Most services allow clients to access the service through a server. The client is then forced to remain on this server throughout the entire duration of the time that it is using the service. If the server fails, the client has to wait till the server comes back up. In the event that this service is running on a set of servers the client, since it knows about this set of servers, could then connect to one of these servers and continue using the service. Whether the client missed any servicing and whether the service would notify the client of this missed servicing depends on the implementation of the service. In all these implementations the identity of the server that the client connects is just as important as the service itself.

People are not always online, and when they are they are not using the same computer. Different clients utilize or communicate with the service using communication channels that have very different bandwidths and associated latencies. Clients access services from different geographic locations, a client may use the service from his home, or from his office or while he is commuting to work or from his hotel room. Access to services shouldn’t be tied to specific server locations or be location sensitive. Client should be able to connect from anywhere to any of the servers within the system. Concentration of clients from a specific location accessing a remote server, leads to very poor bandwidth utilization and affects latencies associated with other services too.

A truly distributed service, would allow a client to use the service by connecting to a server nearest to his geographical location. By having such local server, a client does not have to re-connect all the way back to the server that it was last attached to. Also, if the client is not satisfied with the response times that it experiences it could very well choose to connect to some other local server. This it could do also in the event that the server, it was attached to, has failed. Also it should not be assumed that a failed server node, providing this service, would recover within a finite amount of time. Stalling operations for certain sections of the network, and denying service to clients while waiting for failed processes to recover could result in prolonged probably interminable waits. Also this model potentially forces every server to be up and running throughout the duration that this service is being provided. Invariably servers get overloaded, and act as black holes where messages are received but no processing is performed. A failure model that does not require a failed node to recover within a finite amount of time, allows us to purge such processes and still provide the service while eliminating a bottleneck.

Systems where clients continuously access a fixed set of servers, results in a situation where a whole bunch of clients are accessing a certain known server over and over again. Problems are compounded if the number of clients accessing this server is large and if the clients are accessing the server from different geographic locations. Balancing the client load using server-farms, would still have the bandwidth constraints. What is indispensable is the service that is being provided and not the servers which are cooperating to provide the service. Servers can be continuously added or fail and the server network can undulate with these additions and failures of servers. The service should still be available for clients to use. Servers thus do not have an identity, any one server should be just as good as the other. Clients however have an identity, and their service needs are very specific and vary from client to client. Any of these servers should be able to service the needs of every one of these millions and millions of clients. It’s the system as a whole, which should be able to reconstruct the service nuggets that a client missed during the time that it was inactive.

Clients just specify the type of events that it is interested in, and the content that the event should at least contain. Clients do not need to maintain an active presence during the time these interesting events are taking place. Once it registers an interest it should be able to recover the missed event from any of the server nodes in the system. Removing the restriction of clients reconnecting back to the same server that it was last attached to, also opens up a host of possibilities where servers could be dynamically instantiated based on the concentration of clients at certain geographic locations. Clients could then be induced to roam to such dynamically created servers for optimizing bandwidth utilization.

