
JULY/AUGUST 2001 75

new JXTA initiative from Sun, whose
Web site (www.jxta.org) discusses inter-
esting architecture issues and announces
several open-source software compo-
nents to support this computing model.
Here, we will discuss computational and
information grids, which Larry Smarr
first popularized when he was director of
the National Center for Supercomputing
Applications at the University of Illinois.

P2P networks are built on the analogy
of providing services in a community of
peers. Grids, on the other hand, are built
on the analogy of users tapping into ubiq-
uitous computing and information re-
sources, similar to plugging into an elec-
trical grid. Together, these two powerful
analogies cover much of the research and
indeed commercial deployment of Web-
based distributed systems. Underlying
both concepts are two inevitable trends:
using Internet hardware and software in-
frastructure to build the communication
and control (middleware) of distributed
systems, and using a Web browser as the
user interface or portal to an application.

The grid analogy applies when com-
putational scientists submit, monitor, and
analyze simulation results or when scien-
tists manage and store data in large-scale
astronomy and nuclear-physics experi-
ments. As electronic communities sup-
port distance collaboration, researchers

around the globe are interacting and
sharing resources—discussing the latest
result of a simulation, the meaning of
real-time data streaming in from satel-
lites, or, more reflectively, the latest the-
oretical breakthrough described in a
preprint just released on a colleague’s
Web site. There are similar applications
in other fields, from business to pleasure.
For instance, grids and P2P networks for
both conventional and distance education
can integrate teachers, students, curric-
ula, and administrative resources in a
Web infrastructure, for homework or
grading purposes. We must support not
only these tasks but also their synchro-
nous or asynchronous integration. For
example, a Web-linked sensor could
stream data to an analysis program that
fuses it with distributed resources and
pipes the information through distrib-
uted filters; visualizing the process, the
distributed project team could decide
how to use the sensor or analyze the data.
In an important paper (www.globus.org/
research/papers/anatomy.pdf), Ian Fos-
ter and colleagues broadened the grids
concept to support virtual organizations
and thus link to the P2P arena. However,
here we use grids to describe today’s more
limited view. Nevertheless, these con-
cepts will evolve and overlap more and
more.

Even in a particular field, say compu-
tational science or education, we need to
build systems that can cope with a wide
diversity of users and resources. If we cus-
tomize our solution too much, it is hard
to cope with the rapid changes in users’
interests, the nature of the resources, and
indeed the system’s underlying technol-
ogy. We address this by making system
design or architecture choices. We use all
relevant standards and perhaps try to
work with the community on new stan-
dards where needed; the Internet’s suc-
cess has as much to do with well-chosen
standards (TCP/IP, HTTP, XML, Java,
and so on) as it does with the remarkable
software and hardware developed in
terms of them. We view all resources as
distributed objects; we express capabili-
ties as the composition of basic opera-
tions, which we define as services so that
they can apply to a wide range of re-
sources. This is a classic research prob-
lem, because users can be precise about
their requirements only after they have
experimented with initial systems. Thus,
the process is proceeding as it usually
does in science; every now and then, af-
ter many different prototypes have been
built and tested, consensus develops as to
best practice. Future Grid Computing
columns will describe particular examples
of grids; here we describe their basic prin-
ciples and common features.

What is a computational grid?
Figure 1 presents a typical grid sce-

nario. Independent clients are given
access to a set of resources through a
middle tier that routes information and
implements the different services. We

Editor: Geoffrey Fox, fox@csit.fsu.edu

G R I D C O M P U T I N G

COMPUTATIONAL GRIDS
By Geoffrey Fox and Dennis Gannon

LAST ISSUE’S WEB COMPUTING COLUMN DISCUSSED ONE

VIEW OF MODERN DISTRIBUTED SYSTEMS, PEER-TO-PEER

NETWORKS, WHICH HAVE GROWN UP TO SUPPORT COMMUNITIES

AND INFORMATION SHARING. P2P WAS GIVEN AN IMPETUS BY THE

76 COMPUTING IN SCIENCE & ENGINEERING

define computational grid as a collection
of computers, online instruments, data
archives, and networks that are con-
nected by a shared set of services
which, when taken together, provide
users with transparent access to the en-
tire set of resources.

Grids offer a wide range of services.

• Single sign-on authentication, autho-
rization, and security. These services
let users launch applications on any
of the grid’s resources by means of a
standard authentication certificate.
By using “proxy certificates,” a user’s
application running on one machine
can launch and communicate with
another application running on an-
other machine. Authorization ser-
vices are automatically invoked to as-
sure that the user or the user’s agent
has the authority and funding to ac-
cess the resources.

• A standardized grid-wide name space for
files and other resources. The World
Wide Web uses the ubiquitous Uni-
form Resource Identifier as a wide-
area name space for delivering con-
tent between Web servers and
browsers. Web caches provide mech-
anisms that allow data to be repli-
cated and moved to locations closer
to the user. Tools such as FTP allow
file transfer between resources, and

the single sign-on enables the files to
cross security domains.

• Resource registration and discovery.
Grids tend to be supported through
familiar Internet services such as
DNS and other hierarchical schemes
like LDAP. Many grids support ac-
cess to “large” resources (such as su-
percomputers), and the issues of dis-
covery and registration for such
resources are clearer than for, say, the
collection of MP3 files on an under-
graduate’s laptop (a more typical P2P
registration and discovery problem).
This view of computers and pro-
grams as resources is essentially
equivalent to viewing them as dis-
tributed objects, accessible through
one of the four major distributed-
object systems—SOAP, Java, COM,
or Corba. Making resource compo-
nents such as software packages acces-
sible in this fashion is sometimes called
“wrapping as a distributed object.”

• Resource accounting. Grids must enable
users to be integrated into the ac-
counting service of whatever resource
they access. Each resource typically
has some accounting service, possibly
just through the ability to login, and
the single sign-on lets users access
that service through the grid.

• Resource scheduling and coscheduling.
The latter is exemplified by distrib-

uted applications wishing to reserve
simultaneous access to multiple re-
sources such as online instruments
and supercomputers. This is partic-
ularly difficult as traditional batch-
queuing techniques will not work.

• Job monitoring and performance ser-
vices. Users, grid managers, and ap-
plications need to be able to get in-
formation about the state of the grid
at any given time. The service can
tell users how their job is progress-
ing or give application schedulers ac-
cess to performance analysis tools
such as network traffic monitors and
resource load predictors. These are
a special case of a more general in-
formation service, which provides
access to the rich repository of
knowledge needed to support com-
putational science research. This in-
cludes online technical reports, de-
tails of the computational resources,
and the dynamic data generated by
job and performance monitors.

• Specialized services. Examples include
job submission, programming, job pa-
rameter specification, and the ability
to compose applications from a set of
basic capabilities available on individ-
ual sites. The last service would have
been used in the example described
earlier of sensor data streaming thor-
ough multiple filters to multiple visu-
alization devices.

• Event service. The multiple servers
defining an operational computa-
tional grid communicate by time-
stamped messages defining state
changes and control instructions. The
event service handles the fault-toler-
ant and high-performance delivery of
messages. This enables synchroniza-
tion of state between multiple clients
and resources. Also, a grid-wide trou-
ble-tracking system can be built on
top of the event service.

• Object management. The classic Web

G R I D C O M P U T I N G

Multitier grid

Clients
Users

ResourcesMiddleware: Services

Internet (routing) cloud

Figure 1. Multitier architecture of a computational grid. Seamless linkage of users to
a suite of resources is mediated by a middle tier of Internet servers and brokers.

JULY/AUGUST 2001 77

requires only basic Internet services
to operate, whereas a grid requires
sophisticated tools to manage the
many different objects that it sup-
ports. Users, devices (computers,
sensors, PDAs, storage systems),
jobs, events, and software are all ob-
jects to be managed as distributed
objects. New distributed XML and
database technology is being devel-
oped to address this critical area.

The grid’s service-based architecture
implicitly defines or assumes a network
architecture that is relatively fixed and
dominated by hierarchical access to a set
of relatively well-defined resources. Sub-
stantial effort is needed to provide good
quality of service to support the high-
bandwidth communication needed to
link from resources to both other re-
sources and users.

How are grids being used?
Many different projects are imple-

menting these services. The best-
known system for building the software
linking resources to the middle tier is
the Globus project (www.globus.org),
led by Ian Foster and Carl Kesselmann.
Several groups are building prototype
“end-to-end” systems implementing
some grid services, with the variety of
choices one can expect in a rapidly
changing field. Sixteen such portals are
described at www.computingportals.
org/cbp.html in a relatively uniform
fashion, so you can compare their dif-
ferent architecture and functionality
choices. These and many other grid ac-
tivities are being integrated by the
Global Grid Forum (www.gridfo-
rum.org), which acts as a facilitator for
the community to interact, develop
standards, and establish best practices.

Several computational grid services
are very specific to the computational
science field, but there are also general

services such as object registration, dis-
covery and persistence, security, collab-
oration, events and transactions, and in-
formation systems. Thus, it is useful to
consider computational grids in a gen-
eral context and compare them to the
P2P concepts discussed in the last issue.
Whereas grids perhaps focus on access
to resources, P2P networks focus on
building communities—not just of peo-
ple linked electronically but rather a
fabric of users and resources forming a
next-generation electronic community
combining the best of instant messen-
gers, grids, Napster-like services, and
audio-video conferencing. Contrast the
structured grid in Figure 1 with the
“pure” P2P network shown in Figure 2,
which shows each node acting as user
interface, service provider, message
router, and resource repository. Links
between such multipurpose nodes tend
to be dynamic. P2P nodes “multicast”
information between themselves in the
same way that rumors spread in a
milling crowd; computational grids, on
the other hand, make careful use of
highly optimized networks in a way
similar to how information flows in a
hierarchical telephone tree or across
levels in a structured organization.

At a superficial level, grids and P2P
networks are optimized for structured
and unstructured ways, respectively, of
accessing resources and building com-
munities. Both approaches have value.
If you wanted to light a room, you
could plug a lamp into the electrical
grid powered by “supergenerators” on
the electrical grid; alternatively, you
could set up a P2P network of candle
makers and go round to your friends to
power the candlelight dinner that will
charm your guests. Even their names
reflect the fact that P2P networks and
grids offer similar services; however,
their different underlying models are
reflected in their diverse functionalities
and trade-offs.

Security in a P2P network is rather
different from that in a grid, where
users usually respect the privacy and
anonymity of each other and their post-
ings (resources). This has its special
challenges: Electronic identities can be
“spoofed,” and reputation and trust
(key P2P concepts) can be faked (one
user could create multiple electronic in-
stances that act as boosters for each
other). Sun’s JXTA implements security
using a so-called “web of trust,” where
communities are bootstrapped by link-

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

Figure 2. The architecture of a democratic P2P network where all nodes serve all
purposes and link to all their peers.

78 COMPUTING IN SCIENCE & ENGINEERING

ing trusted subgroups. This contrasts
with the resource-specific and central-
ized security of current grids. File ac-
cess in P2P networks is illustrated well
by Napster, which has a dynamic set of
resources linked through rather differ-
ent registration and discovery mecha-
nisms from those used in grids. Ac-
counting in P2P networks typically
does not assume that each resource has
its own natural accounting mechanism,
as grids do. Instead, you must use “dig-
ital cash” or bartering (for instance, you
can use access files on my file system if
you give me the same privileges). Qual-
ity of service is as important in P2P net-
works as in grids, but it is handled as
successful societies do, rather than
through charging for large, well-de-
fined resources, as in grids. QoS in P2P
networks is often related to the
“tragedy of the commons” (overuse of
common, free resources in social
groups) rather than to nifty new hard-
ware multicast or routing priority as in
grids. Networks in P2P systems are in-
teresting structures, created dynami-

cally; one can show how random rout-
ing leads to robust networks with good
worst-case performance. Another con-
cept from society, the “small-world ef-
fect,” shows that a few “long links” (as
opposed to nearest-neighbor ones) are
essential to enable P2P networks to
route information globally. You can find
both of these ideas in the computer sci-
ence research literature for parallel
computing, where they were developed
for precisely the reasons that they are
valuable in P2P networks. However,
the new incarnation of these ideas
seems richer; we are not just deciding
how best to link (at most) thousands of
nodes. We are understanding how to
link variable-sized subsets of nodes
picked somewhat arbitrarily from the
hundreds of millions of Internet clients
and servers. There are other analogies
with parallel computing; original sys-
tems such as the Caltech Hypercube in-
tegrate processing and networks on the
same node (as in the P2P case). Cur-
rently, the highest-performance paral-
lel systems tend, like grids, to build sep-

arate network and processing systems
as in an idealized grid architecture.

We can expect future systems to
combine ideas from both

camps, leading to a hybrid architecture
such as that shown in Figure 3. Think-
ing of capabilities as services should al-
low us to integrate these concepts by,
for instance, building the security ser-
vice to support the needs of both grids
and P2P networks.

Geoffrey Fox is professor of computer science

at Florida State University and associate direc-

tor of its School of Computational Science and

Information Technology; fox@csit.fsu.edu.

Dennis Gannon is a professor and chair in the

Department of Computer Science at Indiana

University and director of IU’s Extreme Com-

puting Lab. Over the past five years he has led

the HPC++ initiative, which has produced a set

of libraries for object-oriented runtime systems

for large-scale parallel and distributed comput-

ing. In addition, he is a partner in the NSF

Computational Cosmology Grand Challenge

project, the DOE 2000 Common Component

Architecture software tools group, and the

NCSA Alliance. He also chairs the Java Grande

Forum’s Concurrency and Parallelism subgroup

with Denis Caromel. His current research fo-

cuses on constructing distributed applications

based on software component technology, in-

tegrating parallel and distributed programming

systems, and designing problem-solving

“workbenches” and distributed Grid services.

He has a PhD in computer science from the

University of Illinois and a PhD in mathematics

from the University of California, Davis; gan-

non@iuvax.cs.indiana.edu.

G R I D C O M P U T I N G

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

User

Service

Resource

Routing

Routing services

Figure 3. A hybrid linkage of peers. The strategy is analogous to information
spreading by broadcasting internally to many groups, which are themselves linked
by specialized lines (such as phones).

