rst order ODE. For suf-

�ciently large L compared to the structures of interest, any chunk of the

universe is statistically equivalent to any other, justifying the use of peri-

odic boundary conditions. The speed of Fast Fourier Transform algorithms

and the fact that they are ideally suited to periodic problems make them

the Poisson solver of choice given the large grids employed|5123 or larger.

CSF simulations require very large grids and particle numbers due to

two competing demands: large boxes are needed for a fair statistical sample

of the universe; and high mass and spatial resolution are needed to ade-

quately resolve the scale lengths of the structures which form. For example,

in order to adequately simulate the internal structure of galaxies and si-

multanenously describe their large scale distribution in space (large scale

structure), a dynamic range of 104 per spatial dimension and 109 in mass is

needed at a minimum.

The largest uniform grid simulation ever done including gas and dark

matter is a Kronos simulation we carried out on 512 processors of the Con-
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Figure 1: Kronos simulation of large scale cosmological structure. Shown

is the distribution of gas density in a volume half a billion light years on a

side. From [6].

nection Machine-5 at NCSA in 1994 (Figure 1). The simulation used a grid

of 5123 cells and 5 � 107 particles{far short of the requirements mentioned

above. With the use of the adaptive mesh re�nement code Enzo on the

current generation of terascale computing systems, the desired resolutions

are now achievable. In the next two sections, we discuss parallel computing

aspects of these two codes.

1.3 Parallel Unigrid Code: Kronos

The Kronos code was developed from 1992-1994 by Greg Bryan for the

Connection Machine-5 at the NCSA. The CM-5 had 512 processor nodes,

each consisting of a SUN Sparc microprocessor, four vector processors, and

32 MB of memory. The theoretical peak speed of the system was quoted as

0.128 GFlop/sec/PN � 512 PN = 65 GFlop/sec, and the total memory was
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16 GB.

Kronos was implemented in the data parallel Connection Machine For-

tran (CMF) programming model. Conceptually, Kronos is the union of two

codes: a 3-d Eulerian gas dynamics code (suitably modi�ed for cosmology

[4]), and a 3-d particle-mesh code (of which the FFT-based Poisson solver is

a component) for the collisionless dark matter. The parallel challenges and

solutions for each code are quite di�erent, and so we discuss them individ-

ually.

The equations of gas dynamics are purely local: changes in cell quanti-

ties due to pressure forces and 
uid advection involve only nearest neighbors.

By assigning one virtual processor per cell in a 3-d cartesian lattice, nearest

neighbor information was passed using the CM-5 NEWS data communica-

tion network via simple CSHIFT calls. This was the basis of our �rst imple-

mentation. Performance tests measured at � 8 MFlops/sec/PN, or about

6% of peak. The reason for this poor performance was that the communi-

cation network was invoked between every computational cell regardless of

whether they resided on the same physical processor or not.

In order to circumvent this, our second implementation abandoned the

one virtual processor per cell model in favor of explicit domain decompo-

sition. This was accomplished within the CMF data parallel programming

model by declaring 6-d arrays for the 
uid �eld variables; e.g., d(:serial,:serial,:serial,:news,:ne

the serial dimensions referring to the 3-d index of a cell within a given block,

and the parallel dimensions referring to the indices of the block in a 3-d block

decomposition of the computational domain. This had the advantage that

serial operations on d within a block could proceed in parallel without in-

voking the communication network. Internal boundary values were copied

from neighboring processors once per timestep into 5-d arrays which corre-

sponded to the faces of the blocks. In this way, communication was isolated

to one rather minor phase of the calculation. Performance improved three-

fold to � 24 MFlop/sec or 18% of peak, which largely re
ected the sustained

speed of the purely local computations. Scaling tests with constant work

per processor yielded ideal scaling up to NP=512 nodes, con�rming that

communication costs were minimal.

The particle-mesh code, on the other hand, is communication intensive.

The PM algorithm consists of three phases, the �rst and third of which in-

volve nonlocal communication between and among the 1-d particle list and

3-d �eld arrays. In the �rst mass assignment phase, the particles' mass is

assigned to a density �eld array via a gather operation. In the second �eld

solve phase, the Poisson equation is solved for the gravitational potential
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using 3-d FFTs|a nonlocal operation. The mesh force is computed from

spatial di�ences of the potential|a local operation. In the third force inter-

polation phase, the mesh force is interpolated to the particle positions via

a scatter operation. Obviously, �nding eÆcient parallel implementations

which minimize communication costs is essential. An additional complica-

tion is that the particle distribution becomes highly inhomogeneous due to

gravitational clustering, creating load imbalances in phases 1 and 3 even if

the particle list and �eld arrays are uniformly distributed across processors.

We implemented the algorithm of Ferrell and Bertschinger [9] which ele-

gantly solves all of these problems. Since the algorithm and its performance

on the CM-5 are described in detail in [9], we merely summarize the key

points. The gather-scatter portion of phases 1 and 3 are done in a com-

pletely load balanced way through the use of Parallel Pre�x Operations on

the particle list [10]. Parallel pre�x operations, also referred to as Scans, are

a method of turning certain kinds of global communications into regular,

mostly local, communications. Brie
y, the procedure is to sort the particle

list so that all particles within a given processor are contiguous. An index

list is introduced that contains the processor ID for each particle. Because

the list has been sorted, the processor ID is constant in a segment, chang-

ing to another value in the next segment. We then use a Segmented Scan

Add operation which computes a running sum of the masses of the particles

within a given segment. This operation requires O(logNP) communication

operations. The last element in each segment contains the total mass in

the segment. We then have only one word of data to send to each virtual

processor assigned to a grid cell. In step 2, three components of the gravita-

tional acceleration on the grid is computed from the gridded mass densities

using Fourier Transforms. For this purpose, we used the highly optimized

3-d FFT routines in the CMSSL library. The third force interpolation phase

is essentially the inverse of the mass assignment phase. We use a Segmented

Scan Copy to copy the gridded forces to a segmented force list. The oper-

ation also takes O(logNP) communication operations. The forces are then

applied to the particles in parallel in a purely local fashion.

For a scaled work problem, the combined code exhibited linear speedup

on the CM-5 to 512 processors, with a parallel eÆciency of T (1)=(NP �

T (NP )) � 0:75. Clearly, the communication overhead in the PM portion

of the calculation is responsible for the lack of ideal scaling. Still, the fact

that parallel speedup was roughly constant versus NP indicates that the

combined algorithm was scalable.
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1.4 Parallel AMR Code: Enzo

The demise of the CM-5 coupled with the need for higher resolution than

a�orded by uniform grids motivated the development of Enzo. Enzo uses

structured adaptive mesh re�nement (SAMR, [3, 5]) to achieve high res-

olution in gravitational condensations. The central idea behind SAMR is

simple to describe but diÆcult to implement eÆciently on parallel comput-

ers. While solving the desired set of equations on a coarse uniform grid,

monitor the quality of the solution; when necessary, add an additional, �ner

mesh over the region that requires enhanced resolution. This �ner (child)

mesh obtains its boundary conditions from the coarser (parent) grid or from

other neighboring (sibling) grids with the same mesh spacing. The �ner grid

is also used to improve the solution on its parent. As the evolution contin-

ues, it may be necessary to move, resize or even remove the �ner mesh. Even

�ner meshes may be required, producing a tree structure that can continue

to any depth.

To advance our system of coupled equations in time on this grid hi-

erarchy, we use a recursive algorithm. For simplicity, we consider only the

hydrodynamic portion of the algorithm; the dark matter dynamics and Pois-

son equation have a similar structure. The EvolveLevel routine is passed

the level of the hierarchy it is to work on and the new time. Its job is to

march the grids on that level from the old time to the new time:

EvolveLevel(level, ParentTime)

begin

SetBoundaryValues(all grids)

while (Time < ParentTime)

begin

dt = ComputeTimeStep(all grids)

SolveHydroEquations(all grids, dt)

Time += dt

SetBoundaryValues(all grids)

EvolveLevel(level+1, Time)

RebuildHierarchy(level+1)

end

end

Inside the loop which advances the grids on this level, there is a recursive

call so that all the levels above (with �ner subgrids) are advanced as well.

The resulting order of timesteps is like the multigrid W cycle.
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As with any hyperbolic equation, we must set the boundary conditions

on the grids. This is done by �rst interpolating from a grid's parent and

thing copying from sibling grids, where available. Once the boundary values

have been set, we evolve the hydrodynamic �eld equations using procedure

SolveHydroEquations. The �nal task of the EvolveLevel routine is to

modify the grid hierarchy to the changing solution. This is accomplished

via the RebuildHierarchy procedure, which takes a level as an argument

and modi�es the grids on that level and all higher levels. This involves

three steps: First, a re�nement test is applied to the parent grids of the

current level to determine which cells need to be re�ned. Second, rectangular

regions are chosen which cover all of the re�ned regions, while attempting

to minimize the number of unnecessarily re�ned points. Third, the new

grids are created and their values are copied from the old grids (which are

deleted) or interpolated from parent grids. This process is repeated on the

next re�ned level until the grid hierarchy has been entirely rebuilt.

1.5 Parallelization of Enzo

Other than the physical equations solved, Enzo bears no relation to Kro-

nos. Virtually none of the CMF code was reusable because not only did we

change algorithms, we changed programming models and languages as well.

The code is mostly implemented in C++, with compute-intensive kernels in

FORTRAN 77. EÆciently parallelizing SAMR is diÆcult, particularly for

distributed memory systems. Grids have a relatively short life, so informa-

tion must be updated frequently. Moreover, load balancing becomes crucial

since small regions of the original grid eventually dominate the computa-

tional requirements.

Enzo development proceeded in two major steps. The �rst step, car-

ried out by Greg Bryan from 1994-1996, was the implementation of a shared

memory parallel code for the SGI Origin2000 employing SGI's PowerC com-

piler to concurrently execute grids at a given re�nement level. The powerful,

mature C development environment on the SGI was a major boon. How-

ever, since the workload is typically distributed nonuniformly across levels

(cf. Fig. 3), and the algorithm dictates that levels must be processed sequen-

tially, we found we could not eÆciently use more than about 16 processors.

Therefore, a second SPMD message-passing code for distributed memory

systems was implemented from 1997-2000 wherein the root grid is domain

decomposed into 3-d blocks. Each block plus its complement of subgrids

are assigned to di�erent processors, which work on them in parallel. Load
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balancing is achieved by sending grids from overloaded processors to under-

loaded ones, and optionally through the use of grid splitting [13].

We have used the MPI library to produce a code which is portable and

eÆcient. In particular, we have used the following optimization techniques:

� Distributed objects. We leveraged the object-oriented design by dis-

tributing the objects over the processors, rather than attempting to

distribute an individual grid.

� Sterile objects. Although distributing the objects results in good load

balancing, it has the potential to greatly increase the amount of com-

munication since each processor has to probe other processors to �nd

out about neighboring grids. We solved this problem by creating a

type of object which contained information about the location and

size of a grid, but did not contain the actual solution arrays. These

sterile objects are small and so each processor can hold the entire hi-

erarchy. Only those grids which are truly local to that processor are

non-sterile.

� Pipelined communications. One result of distribution is that all op-

erations between two grids (e.g. obtaining boundary values) are po-

tentially non-local. We optimize this by dividing each communication

stage into two steps. First, all of the data are processed and sent.

Since all processors have the location of all grids locally (thanks to the

sterile objects), we can order these sends such that the data that are

required �rst are sent �rst. Then, in the receive stage, the data needed

immediately has had a chance to propagate across the network while

the rest of the sends were initiated.

1.6 Performance

The performance of an AMR application is diÆcult to characterize because

the workload and its distribution are dynamically changing throughout the

calculation. The simplest measure is time to solution of a run versus NP.

This necessitates running a job to completion over and over again, varying

NP. This is computationally expensive for modest problem sizes and imprac-

tical for medium to large problems of interest. Nevertheless, this has been

done; results are reported in [12]. We �nd that not only is parallel eÆciency

problem size dependent, as expected, but also problem dependent as well. For

example, a survey calculation involving a large root grid and no subgrids
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Figure 2: Enzo simulation of primordial star formation. Each image shows

gas density in a region ten times smaller than the previous. From [8].

distributed over many processors will scale very di�erently than a calcula-

tion involving a large number of small, deeply nested subgrids focussing on

a single collapsing object.

To illustrate the operation and performance of Enzo on the latter sort

of problem, we show in Figure 2 an AMR simulation of primordial star for-

mation which achieves a local resolution in space and time of 1012. For

comparison, 1012 is roughly the ratio of the diameter of the earth to the

size of a human cell. Temporally, 1012 is roughly the ratio of time since the

extinction of the dinosaurs to when you woke up this morning. Over 8000

subgrids are developed at 34 levels of re�nement to achieve this unprece-

dented dynamic range.

In the top two panels of Figure 3, we show how the grid hierarchy grows

as time progresses. Note the slow increase in the number of grids as the

proto-star condenses and the �nal, very sudden jump in the depth of the

grid tree at the end when the core of the cloud collapses to high density. This

demonstrates how the data structures themselves adapt to �t the physical

solution. Note also the extremely large number of memory allocations and

frees, since the entire grid hierarchy is rebuilt thousands of times. This kind
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Figure 3: The top left and right panels show the depth of the hierarchy tree

and the number of grids as a function of time (in millions of years), The

bottom left and right panels plot the number of grids per level and an esti-

mate of the computational work required per level (in each case normalized

so that the maximum value is unity).

of method represents a new class of scienti�c computing that place great

strain on the operating system infrastructure. Total memory usage is also

substantial, often reaching up to 20 GB. With outputs in the 2-4 GB range,

we require at least 50-100 GB disk storage and much more mass storage

space.

In the bottom two panels of this �gure, we have chosen two representative

times and plotted the distribution of levels per grid. At early times, most

of the grids are at moderate levels, representing the fact that relatively low

resolution is suÆcient to model the protostar. However, at late times, a

large investment is required at the very highest levels of resolution.

Finally, we estimate the raw performance of the code in the following way.

We have used the hardware 
oating-point counter on the SGI Origin2000 to

determine the speed of a similar SAMR calculation. This provides a bench-

mark from which we can determine the speed of this calculation, which was
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run on the Blue Horizon IBM SP2 system at the San Diego Supercomputer

Center. Running on 64 processors produced a speed approximately 125

times faster than a single Origin2000 processor (105 MFlop/s), yielding a

total speed of approximately 13 G
op/s. As an exercise, we can also ask

how long this calculation would have taken with a traditional static grid

code and compute an e�ective or virtual 
op rate. To do this, we assume

a grid with 1012 cells on each side, and assume the entire calculation would

have taken (quite conservatively) 1010 timesteps. This works out to approx-

imately 1050 
oating point operations. Since the entire calculation took of

order 106 seconds, this converts to a virtual 
op rate of 1044 
op/s.

1.7 Future

In the near future we intend to carry out large scale simulations of galaxy

formation resolving the internal structure of thousands of galaxies simulta-

neously. These will involve large global root grids (5123 or larger) and deep

mesh re�nements around each forming galaxy. Computational requirements

are in the sustained tera
op range, owing to the large number of timesteps

required, with concommitantly large RAM and disk requirements. Cur-

rently, we are porting Enzo to terascale cluster architectures including the

Compaq system at PSC, as well as Linux clusters at NCSA. Principal needs

remain mature C and Fortran compilers, debugging tools, optimized mathe-

matical subroutine libraries, and eÆcient parallel I/O subsystems. We plan

to explore mixed mode parallel programming (threads + message passing)

on the IBM SP2 with Power3 SMP nodes at the SDSC. Our experience with

the CM-5 has taught us the hard way that language solutions to massive

parallelism vanish as quickly as the hardware they rode in on.
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