

Sun Microsystems, Inc. Page 1 April 25, 2001

Project JXTA:
Technical Shell Overview

The JXTA Shell

The JXTA Shell permits interactive access to the JXTA platform via a simple command line interface. In the UNIX

®

operating system, interactive access is given by a Shell command line interpreter that enables users to manipulate and
manage files and processes. Similarly, the JXTA Shell enables through a command line interpreter, interactive access
to JXTA core building blocks:

peers, peer groups, pipes

 and

codats

. Codats are units of contents that can hold both
code and data. Codats are the smallest units of contents manipulated by the JXTA platform. Using the Shell command
interpreter, a user can interact with the JXTA platform to publish, search, and execute codats, discover new peers or
peer groups, create pipes to connect two peers, and send and receive messages.

The JXTA Shell is a command interpreter application that parses user's commands and interacts with the JXTA plat-
form core services (Discovery, Membership, Authentication and Codat Management services). The interpreter
operates in a simple loop: it accepts a command, interprets the command, executes the command, and then waits for
another command. The shell displays a "

JXTA>

" prompt, to notify users that it is ready to accept a new command.

The JXTA Shell is an application identical to any other application built on the JXTA platform, except it is configured
to run by the JXTA platform boot code. The JXTA Shell is not part of the JXTA platform (see figure), but sits on top
of the core platform and services. The Shell functionality is tightly integrated with the JXTA core and provides com-
mands to access key features of the platform. The JXTA Shell is not required to run on every JXTA peer. For instance,
the Shell is not required if no interactive access to the peer is authorized. An alternative starting application may also
be configured when the platform boots.

P2P Software Architecture

The JXTA Shell is an example of a Shell for the JXTA platform. It is provided as part of the JXTA Developer Kit to
demonstrate one possible way to interact with the JXTA platform. We expect that multiple Shell applications will be
developed to match different user needs and requirements just like many versions of the Shell have been developed
for UNIX .

The JXTA Shell as delivered with the JXTA platform Developer Kit recognizes a limited set of commands. Each
Shell command consists of a command name, followed by command options and arguments. The command names,
options, and arguments are separated by blank spaces. The names of these commands have been deliberately chosen
to be similar to UNIX Shell commands (e.g.,

ls, cat, etc

.) to make the JXTA shell familiar to UNIX Shell users.

Most Shell commands are not built into the Shell, but are dynamically loaded and started by the Shell framework
when they are invoked. Separating the Shell framework from the commands enables developers to dynamically add
new commands to the Shell.

Any Peer on the Extended Web

Security

Peer Groups Peer MonitoringPeer Pipes

JXTA
Applications

JXTA
Services

JXTA
Core

JXTA Community Services
Sun
JXTA
Services

• Indexing
• Searching
• File Sharing

JXTA Community Applications

JXTA

Peer

Shell

Commands

Sun
JXTA
Applications

Sun Microsystems, Inc. Page 2 April 25, 2001

Shell Input and Output Pipe Re-Directions

The standardization of UNIX commands is fundamental to UNIX Shell programming and is a key reason to the suc-
cess of UNIX. UNIX commands can be easily connected to form complex functions (e.g.,

cat myfile | grep JXTA

). A
key feature of the UNIX Shell is the

pipe

 operator ("|") to construct a pipeline command sequence. The standard out-
put of each command in the pipeline sequence, except for the last, is connected by a pipe to the standard input of the
next command, with each command run as a separate process. The UNIX Shell waits for the last command to com-
plete after a sequence of commands is issued. The exit status of the pipeline sequence is the exit status of the last
command. The pipe construct enables users to build complex commands from simple ones in an intuitive way.

Like the UNIX Shell, the JXTA Shell provides a similar capability to redirect a command output pipe into another
command input pipe. The JXTA Shell pipe, however, extends this capability by taking advantage of the asynchronous
and unidirectional nature of JXTA pipes. In the JXTA Shell, an output pipe connection can be dynamically discon-
nected and reconnected to a different input pipe. This disconnection operation can be performed multiple times over
the lifetime of the pipe. The ability to transparently redirect the output of pipes is an essential feature to build highly-
available services in a loosely-coupled and unreliable environment such as peer-to-peer networks.

Every JXTA Shell command is given standard input, output, and error pipes that a user can connect, disconnect, and
reconnect to any other Shell commands. Commands can support as many pipes as they require.

Every JXTA Shell command has the following syntax:

command [< pipe] [>pipe] options arguments ;

where:

'>': redirects the output of the command
'<': redirects the input of the command
';' is a command separator.

In UNIX, the C Shell command

cat myfile | grep me

 has to complete or be killed (

Cntrl-C

) before a user can
modify the pipe re-direction. In JXTA, a user can dynamically disconnect and reconnect pipes between commands:

cat >p1

myfile

 /* cat myfile into the output pipe p1 */
grep <p1

me

 /* connect the "grep" input pipe from the pipe p1*/
grep <p1

you

 /* disconnect the output pipe p1, redirect the output of
 p1 to the new grep "you" command input pipe*/

A short cut notation of the above pipe connection can be used via the '|' pipe operator to perform the same redirection:

cat

myfile

 | grep

me

is equivalent to

cat >p1

myfile

 ; grep <p1

me

The JXTA Shell also supports piping in both directions, not just in one direction as in the UNIX Shell. The JXTA
Shell allows crossing pipe connections to be setup between two commands, e.g. the output pipe of the first command
goes to the standard input pipe of the second command. The output pipe of the second command goes to the standard
input pipe of the first command. A special crossing operator "<>" is used for creating crossing pipes between two
commands

For example:

cmd1 <> cmd2

This command is equivalent to the following commands:

cmd1 >p1 <p2 ; cmd2 <p1 >p2

Importing and Exporting Data in the JXTA Shell

The JXTA Shell provides a generic framework for importing and exporting data in and out of the JXTA platform. A

share

 and

unshare

 command (see below) is provided to import data into a codat container, or to export a codat into an
external object (i.e. a file under UNIX). The

share

 command also permits users to associate a symbolic name and
object type with a codat (e.g. the codat symbolic name is

myfile

 and the type is

PostScript

). The symbolic name asso-
ciated with a codat can be used afterward to reference codats within the Shell. The type of the codat can be used by the
codat Management System to activate an associated service defined for that codat type. For example, when accessing
a PostScript codat, a PostScript viewer can be launched to display the codat content.

Sun Microsystems, Inc. Page 3 April 25, 2001

An URI address scheme is used by the

share

 and

unshare

 commands to specify the address destination of external
objects. The JXTA Shell only implements local file:/ URIs. It is expected that initially a flat symbolic name space will
be used for codats. No directory or hierarchical structure is maintained when file objects are imported. Each peer
group provides its own name space for codats. A hierarchical directory structure can be added later if necessary.

Batch Files

The Shell provides a

-f

option to load and execute batch command files. The

load

 command can execute a set of Shell
commands previously stored in a codat or in an external object (file). The codat type is marked as a batch codat (i.e.,
can be loaded and interpreted). Each command in the batch file is interpreted as if it was entered by the user. The
JXTA Shell only provides the ability to create simple batch scripts, no conditional or looping operations are
supported.

Basic JXTA Shell Commands

Here are the basic commands implemented by the JXTA Shell.

Shell [-f

filename

] [-s]

The Shell creates an input pipe (

stdin

) for reading input from the keyboard, and an output pipe (

stdout

) to display
information on the Shell console. All commands executed by the Shell have their initial

stdin

 and

stdout

 set up to the
Shell's

stdin

 and

stdout

 pipes. The Shell also creates the environment variable

stdgroup

 that contains the current
JXTA peer group in which the Shell and commands are executed.

The following Shell environment variables are defined by default:

 consin = Default Console InputPipe
 consout = Default Console OutputPipe
 stdout = Default OutputPipe
 stdin = Default InputPipe
 Shell = Root Shell
 stdgroup = Default peer group
 rootgroup = Default NetPeerGroup

A new Shell can be forked within a Shell. The command

Shell -s

starts a new Shell with a new Shell window. The
Shell can also read a command script file via the command

Shell -f myfile

.

Multiple commands can be entered in one line. Pipelines can be created by combining the pipe

stdout

 of a command
into the pipe

stdin

 of another command using the pipe ('|') operator. For example the following command:

JXTA>

cat env1 | more

Pipes the output of the command cat into the

stdin

 of the command

more

. Arbitrary numbers of commands can be
pipelined together within a single Shell command. Currently '|' is the only pipe operator supported.

The '=' operator can be used to assign the value of a command output to an environment variable. For example :

JXTA>

myadv = mkadv -p

Shell commands stored in a file can be run in a batch mode using the

-f

 option.

Example:

JXTA>

Shell -f /home/tra/batch

This command executes the commands stored in the Shell script file

 /home/tra/myfile

 in the current Shell
environment.

A default startup batch file

$HOME/.jshrccan

 be setup that is executed when the Shell is invoked.

whoami [-g] [-l]

Returns the local peer or the default peer group advertisement. The command displays an XML document that repre-
sents the Peer or PeerGroup advertisement. The long option

-l

 shows the entire advertisement. The default (short)
version only shows the Peer UUID and peer endpoints. The

-g

 option displays information about the default peer
group.

Sun Microsystems, Inc. Page 4 April 25, 2001

Example:

JXTA>

whoami -l

<Name>Neptune</Name>
<Id>JXTA:/

00000000000000000000000000000000A8476E187C424CA99763CE
F538FE34F100
00000000000000000001</Id>

<NetworkPeerGroup>Sun</NetworkPeerGroup
<TransportAddress>TCP:129.144.94.155:6001</TransportAddress>

env

Displays the current environment variables (

stdin

and

 stdout

 pipes,

peer

 and current

PeerGroup

). Each environment
variable is listed with its value.

The following environment variables are defined by default:

 consin = Default Console InputPipe
 consout = Default Console OutputPipe
 stdout = Default OutputPipe
 stdin = Default InputPipe
 Shell = Root Shell
 stdgroup = Default peer group
 rootgroup = Default NetPeerGroup

Shell environment variables are defined as a result of executing Shell commands. The '=' operator can be used to
assign value to a particular variable. For example

myenv = mkmsg

 will assign a new message object to the

myenv

environment variable.

Example:

JXTA>

env

stdgroup = Astronomy
consin = Default Console InputPipe
consout = Default Console OutputPipe
stdout = Default OutputPipe
stdin = Default InputPipe
Shell = Root Shell

peers [-r] [-p

peerName

] [-n

limit

] [-a

TagName

] [-v

Tagvalue

] [-f]

Executes the JXTA discovery protocols to find other peers in the scope of the default peer group. With no options, the
command lists only the peers already known by the peer (cached). The

-r

 option is used to send a propagate request to
find new peers. The peers command stores results in the local cache, and inserts advertisement(s) into the environ-
ment, using the default naming:

peerX

 where

X

 is an increasing integer number.

A specific

peerId

 (i.e. a rendezvous peer) can be specified using the

-p

option to expand the discovery search. The

-v

and

-a

 options allow a (

tag, value

) string to be passed as search criteria. The -f option flushes the local list of known
peers. The -n option is used to limit the number of responses to a remote discovery request.

Example:

JXTA> peers -r
peer discovery message sent
JXTA> peers
peer0: name = Demo JXTA Peer
peer1: name = Dioxine.net
peer2: name = chrisatwork
peer3: name = ecksteinpeer
peer4: name = emily5
peer6: name = john@home
JXTA>

Sun Microsystems, Inc. Page 5 April 25, 2001

groups [-r] [-p peerName] [-n limit] [-a TagName] [-v Tagvalue] [-f]

Executes the JXTA discovery protocols to find peer groups in the scope of the default peer group. With no options, the
command lists only the peer groups already known by the peer (cached). The -r option is used to send a propagate
request to find new peer groups. The groups command stores results in the local cache, and inserts advertisement(s)
into the environment, using the default naming: groupX where X is an increasing integer.

A specific peerId (i.e. a rendezvous peer) can be specified using the -p option to expand the discovery search. The -v
and -a options allow a (tag, value) string to be passed for providing search criteria for peer groups. The -f option
flushes the local list of known peer groups. The -n option is used to limit the number of response to a remote discovery
request.

Example:

JXTA> groups -r
group discovery message sent
JXTA> groups
group0: name = NetPeerGroup
group1: name = kaja
group2: name = dailupGrp
group3: name = frog101
group4: name = stevesgroup
group5: name = ice
group6: name = steve
group7: name = raelity
JXTA>

mkadv [-g|p] [-t type] [-d doc] name

Create a new peer group or pipe advertisement from the given configuration URI. The URI points to a file that contain
a valid Peer Group or Pipe advertisement. The -p option is used to create a pipe advertisement. The -t option is only
valid for pipes and defines the type of pipes. The -g option is used to create a new peer group advertisement. If no doc-
ument is given, a clone of the current peer group is created. The new peer group will have the same policies and
endpoints as the current group. If a -d argument is supplied, the document must be a peer group advertisement and is
used to create the new peer group. The -d option specifies a Shell environment variable that contains a structure that
holds an advertisement document that, in turn, contains as advertisement.

Example
JXTA> importfile -f saveadv groupadv
JXTA> mygroupadv = mkadv -g -d groupadv
JXTA> mkpgrp -d mygroupadv mygroup
JXTA> mkadv -p -t secure lightpipe file:/home/zeus/mypipe.xml

<?xml version="1.0" encoding="UTF-8"?>
<JXTA:PipeAdv>
<name>lightpipe</name>
<type>secure</type>
<PipeId>JXTA://

C263C0890CEA4721BAAAE6A564905603E3CC3D1732234D9E93AFA9
BBFFC54CDE00
00000000000000000001</PipeId>

</JXTA:PipeAdv>

mkpgrp [-d doc] [-m policy] groupname

mkpgrp creates a new peer group using the supplied peer group advertisement. If no advertisement is provided, the
command creates a clone of the NetPeerGroup peer group with the name specified. The command mkadv -g is used
to create a peer group advertisement. The environment variable PG#<group name> is created to store the new peer
group. The new peer group is advertised in the NetPeerGroup. All peer groups are created in the NetPeerGroup which
acts like the JXTA world peer group. Every peer group can be found in this group.

Sun Microsystems, Inc. Page 6 April 25, 2001

Example:

 JXTA> mygroupadv = mkadv -g
 JXTA> mypgrp = mkpgrp -d mygroupadv mygroup

This creates a new peer group which clones the policies of the parent peer group. You can find the policies of the cur-
rent peer group via the command whoami -g. The new group is given the name mygroup. Before you can do anything
with the group you need to join the group via the join command.

chpgrp group

The chpgrp command is used to switch the default Shell peer group stdgroup variable to another group that was pre-
viously joined via a join command. The join command is used to join a peer group. After changing group, the Shell
stdgroup variable is set to the value of the new peer group joined.

Example:

JXTA> mygroupadv = mkadv -g mygroup
JXTA> mkpgrp -d mygroupadv mygroup
JXTA> join mygroup
JXTA> chpgrp moi

This creates a new peer group which clones the policies of the parent peer group. You can find the policies of the cur-
rent peer group via the command whoami -g. The new group is given the name mygroup. Before you can do anything
with the group you need to join the group via the join command. The chpgrp command is used to change the default
group to the new group moi.

join [-d doc] [-c credential] [groupName]

Join the peer group identified by the PeerGroup name parameter. The command can pass an optional authentication
credential -c to be used by the peer group membership authenticator. The current PeerGroup environment variable is
set to the new peer group the user is joining. If no argument is given, join lists all the existing groups and their status
(join, unjoined) and the current group on the local peer. After a group is joined successfully, the PG@<group name>
environment variable is created. This variable holds the group information. When joining a new peer group, the new
peer group is advertised in the NetPeerGroup. Hierarchies of peer groups are not supported.

Example:

JXTA> join -c mypasswd Astronomy
Joined sucessfully PeerGroup Astronomy
JXTA> mygroupadv = mkadv -g mygroup
JXTA> mkpgrp -d mygroupadv mygroup
JXTA> join -c credential mygroup

This creates a new peer group which clones the policies of the parent peer group (NetPeerGroup). You can find the
policies of the current peer group via the command whoami -g. The new group is given the name mygroup. Before you
can do anything with the group you need to join the group via the join command.

leave groupName

Leave a peer group. The leave command is used to leave a group that was previously joined via a join command. The
join command is used to join a peer group. After leaving the group, the Shell stdgroup variable is reset to the value of
the default rootgroup variable (NetPeerGroup). Before a user can use the group again, the user will have to rejoin the
group using the join command.

Example:

JXTA> mygroupadv = mkadv -g mygroup
JXTA> mkpgrp -d mygroupadv mygroup
JXTA> join mygroup
JXTA> leave

This creates a new peer group which clones the policies of the parent peer group (NetPeerGroup). You can find the
policies of the current peer group via the command whoami -g. The new group is given the name mygroup. Before you

Sun Microsystems, Inc. Page 7 April 25, 2001

can do anything with the group you need to join the group using the join command. The leave command is used to
leave the group.

ls [-lPG] [-p peerName]

List codats cached on the local peer for the current peer group. The -l option generates a long format with statistics
information about each codat: symbolic name, size, type, etc. The -P option lists all the member peers discovered in
the current peer group. The[-G option lists all the peer groups that have been discovered. The -p option lists codats
stored on a specified remote peer member of the current peer group. The peer must be a member of the current peer
group.

Example:

JXTA> ls

Name Index Type Size
sunpic "Planet sun Picture" Postscript 50 MB
earthpic "Earth picture" GIF 40 KB
moonletter "letter to the moon" Txt 10KB
JXTA> ls -P
Moon TCP:129.144.94.156:6001
Earth TCP:129.144.94.134:6001

share [-m codatName] [-t type] [-s size] [-e encoding] [-i index] codatName URI

Share a codat created from a URI external object. A name for the codat must be supplied. The name is used to create
a symbolic name to reference the codat in future Shell commands. If the codat is metadata, the codatName (this codat
is about) is specified in the -m option. A type, size and encoding description can be assigned to the codat. Default val-
ues are assigned if no values are provided. The URI specifies the location of the external object to be stored in the
codat. The -I option creates an association of an indexing string to the codat, allowing a codat management service to
insert the codat in the local store and then reference the codat via the specified index string. This enables indexing to
be performed at the time the codat is shared.

Example:

JXTA> share -type Txt -i "compute star weight" startweight
file:/home/zeus/file.txt

search [-m codatName] [-p peerName] [-s search] [codatName]

Search a codat using its name or a search string. The -m option gets the list of metadata codats associated with this
codat. A specific peer can be specified using -p to search codats. By default, the search is performed on the local peer.
The -s option is used to search codats via a search string. The codat management service tries to match this string with
the index strings stored when codats are shared (see the share command).

Example: search for a codat which was indexed with the keyword weight.

JXTA> search -i "planet"

Name Index Type Size
sunpic "Planet sun Picture" Postscript 50 MB

cat [-p] env

Display on stdout the content of objects stored in environment variables. cat knows how to display a limited (but
growing) set of JXTA objects: Advertisement, Message, and StructuredDocument. If you are not sure, try to cat the
object. The Shell will let you know if it cannot display that object.

Example:

JXTA> cat pipeAdv
<?xml version="1.0" encoding="UTF-8"?>
<JXTA:PipeAdv><PipeId>JXTA://

C263C0890CEA4721BAAAE6A564905603E3CC3D1732234D9E93AFA9

Sun Microsystems, Inc. Page 8 April 25, 2001

BBFFC54CDE00
00000000000000000001</PipeId></JXTA:PipeAdv>

unshare [-p peerName] codatName [URI]

Delete a codat from the local peer. The -p option allows the deletion of a codat from a remote peer. If peerName is not
given, the codat is removed from the member peers that have been discovered by this peer. A URI can be given to
export the content of the codat into an external object before the codat is deleted.

Example:

JXTA> unshare sunpic1

mkpipe -i|o pipeAdv

Create a new input pipe or output pipe for the given pipe advertisement.(see the mkadv command to create pipe adver-
tisements). mkpipe creates an input pipe or an output pipe from a given pipe advertisement document. In order for
pipes to communicate, an input and output pipe needs to be created with the same pipe advertisement. Pipe advertise-
ments are structured documents that contains at least a unique pipe ID. The pipe ID uniquely identifies a pipe. Pipes
are not localized or bound to a physical peer. Pipe connections are established by searching for pipe advertisements
and resolving dynamically the location of an input pipe object bound to that advertisement. An input pipe can be
bound to the same pipe advertisement on multiple peers, transparently to the output pipe. The output pipe does not
need to known on which physical peer the input pipe is located. To communicate with the pipe, the output pipe needs
to search for the input pipe that binds this advertisement.

Example:

JXTA> pipeadv = mkadv -p
JXTA> inpipe = mkpipe -i pipeadv
JXTA> msg = recv inpipe
JXTA> data = get msg mytag

This example creates a pipe advertisement pipeadv, creates an input pipe inpipe and receive a message msg. The body
of the message associated with the tag mytag is retrieved from the message with the get command.

mkmsg msg

Create a new pipe message (msg). mkmsg creates a new message to send or receive data from a pipe. The message
object is stored in a Shell environment variable. If no name is assigned via the '=' operator, a default environment vari-
able env# is created for holding the message object (# is an increasing integer).

JXTA messages are composed of multiple tag body parts. Each tag body is uniquely identified via a unique tag name.
The tag name is used to insert (put command) a new tag body in a message, or to retrieve (get command) a tag body
from a message.

Example:

JXTA> mkmsg

This creates a message object and puts it in the environment variable env# where # is an integer number (e.g. Env4).
You can assign a specific name to the message variable by assigning it a name with the '=' Shell operator.

JXTA> mymsg = mkmsg
JXAT> put mkmsg mytag data
JXTA> send outpipe mymsg

This create a new message mymsg, stored data in the message body tag mytag. The message is then sent via the output
pipe outpipe

put msg tag document

Push the user data into the message with the specified tag. Pipe messages can hold many tags. put stores a document
into the body of message. JXTA messages are composed of a set of tag bodies, each identified with a unique tag name
A message tag name is supplied to specify which tag name is used to store the document. On the receiving system the
document can be retrieved via the get command.

Sun Microsystems, Inc. Page 9 April 25, 2001

Example:

 JXTA> importfile -f /home/tra/myfile mydata
 JXTA> msg = mkmsg
 JXTA> put msg mytag mydata

This example creates a document mydata by importing data from the file /home/tra/myfile. Then, we create a pipe
message msg and store the document mydata into the message msg with the associated tag name mytag.

get msg tag

Get the data associated with the given tag from an incoming message into a Shell environment variable. get retrieves
the tag body of a message. JXTA messages are composed of a set of tag bodies, each identified with a unique tag
name. A message tag name is supplied to specify which tag body to extract.

Example:

JXTA> pipeadv = mkadv -p
JXTA> inpipe = mkpipe -i pipeadv
JXTA> msg = recv inpipe
JXTA> data = get msg mytag

This example creates a pipe advertisement pipeadv, creates an input pipe inpipe, and receives a message msg. The tag
body of the message associated with the tag mytag is retrieved from the message via the get command.

send outputpipe msg

Send a message to an output pipe

Example:

JXTA> pipeadv = mkadv -p
JXTA> outpipe = mkpipe -o pipeadv
JXTA> send outpipe msg

This example creates a pipe advertisement pipeadv, creates an output pipe outpipe and sends the message msg through
the pipe.

recv [-t timeout] inputpipe

Receive a message from an input pipe. A timeout parameter -t can be given to timeout the receive operation. By
default, the receive will block until a message is received on the pipe.

Example:

JXTA> pipeadv = mkadv -p
JXTA> inpipe = mkpipe -i pipeadv
JXTA> msg = recv inpipe
JXTA> data = get msg mytag

This example creates a pipe advertisement pipeadv, create an input pipe inpipe and receive a message msg. The body
of the message associated with the tag mytag is retrieved from the message via the get command.

man [commandName]

Return list of shell commands or help information about a specified command.

JXTA> man discover

importfile -f filename [env]

importfile imports an external file into a StructuredDocument object stored in a Shell environment variable. The name
of the environment variable is specified as an argument. importfile is the reverse operation of exportfile.

Example:

 JXTA> importfile -f /home/tra/myfile myfile
 JXTA> cat myfile

Sun Microsystems, Inc. Page 10 April 25, 2001

This command imports the file /home/tra/myfile into the myfile environment variable.

exportfile -f filename [env]

exportfile exports the contents of a Shell environment variable into an external file. The exported object is stored in
the supplied filename argument. If no variable name is given, the stdin pipe is used to read data and save it into the
file. exportfile is the reverse operation of importfile The Shell environment variable is not deleted after the file is
created.

Example:

JXTA> exportfile -f /home/tra/myfile myfile

This command saves into the file /home/tra/myfile the contents of the myfile environment variable

version

List the release version of the JXTA Shell.

Example:

JXTA> version
jxta version 0.9 (build 11f, 04-04-2001)

peerinfo [-p peerid] [-r] [-l] [-f]

peerinfo can be used use to get information about other peers within a peer group or at a specified peer location. The
default peerinfo options list only the information already known by the peer. The -r option is used to send a propagate
request to find information about new peers. peerinfo stores results in the local cache, and inserts advertisement(s)
into the environment, using the default naming: peerinfoX where is an increasing integer.

 Example:

JXTA> peerinfo -r
peer info message sent
JXTA> peerinfo -l
stored peerinfo0
JXTA> cat -p peerinfo0
<?xml version="1.0"?>
<!DOCTYPE jxta:PeerInfoAdvertisement>
<jxta:PeerInfoAdvertisement>

<sourcePid>

jxta://
59616261646162614A78746150325033C5D7371A5F374A6899429C
21D077EDE100
00000000000000000301

</sourcePid>
<targetPid>

jxta://
59616261646162614A78746150325033C5D7371A5F374A6899429C
21D077EDE100
00000000000000000301

</targetPid>
<uptime>

411
</uptime>
......

</jxta:PeerInfoAdvertisement>
JXTA>

Sun Microsystems, Inc. Page 11 April 25, 2001

In the truncated example above, peer uptime and peer ID information is shown. Updated information may be viewed
by repeating the command sequence.

exit

Exit the Shell window.

JXTA> exit

An Open Framework for Adding New Shell Commands

The JXTA Shell is an open framework that allows new Shell commands to be added dynamically. Every Shell com-
mand is a separate application that is loaded by the Shell framework when the command is invoked. The Shell
framework does not need to be recompiled when adding new commands. The JXTA Developer Kit provides base
Shell command classes that can be extended to implement new commands. As long as these commands follow the
guidelines of the JXTA Shell framework invocation, they will be able to be loaded by the Shell framework and com-
municate through pipes with other existing commands. New commands can be implemented for a variety of purposes,
e.g. search engines, graphical interfaces, webproxies, etc. New commands might also be implemented for administra-
tive or accounting purposes.

How to Write a New Command

All Shell commands need to extend the net.JXTA.imp.shell.ShellApp Class. This class provides the framework to
interact with the Shell console, print and read from the console, and setup environment variables for the command
(stdgroup). The new command class needs to implement the two method startApp and stopApp. The startApp method
is called after the command is loaded. The stopApp is called when the Shell exits.

Here is an example of a simple "Hello World" command:

Package net.jxta.impl.shell.bin.myHelloWorld

public class myHelloWorld extends ShellApp {

private ShellEnv myEnv;

 public int startApp (String[] args) { //args has arguments to command
myEnv = getEnv(); // retrieve the command environment

// extract the current peerGroup from the environment

ShellObject obj = myEnv.get ("stdgroup");
PeerGroup group = (PeerGroup) obj.getObject();
if (args == null) { //println print to the console

println("Hello my peergroup is" + group.toString());
} else { // no arguments are authorized

println ("Sorry no argument supported!");
}
return ShellApp.appNoError; // Everything went OK!

}

public void stopApp () {
// not much to be done here

}
}

All Shell commands are located in the package net.jxta.impl.shell.bin. For a new command to be accessible from the
Shell, the new command class file needs to be copied into the Shell bin class directory. There is no need to recompile
the Shell. By copying the new class file into the Shell bin class directory, the command will be dynamically loaded
when invoked. The Shell does not have to be restarted.

SUN MICROSYSTEMS, INC., 901 SAN ANTONIO ROAD, PALO ALTO, CA 94303-4900 USA
PHONE: 650-960-1300 FAX: 650-969-9131 INTERNET: www.sun.com

©2001 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All trademarks and registered trademarks of other products and services mentioned in this report are the property
of their respective owners.

Draft 1.0 April 25, 2001

