Java and XML

CIS 690:Independent Study

Beytullah YILDIZ

419385357

Conrents

	1 Introduction

2.1 What is XML?

2.2 XML Documents

2.2.1 XML Declaration

2.2.2 Entities

2.2.3 Elements and Attributes

2.2.4 Comments

2.2.5 Processing Instructions

2.3 Handling Special Characters

2.4 Using CDATA Section

3 Document Type Definition (DTD)

3.1 Creating Document Type Definition (DTD)

3.2 Referencing DTD in XML File

3.2.1 Giving External Reference

3.2.2 Giving Internal Reference

3.3 Declaring Attributes in DTD

4 Parsing XML Documents

4.1 XML Processors

4.2 XML Parsers

4.3 Introduction to XML for Java(Xerces 3.1.1)

4.4 Programming Interface For Document Structure

4.5 Document Object Model (DOM)

4.5.1 How do I create a Dom Parser?

4.5.2 DOM Architecture

4.5.3 Interface Summary of Package org.w3c.dom

4.6 Simple API for XML(SAX)

4.6.1 How do I create a SAX Parser?

4.6.2 A Simple example of SAX Application Writer

4.6.3 What is an Event-Based Interface?

4.6.4 Interface Summary of Package org.xml.sax

5 The Examples of Xerces 3.1.1

5.1 Printing an XML Document from a Parsed Structure

5.2 Running SAXCount and DOMCount

5.3 Running DOMFilter

5.4 Running IteratorViev

5.5 Running TreeWalker

5.6 Running TreeViewer

6 References
	3

4

5

6

6

6

7

8

8

9

9

10

11

11

12

12

13

13

14

15

16

16

18

18

21

22

23

23

24

25

26

26

31

32

35

37

38

40

1 Introduction

XML, Extensible Markup Language, is a new specification that enables Web designers to create their own, customized tags to provide functionality, which is not available using the current markup language used for many Web applications. XML is primarily intended to meet the requirements of large-scale Web content providers for industry-specific markup, vendor-neutral data exchange, media-independent publishing, one-on-one marketing, workflow management in collaborative authoring environments, and the processing of Web documents by intelligent clients.

Java is a high-level, general-purpose programming language, developed by Sun Microsystems, that has several features that make it well suited for use in Web applications.

The marriage of these two technologies opens us the new gates in the Internet world. A parser is a processing application, which converts the XML document into a document tree structure that can be internally processed by an application program. Parsers come in two flavors: validating and non-validating. Validating parsers require a DTD and ensure that the XML document adheres to its constraints. DTD's allow stating explicitly what formats the documents will be required to come in. It is sort of a formalized data dictionary for XML documents and lends to its self-describing nature. Documents, which are invalid, will be rejected. This provides a mechanism for ensuring that your XML documents are properly formatted. Non-validating parsers do not require a DTD and can work with well-formed XML documents. Non-validating parsers are usually quicker and smaller that validating parsers, but other wise performs the same functions.

To process an XML document by accessing internal structure, APIs are required. There are two widely used APIs in XML processors, Document Object Model (DOM) and Simple API for XML (SAX). DOM provides a set of APIs to access and manipulate the nodes in the DOM tree. A DOM–based XML processor creates the entire structure of the XML document in memory, so the application can operate the document as a whole. On the other hand, in SAX, An XML processor does not create a data structure. It scans an input XML document and generates events. The Application program intercepts these events and does whatever is appropriate for the task.

I will use XML for Java (XML4J-3_1_1) ,a validating XML processor, one of the most robust implementations of XML processor. I downloaded it from IBM’s web site at http://www.alphaworks.ibm.com/tech/xml4j.

2.1 What is XML?

XML is short for "Extensible Markup Language". Like HTML, it is derived from SGML. HTML is an application of SGML designed for easy rendering of hypertext documents. In HTML, the tags are all defined for you. You simply markup your text documents with those tags in order to receive limited structure and visual control.

In contrast, XML is a meta-language. It is not a fixed tag set like HTML. XML provides you with the syntax for creating your own markup languages. What the authors of XML attempted to do was present a powerful and flexible means of describing the structure of documents. Presentation of that document is a second phase and requires the use of external style sheets.

In effect, XML is an open syntax for describing document and data structures. XML is taking the computer industry by storm particularly in areas where data interchange and systems interoperability are important. This discussion will focus on its role in data interchange.

"Extensible Markup Language, abbreviated XML, describes a class of data objects called XML documents and partially describes the behavior of computer programs which process them. XML is an application profile or restricted form of SGML, the Standard Generalized Markup Language. By construction, XML documents are conforming SGML documents."

"XML is primarily intended to meet the requirements of large-scale Web content providers for industry-specific markup, vendor-neutral data exchange, media-independent publishing, one-on-one marketing, workflow management in collaborative authoring environments, and the processing of Web documents by intelligent clients. It is also expected to find use in certain metadata applications. XML is fully internationalized for both European and Asian languages, with all conforming processors required to support the Unicode character set in both its UTF-8 and UTF-16 encoding. The language is designed for the quickest possible client-side processing consistent with its primary purpose as an electronic publishing and data interchange format."

"XML documents are made up of storage units called entities, which contain either parsed or unparsed data. Parsed data is made up of characters, some of which form the character data in the document, and some of which form markup. Markup encodes a description of the document's storage layout and logical structure. XML provides a mechanism to impose constraints on the storage layout and logical structure. A software module called an XML processor is used to read XML documents and provide access to their content and structure. It is assumed that an XML processor is doing its work on behalf of another module, called the application. This specification describes the required behavior of an XML processor in terms of how it must read XML data and the information it must provide to the application."

Valid XML documents are designed to be valid SGML documents, but XML documents have additional restrictions. The W3C XML WG has published a technical NOTE providing a "detailed comparison of the additional restrictions that XML places on documents beyond those of SGML

2.2 XML Documents

A hypothetical XML document might look like the following:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE department SYSTEM "department.dtd">

<department>

 <student id="Beytullah.Yildiz">

 <name>Beytullah Yildiz</name>

 <email>beytullah@ecs.syr.edu</email>

 </student>

 <student id="Bill.Smith">

 <name>Bill Smith</name>

 <email>smith@foo.com</email>

 </student>

 <student id="Nancy.Miller">

 <name>Nancy Miller</name>

 <url href="http://www.foo.com/~nmiller/"/>

 </student>

 <student id="John.Baldwin">

 <name>John Baldwin</name>

 <email>baldwin@foo.com</email>

 </student>

</department>

One of the design goals of XML was ease of human readability. As you can see, a XML document is composed of data marked up or contained in tags bounded by <'s and >'s. Without knowing much about XML, you can infer what this document is describing.

XML documents are composed of the following:

· XML Declaration

· Entities

· Elements and Attributes

· Comments

· Processing Instructions

All XML documents should begin with a declaration of the version of XML being used.

2.2.1 XML Declaration

XML file always starts with a Prolog. The minimal prolog contains a declaration that identifies the document as an XML document, like this:

<?xml version="1.0"?>

The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration may contain the following attributes:
· version :Identifies the version of the XML markup language used in the data. This attribute is not optional.

· encoding :Identifies the character set used to encode the data. "ISO-8859-1" is "Latin-1" the Western European and English language character set. (The default is compressed Unicode: UTF-8.).

· standalone:Tells whether or not this document references an external entity or an external data type specification (see below). If there are no external references, then "yes" is appropriate

2.2.2 Entities

An entity is something that contains data. Entities may be both internal and external to the XML document proper, but are usually marked up text. This is similar to the and <TITLE> tags in HTML. The image is a binary file stored external to the document itself, which the title is contained between the respective tags. An entity reference is an abbreviation for an entity.

2.2.3 Elements and Attributes

Elements are the tags. Elements may contain other elements as well as character data (text), comments, and processing instructions.

Attributes are properties of elements in the form of name=value. Their order is unimportant, but the must reside within the element tag as such: <elementname attr1=val1 attr2=val2 ...> Attributes can be character data, ids, id references, enumerations, etc.

Each Tag in a XML file can have Element and Attributes. Here's how a Typical Tag looks like,

<Email to="byildiz@ecs.syr.edu”

 from="byildiz@ecs.syr.edu"
 subject="XML and Java">

</Email>

In this Example, Email is called as Element. This Element called E-mail has three attributes, to, from and subject.

The Following Rules need to be followed while declaring the XML Elements Names:

· Names can contain letters, numbers, and other characters

· Names must not start with a number or underscore

· Names must not start with the letters xml

· Names can not contain spaces

XML documents often have a parallel database, where fieldnames parallel with element names. A good rule is to use the naming rules of your databases.The ":" should not be used in element names because it is reserved to be used for something called namespaces.

One of the Most important Features of a XML file is, it should be a Well Formed File. XML documents come in one of two forms: well-formed or valid. Well-formed documents are syntactically correct. To be well-formed an XML document must:

· begin with an XML declaration

· have matching start and end tags or empty elements

· empty element tags must end with />

· have only one element that contains all others

· not have overlaping elements (nested is OK)

· only use & or < to start tags

· only use &, <, >, &apos, and " of for entity references

Valid documents must also conform to these rules. Valid documents also have the constraint of requiring a Document Type Definition (or DTD) and following its rules. In cases where you don't have to provide any sub tags, you can close the Tag, by providing a "/" to the Closing Tag. For example :<Text></Text> is same with </Text> .

2.2.4 Comments

Comments in XML file are declared the same way as Comments in HTML File.

<Text>Welcome To XML Tutorial </Text>
<!-- This is a comment -->
<Subject />

2.2.5 Processing Instructions

An XML file can also contain processing instructions that give commands or information to an application that is processing the XML data. Processing instructions can occur almost anywhere in an XML document and are enclosed in <? and ?> delimiters. Processing instructions have the following format:

 <?target instructions?>

Where the target is the name of the application that is expected to do the processing, and instructions is a string of characters that embodies the information or commands for the application to process.

2.3 Handling Special Characters

While parsing the XML file, sometimes it is required to use some extra characters. For example, we want to have declaration like

<amount> Balance > Investment </amount>

Now ">" is a reserved character which is normally used to declare the entity name. To handle such kind of situations, you can replace these characters with these special characters, which get substituted automatically while parsing the XML file.

	Character
	Reference

	&
	&

	<
	<

	>
	>

	"
	"

	'
	'

So we can declare the above declaration in this format for it to be valid

<amount> Balance < Investment </amount>

The above List is for predefined characters. You can also use the Unicode value while declaring custom characters. For example :

<amount> Balance “ Investment </amount>

A character reference like “ contains a hash mark (#) followed by a number.

2.4 Using CDATA Section

It may not always be feasible to declare these Custom Characters every time. For example, if we wanted to show a small flow diagram, with lots of spaces and extra Characters, then we can use CDATA section. CDATA is a predefined XML tag for "Character DATA" that says, "don't interpret these characters", as opposed to "Parsed Character Data" (PCDATA), in which the normal rules of XML syntax apply.

For example, if we have a XML file like this

 ...

 <author>Beytullah Yildiz</author>

 <title>XML and Java</title>

 <references><![CDATA[Diagram:

 | ________________ |

 | | ftp: | |

 | | gopher: | |

 | | http: __|____________ |

 | | etc | | urn: | |

 | |_____________|__| | |

 | URLs
 | | |

 | |_______________| |

 | URNs |

 |______________________________________|

 URIs

]]></references>

 </book>

</library>

When we execute our Parser Program, then the output is going to be

 ELEMENT: <references>

 CHARS: Diagram:

 <references><![CDATA[Diagram:

 | ________________ |

 | | ftp: | |

 | | gopher: | |

 | | http: __|____________ |

 | | etc | | urn: | |

 | |_____________|__| | |

 | URLs
 | | |

 | |_______________| |

 | URNs |

 |______________________________________|

 URIs

END_ELM: </references>

3.Document Type Definition (DTD)

A Document Type Definition, or DTD, is a formal statement of the document's acceptable structure. My XML document might have the following DTD:

<!ELEMENT department (student)*>

<!ELEMENT student (name, (email | url))>

<!ATTLIST student id CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT url EMPTY>

<!ATTLIST url href CDATA #REQUIRED>

DTD's allow you to explicitly state what formats the documents will be required to come in. It is sort of a formalized data dictionary for XML documents and lends to its self-describing nature. A Document Type Declaration would appear after the XML declaration and before the root element of an XML document. It defines what the document's Document Type Definition is. DTD's may be either internal or external to the document itself.

3.1 Creating Document Type Definition (DTD)

After XML declaration, the document prolog can include a DTD, which lets you specify the kinds of tags that can be included in your XML document. Like the XML file, DTD file also starts with Prolog. So we will write

<?xml version='1.0' encoding='us-ascii'?>

Next we will give some comments

<!-- DTD for Book Library " -->

Next Let's declare our first Element.

<!ELEMENT Library (Book*)>

The DTD tag starts with <! Followed by the tag name (ELEMENT). After the tag name comes the name of the element that is being defined (Library) and, in parentheses, one or more items that indicate the valid contents for that element. Without the star sign, the definition would be saying that Library consists of a single Book element. Here are the qualifiers you can add to an element definition:

	Qualifier
	Name
	Meaning

	?
	Question Mark
	Optional (zero or one)

	*
	Asterisk
	Zero or more

	+
	Plus Sign
	One or more

<!ELEMENT Book (Title + , Author*, Publisher+)>
<!ELEMENT Author (Main_Author, Sub_Author*)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Main_Author (FullName | PhoneNumber | Email | Country) * >
<!ELEMENT Publisher (#PCDATA | Publisher)* >

The First indicates that Each Book Tag, can have One Title Tag followed by Multiple Author Tags followed by one Publisher Tag. Second Line tells that Author Tag can have One Main_Author Tag ,followed by Multiple Sub_Author Tags. Next Line Tells that Author Tag has data of type PCDATA, which stands for Parsed Character Data. Next Line indicates that Main_Author tag can have either one or more tags of FullName, PhoneNumber, Email and Country under it. The Next Line is what is called as Mixed Content Model. Here a Publisher Tag can have Either plain Text within Tags Like, <Publisher>First Publications</Publisher> or it can have more Publisher Tags under it. For example, it can have

<Publisher>
 <Publisher>First Publications</Publisher>
 <Publisher> Second Publications</Publisher>
</Publisher>

 Star (*) at the End indicates that Zero or more sequences like can occur in the XML file.

3.2 Referencing DTD in XML File

There are Two Ways you can reference you DTD in the XML file. You can either save your DTD into a External file or if the DTD is small, you can directly embed it into the XML file.

3.2.1 Giving External Reference

the declaration is just after the Prolog in the XML file.

<?xml version='1.0' encoding='us-ascii'?>
<!DOCTYPE Library SYSTEM "http://www.foo.com/book.dtd">

<Library>
 <Book ISBN="0000-000-0000" >
 <Title>XML and Java</Title>
 <Author>Beytullah Yildiz</Author>
 <Publisher>First Publications</Publisher>
 <Date_Published>04/20/2001</Date_Published>
 </Book>
</Library>

Other valid Syntaxes for Giving Reference to External DTD are.

<!DOCTYPE Library SYSTEM "book.dtd">

Which indicates that path is relative to the location of the XML document.

<!DOCTYPE Library SYSTEM "c://book.dtd">

Which gives the exact location of the DTD file in this case c://book.dtd.

3.2.2 Giving Internal Reference

If the DTD is small, it can be directly included in the XML file. For example:

<?xml version='1.0' encoding='us-ascii'?>
<!DOCTYPE Library [
<!ELEMENT Book (Title | Author | Publisher | Date_Published)>
<!ATTLIST Book ISBN CDATA #IMPLIED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Publisher (#PCDATA)>
<!ELEMENT Date_Published (#PCDATA)>
]>

<Library>
 <Book ISBN="0000-000-0000" >
 <Title>XML and Java</Title>
 <Author>Beytullah Yildiz</Author>
 <Publisher>First Publications</Publisher>
 <Date_Published>04/20/2001</Date_Published>
 </Book>
</Library>

In the above XML file we have directly included the DTD declaration along with the XML file.

3.3 Declaring Attributes in DTD

For a Validating Parser to Properly Validate the XML document, it make it necessry to have all declarations for both Element and Attributes in the DTD file. Attributes for the Address Element can be declared as follows

<!ELEMENT Main_Author (Address *) >
<!ELEMENT Address (#PCDATA)>

<!ATTLIST Address
 Street1 CDATA #REQUIRED
 Street2 CDATA #IMPLIED
 City CDATA #IMPLIED
 Zip CDATA "unknown"
 Country CDATA #REQUIRED
>

The DTD tag ATTLIST begins the series of attribute definitions. The name that follows ATTLIST specifies the element for which the attributes are being defined. In this case, the element is the Address element. Each attribute is defined by a series of three space-separated values. Commas and other separators are not allowed, so formatting the definitions as shown above is helpful for readability. The first element in each line is the name of the attribute: Street1, Street2, City, Zip or Country. The second element indicates the type of the data: CDATA is character data -- unparsed data, once again, in which a left-angle bracket (<) will never be construed as part of an XML tag. The last entry in the attribute specification determines the attributes default value, if any, and tells whether or not the attribute is required. The table below shows the possible choices.

	Specification
	Specifies...

	#REQUIRED
	The attribute value must be specified in the document.

	#IMPLIED
	The value need not be specified in the document. If it isn't, the application will have a default value it uses.

	"defaultValue"
	The default value to use, if a value is not specified in the document.

	#FIXED "fixedValue"
	The value to use. If the document specifies any value at all, it must be the same.

4. Parsing XML Documents

4.1 XML Processors

XML processor is a software module that is used to read XML documents and provide application programs with access to their content and structure. There are several XML processors written in Java. Some of them are validating processors, while others are non-validating. A validating processor checks the validity constraints and the well-formedness constrains and reports any violations. On the other hand, non-validating processor checks only well-formedness constraints.

I will use XML for Java (XML4J-3_1_1) ,a validating XML processor, one of the most robust implementations of XML processor.I downloaded it from IBM’s web site at http://www.alphaworks.ibm.com/tech/xml4j. Lark, Aelfred, XP, Java Project X and SXP are the other XML processors.

4.2 XML Parsers

A parser is a processing application, which converts the XML document into a document tree structure that can be internally processed by an application program. Parsers come in two flavors: validating and non-validating. Validating parsers require a DTD and ensure that the XML document adheres to its constraints. Documents which are invalid and will be rejected. This provides a mechanism for ensuring that your XML documents are properly formatted.

Non-validating parsers do not require a DTD and can work with well-formed XML documents. Non-validating parsers are usually quicker and smaller that validating parsers, but other wise performs the same functions. Most parsers for Java implement the SAX (Simple API for XML) as a means of parsing the document. SAX parsers often construct a DOM document tree.

<?xml version='1.0' encoding='us-ascii'?>
<!DOCTYPE Library>
<Library>

 <!-- Book 1 Comments -->
 <Book ISBN="1111-111-1111" >
 <Title>XML For Java</Title>
 <Author>Beytullah Yildiz</Author>
 <Publisher>Perfect Puclications</Publisher>
 <Date_Published>22/10/1999</Date_Published>
 </Book>
 <!-- Book 2 Comments -->
 <Book ISBN="0000-000-0000">
 <Title>XML Programming</Title>
 <Author> Beytullah Yildiz </Author>
 <Publisher>Good Publications</Publisher>
 <Date_Published/>
 </Book>
</Library>

In the above XML file, after the XML Prolog "<?xml version='1.0' encoding='us-ascii'?>" we have added one more line called "<!DOCTYPE Library >" Here DOCTYPE Library indicates that all the Tags inside this XML file will be under the Tag "Library". Which means "Library" will be the parent or root of all other Tags in this XML file.

Each XML file can have only one DOCTYPE. Also in the XML File we have added comments for Book1 using the Following syntax <!-- Book 1 Comments -->. If the Tags and Elements need to be added compulsorily, the element is defined by DTD file. For example, for Book Element, ISBN might be compulsory if the search based on ISBN is supported. And date published tag may not be necessary at all times if there's no search facility based on get the most recent books. We can declare an empty tag for <Date_Published/>. This Statement is equivalent to writing <Date_Published><Date_Published/>. From this point we will be explaining how to use different Kinds of Parsers that are available for processing the XML files and how to use them. Currently in Market there are lot's of XML Parsers available. Two of them are most popular among Java Developers. They are JavaSofts's XML Parser and IBM's Xerces Parser.

4.3 Introduction to XML for Java(Xerces 3.1.1)

XML for Java is required to set up the programming environment as follows.

1. Install the JDK

2. Install XML for Java

3. Update the CLASSPATH environment variable

I install jdk1.3.0_01 version in my computer. The second step was to install XML for Java version XML4J-3_1_1. To install XML for Java , I unzipped XML4J-J-bin.3.1.1.zip and XML4J-J-src.3.1.1.zip files and I created XML4J-3_1_1 directory to install the XML for Java. In my applications, I used the C:\independent_study\XML4J-3_1_1 directory.

I used windows 2000 platform. To update the CLASSPATH environment I used the below command.

C:\independent_study\XML4J-3_1_1>set CLASSPATH=.;C:\ independent_study \XML4J-3_1_1\xml4j.jar C:\indpendent_study\XML4J-3_1_1 \xerces.jar ; C:\independent_study\XML4J-3_1_1\ xercesSamples.jar

The Packages of Xerces 3.1.1 is:

com.ibm.xml.parsers

javax.xml.parsers

org.apache.html.dom

org.apache.wml

org.apache.wml.dom

org.apache.xerces.dom

org.apache.xerces.dom.events

org.apache.xerces.framework

org.apache.xerces.parsers

org.apache.xml.serialize

org.w3c.dom

org.w3c.dom.events

org.w3c.dom.html

org.w3c.dom.range

org.w3c.dom.traversal

org.xml.sax

org.xml.sax.ext

org.xml.sax.helpers
4.4 Programming Interface For Document Structure

To process an XML document by accessing internal structure, APIs (application program interface) are required. There are two widely used APIs in XML processors.

· Document Object Model(DOM)

· Simple API for XML(SAX)

An XML document is represented as a tree whose nodes are element in DOM. The XML processor generates the tree and hands it to an application program. DOM provides a set of APIs to access and manipulate these nodes in the DOM tree. A DOM –based XML processor creates the entire structure of the XML document in memory, so the application can operate the document as a whole.The use of DOM is best for the following situations:

· When sharing the document in memory with other applications

· When structurally modifying an XML document

On the other hand, in SAX, An XML processor does not create a data structure. It scans an input XML document and generates events. The Application program intercepts these events and does whatever is appropriate for the task. The SAX is good for the followings:

· When doing tasks on elements that are irrelevant to the surrounding document structure, counting the total number of elements in a document, or extracting the contents of a specific element

· When dealing with a large document that does not fit the memory

4.5 Document Object Model (DOM)

The Document Object Model, or DOM, is the W3C's standard API for both XML and HTML document processing. It is based on a hierarchical tree structure of Nodes and leafs. Most parsers provide the programmer with a DOM for manipulation of the XML document.

W3C's Document Object Model (DOM) is a standard API (Application Programming Interface) to the document structure and aims to make it easy for programmers to access components and delete, add or edit their content, attributes and style. In essence, the DOM makes it possible for programmers to write applications which work properly on all browsers and servers, and on all platforms. While programmers may need to use different programming languages, they do not need to change their programming model. In 1997, the W3C released the first version of the Extensible Markup Language (XML) specification. Many applications of XML were done since then: editors, repositories, databases, B2B systems, Web content, network protocols, etc.

The XML specification only provides the syntax and the grammar for XML. Being able to access the XML content in an application requires more than that: it requires an API (Application Programming Interface).Generic APIs for XML can be mostly classified in two categories: event-based or tree-based. The DOM is a generic tree-based API for XML.DOM defines Java interfaces to access create and manipulate XML documents. Because an element may consist of one or more other lements,an entire document is rendered as a nested tree.

[image: image1.wmf]department

student

name

email

student

name

email

student

name

url

student

name

email

Beytullah Yildiz

Beytullah@ecs.syr.edu

Bill Smith

bill@foo.com

Nancy Miller

http://www.foo.com/~nmiller

John Baldwin

baldwin@foo.com

Figure1: Structure of an XML document in DOM

Each element node corresponds to a pair of start and end tags, such as department and student. Each chunk of text surrounded by two tags corresponds to a Text node, represented by the strings. These nodes are defined as objects in DOM. DOM defines a platform and language neutral interface for application programs in terms of a standard set of objects. It defines APIs, called language bindings, for Java. From an object-oriented programming viewpoint, the DOM API is a set of interfaces. XML for Java is one example of such a Dom implementation.

4.5.1 How do I create a Dom Parser?

import org.apache.xerces.parsers.DOMParser;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

import java.io.IOException;

 ...

String xmlFile = arg [0];
//to enter the file name ant path from //command prompt

//or file name with path

DOMParser parser = new DOMParser();

try {

 parser.parse(xmlFile);

} catch (SAXException se) {

 se.printStackTrace();

} catch (IOException ioe) {

 ioe.printStackTrace();

}

Document document = parser.getDocument();
4.5.2 DOM Architecture

The DOM Architecture is divided in various modules. Each module addresses or specializes an existing module for a particular domain. Domains covered by the current DOM API are XML, HTML, CSS, and events. The Core platform relies on an internal tree-like representation of the document, and enables you to traverse the hierarchy accordingly. The standard model of viewing a document is as a hierarchy of elements, with the computer building up an internal model of the document based on a kind of tree structure.

The DOM Range and Traversal modules can be used on the Core platform for tree manipulations.The DOM XML extends the Core platform for specific XML 1.0 needs such as processing instructions, CDATA, and entities.The HTML DOM provides a set of convenient easy-to-use ways to manipulate HTML documents. The initial HTML DOM merely describes methods, for example, for accessing an identifier by name, or a particular link. The HTML DOM is sometimes referred to as DOM Level 0 but has been imported into DOM Level 1.This part includes XML-tree manipulation oriented events with the Mutation events and the Web user-oriented events with mouse events and HTML events. The DOM CSS provides a set of convenient easy-to-use ways to manipulate CSS documents.The first Level of the DOM specifications (DOM Level 1) was completed in October 1998. Level 1 provides support for XML 1.0 and HTML

[image: image2.wmf]Node

Attr

DocumentType

DocumentFragment

CharacterData

Document

Element

Entity

Notation

ProcessingReferance

Comment

EntityReferance

Text

CDATASection

NodeList

NamedNodeMap

DOMImplementation

Interface

Class

DOMExeption

Figure2: Class/Interface hierarchy of DOM(Core) Level 1 specification

[image: image3.wmf]XML 1.0

HTML

Core

Extends

Figure3 : DOM Level 1 Architecture

The second Level of the DOM specifications (DOM Level 2) was completed in November 2000. Level 2 extends Level 1 with support for XML 1.0 with namespaces and adds supports for Cascading Style Sheets (CSS), events (user interface events and tree manipulation events), and enhances tree manipulations (tree ranges and traversal mechanisms).

[image: image4.wmf]XML 1.0

HTML

Core

(with NameSpace)

Extends

Range

Treversal

VIew

Events

Mutation Events

HTML Events

User Interface

Events

Mouse Events

Style Sheet

Cascadig Style

Sheet

Cascadig Style

Sheet 2

Depends

Figure4: DOM Level 2 Architecture

The third Level of the DOM specifications, DOM Level 3, is under development. Level 3 will extend Level 2 by finishing support for XML 1.0 with namespaces (alignment with the XML Infoset and support for XML Base) and will extend the user interface events (keyboard, device independent events). It will also add abstract content model support (for DTDs, XML Schema, ...), the ability to load and save a document or a content model, explore further mixed markup vocabularies and the implications on the DOM API ("Embedded DOM"), and will support XPath.

[image: image5.wmf]XML 1.0

HTML

Core

(with NameSpace, XML Base)

Extends

Range

Load/Save

VIews

Content Models

XPath

Events

(with Event Group)

Load/Save

Content Models

Mutation Events

Style Sheet

Cascadig Style

Sheet

Cascadig Style

Sheet 2

Depends

Traversal

HTML Events

User Interface

Events

Mouse Events

Keyboard Events

Figure 5:DOM Level 3 Architecture

4.5.3 Interface Summary of Package org.w3c.dom

Attr: The Attr interface represents an attribute in an Element object.

CDATASection:CDATA sections are used to escape blocks of text containing characters that would otherwise be regarded as markup.
CharacterData: The CharacterData interface extends Node with a set of attributes and methods for accessing character data in the DOM.
Comment: This interface inherits from CharacterData and represents the content of a comment, i.e., all the characters between the starting ' <!--' and ending '-->'.

Document:The Document interface represents the entire HTML or XML document.
DocumentFragment: DocumentFragment is a "lightweight" or "minimal" Document object.
DocumentType: Each Document has a doctype attribute whose value is either null or a DocumentType object.

DOMImplementation: The DOMImplementation interface provides a number of methods for performing operations that are independent of any particular instance of the document object model.
Element: The Element interface represents an element in an HTML or XML document.
Entity: This interface represents an entity, either parsed or unparsed, in an XML document.
EntityReference: EntityReference objects may be inserted into the structure model when an entity reference is in the source document, or when the user wishes to insert an entity reference.
NamedNodeMap: Objects implementing the NamedNodeMap interface are used to represent collections of nodes that can be accessed by name.
Node: The Node interface is the primary datatype for the entire Document Object Model.
NodeList: The NodeList interface provides the abstraction of an ordered collection of nodes, without defining or constraining how this collection is implemented.
Notation: This interface represents a notation declared in the DTD.
ProcessingInstruction: The ProcessingInstruction interface represents a "processing instruction", used in XML as a way to keep processor-specific information in the text of the document.
Text: The Text interface inherits from CharacterData and represents the textual content (termed character data in XML) of an Element or Attr.

4.6 Simple API for XML(SAX)

Simple API for XML (SAX) is event-driven APIs. It is designed as a lightweight API, which does not involve the generation of internal structures. Applications must register event handler to a parser object. SAX has three handler interfaces: DocumentHandler, DTDHandler,Content and ErrorHandler. DocumentHandler is the most important and most often used interface. The reason is that it is called whenever an element is found.

The following Java-based XML parsers have native SAX 1.0 drivers bundled with their distributions:

· IBM's XML for Java

· James Clark's XP

· DataChannel's and Microsoft's XJParser

· Microstar's (now Open Text's) Ælfred

· Silfide's SXP

· Sun's Java API for XML

· Oracle's XML Parser for Java

· The Apache project's Xerces-J parser

· David Brownell's SAX2 XML Utilities (includes an updated version of Microstar's (now Open Text's) Ælfred.

· Rob Ewaschuk's SSP parser
4.6.1 How do I create a SAX Parser?

import org.apache.xerces.parsers.SAXParser;

import org.xml.sax.Parser;

import org.xml.sax.ParserFactory;

import org.xml.sax.SAXException;

import java.io.IOException;

 ...

String xmlFile = arg [0];
//to enter the file name ant path from //command prompt

//or file name with path

String parserClass = "org.apache.xerces.parsers.SAXParser";

Parser parser = ParserFactory.makeParser(parserClass);

try {

 parser.parse(xmlFile);

} catch (SAXException se) {

 se.printStackTrace();

} catch (IOException ioe) {

ioe.printStackTrace();

}

4.6.2 A Simple example of SAX Application Writer

We will usually want to create at least one event handler to receive information about the document. The most important type of handler is the DocumentHandler, which receives events for the start and end of elements, character data, processing instructions, and other basic XML structure.

Rather than implementing the entire interface, we can create a class that extends HandlerBase, and then fill in the methods that you need. The following example (MyHandler.java) prints a message each time an element starts or ends:

import org.xml.sax.HandlerBase;

import org.xml.sax.AttributeList;

public class MyHandler extends HandlerBase {

 public void startElement (String name, AttributeList atts){

 System.out.println("Start element: " + name);

 }

 public void endElement (String name){

 System.out.println("End element: " + name);

 }

}

Now, we can create a simple application (SAXApp.java) to invoke SAX and parse a document using your handler:

import org.xml.sax.Parser;

import org.xml.sax.DocumentHandler;

import org.xml.sax.helpers.ParserFactory;

public class SAXApp {

 static final String parserClass = "com.microstar.xml.SAXDriver";

 public static void main (String args[])

 throws Exception{

 Parser parser = ParserFactory.makeParser(parserClass);

 DocumentHandler handler = new MyHandler();

 parser.setDocumentHandler(handler);

 for (int i = 0; i < args.length; i++) {

 parser.parse(args[i]);

 }

 }

}

For example, consider the following very simple XML document .

<?xml version="1.0"?>

<poem>

<line>First</line>

<line>Second</line>

<line>Third</line>

<line>Fourth</line>

</poem>

To parse this with your SAXApp application, you would supply the absolute URL of the document on the command line. The output should be as follows:

Start element: poem

Start element: line

End element: line

Start element: line

End element: line

Start element: line

End element: line

Start element: line

End element: line

End element: poem

4.6.3 What is an Event-Based Interface?

An event-based API reports parsing events, such as the start and end of elements, directly to the application through callbacks, and does not usually build an internal tree. The application implements handlers to deal with the different events much like handling events in a graphical user interface.

An event-based API provides a simpler, lower-level access to an XML document: you can parse documents much larger than your available system memory, and you can construct your own data structures using your callback event handlers.

Consider, for example, the task is that locate the record element containing the word "New York".

If your XML document were 20MB large or even just 2MB , it would be very inefficient to construct and traverse an in-memory parse tree just to locate this one piece of contextual information; an event-based interface would allow you to find it in a single pass using very little memory.

To understand how an event-based API can work, consider the following sample document:

<?xml version="1.0">

<document>

<text>XML and Java</text>

</document>

An event-based interface will break the structure of this document down into a series of linear events:

start document

start element: document

start element: text

characters: XML and Java

end element: text

end element: doc

end document

An application handles these events just as it would handle events from a graphical user interface: there is no need to cache the entire document in memory or secondary storage.

4.6.4 Interface Summary of Package org.xml.sax

AttributeList:
Deprecated. This interface has been replaced by the SAX2 Attributes interface, which includes Namespace support.

Attributes:Interface for a list of XML attributes.

ContentHandler:Receive notification of the logical content of a document.

DocumentHandler:Deprecated. This interface has been replaced by the SAX2 ContentHandler: interface, which includes Namespace support.

DTDHandler:Receive notification of basic DTD-related events.

EntityResolver:Basic interface for resolving entities.

ErrorHandler:Basic interface for SAX error handlers.

Locator:Interface for associating a SAX event with a document location.

Parser:Deprecated. This interface has been replaced by the SAX2 XMLReader interface, which includes Namespace support.

XMLFilter:Interface for an XML filter.

XMLReader:Interface for reading an XML document using callbacks.

5. The Examples of Xerces 3.1.1
To run the Xerces 3.1.1:
1. open up a MS-DOS command line window

2. set the path to the jdk\bin directory

3. change directory to the latest Xerces 3.1.1 or XML4J-3_1_1 directory

The easiest way to do this is to create a .bat file using the Notepad editor. Then the program can be invoked by double clicking on the file name or icon

5.1 Printing an XML Document from a Parsed Structure

SAXWriter and DOMWriter parse your input file, and print it out in XML format. .They also display any errors or warnings that occurred during the parse. A command line option can be used to print in a "canonical" XML format so the output can be used to compare XML documents. DOMWriter provides a -e switch to set the output Java encoding.

The command lines expect the current directory to be the directory containing the JAR file.Xerces-J and JDK should be loaded on your computer.

The Source codes are:

· SAXWriter.java

· DOMWriter.java

To run SAXWriter:

Command:

C:\independent_study\XML4J-3_1_1>java sax.SAXWriter data/department.xml

Result:

data/department.xml:

<?xml version="1.0" encoding="UTF-8"?>

<department>

 <student id="Beytullah.Yildiz">

 <name>Beytullah Yildiz</name>

 <email>beytullah@ecs.syr.edu</email>

 </student>

 <student id="Bill.Smith">

 <name>Bill Smith</name>

 <email>smith@foo.com</email>

 </student>

 <student id="Nancy.Miller">

 <name>Nancy Miller</name>

 <url href="http://www.foo.com/~nmiller/"></url>

 </student>

 <student id="John.Baldwin">

 <name>John Baldwin</name>

 <email>baldwin@foo.com</email>

 </student>

</department>

SAXCount also allows you to change the default behavior using the following command line flags:

· -p Specify the parser class to be used.
The available parsers are:

· org.apache.xerces.parsers.SAXParser [default parser]

· -h Print SAXWriter help information. [default is no help]

· -c Output in canonical format. [default is normal format]

Running SAXWriter with the default settings is equivalent to running SAXWriter like this.

Command:

C:\independent_study\XML4J-3_1_1>java sax.SAXWriter -p org.apache. xerces.parsers.SAXParser data/department.xml

Result:

data/department.xml:

<?xml version="1.0" encoding="UTF-8"?>

<department>

 <student id="Beytullah.Yildiz">

 <name>Beytullah Yildiz</name>

 <email>beytullah@ecs.syr.edu</email>

 </student>

 <student id="Bill.Smith">

 <name>Bill Smith</name>

 <email>smith@foo.com</email>

 </student>

 <student id="Nancy.Miller">

 <name>Nancy Miller</name>

 <url href="http://www. foo.com/~nmiller/"></url>

 </student>

 <student id="John.Baldwin">

 <name>John Baldwin</name>

 <email>baldwin@foo.com</email>

 </student>

</department>

Print in canonical format:

Command:

C:\independent_study\XML4J-3_1_1>java sax.SAXWriter -c

data/d epartment.xml
Result:
data/department.xml:

<department>
 <student id="Beytullah.Yildiz">
 <name>Beytullah Yildiz</name>
<email>beytullah@ecs.syr.edu</email>
</student>

<student id="Bill.Smith">
<name>Bill Smith</name>
 <email>smith@foo.com</email>
 </student>

<student id="Nancy.Miller">
<name>Nancy Miller</name>
 <url href="http://www. foo.com/~nmiller/"></url>
 </student>

 <student id="John.Baldwin">
 <name>John Baldwin</name>
 <email>baldwin@foo.com</email>
 </student>
</department>

To run DOMWriter:

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMWriter data/department.xml

Result:

data/department.xml:

<?xml version="1.0" encoding="UTF-8"?>

<department>

 <student id="Beytullah.Yildiz">

 <name>Beytullah Yildiz</name>

 <email>beytullah@ecs.syr.edu</email>

 </student>

 <student id="Bill.Smith">

 <name>Bill Smith</name>

 <email>smith@foo.com</email>

 </student>

 <student id="Nancy.Miller">

 <name>Nancy Miller</name>

 <url href="http://www. foo.com/~nmiller/"></url>

 </student>

 <student id="John.Baldwin">

 <name>John Baldwin</name>

 <email>baldwin@foo.com</email>

 </student>

</department>
DOMCount also allows you to change the default behavior via the following command line flags (type this in as one long command line):

· -p Specify the parser class to be used.
The available parsers are:

· dom.wrappers.DOMParser [default parser]

· -h Print DOMWriter help information. [default is no help]

· -c Output in canonical format. [default is normal format]

· -e encodingName Output using the specified encoding. [default is UTF8]

Running DOMWriter with the default settings is equivalent to running DOMWriter like this:

Command:
C:\independent_study\XML4J-3_1_1>java dom.DOMWriter –p dom.wrappers. DOMParser data/department.xml

Result:

data/department.xml:

<?xml version="1.0" encoding="UTF-8"?>

<department>

 <student id="Beytullah.Yildiz">

 <name>Beytullah Yildiz</name>

 <email>beytullah@ecs.syr.edu</email>

 </student>

 <student id="Bill.Smith">

 <name>Bill Smith</name>

 <email>smith@foo.com</email>

 </student>

 <student id="Nancy.Miller">

 <name>Nancy Miller</name>

 <url href="http://www.foo.com/~nmiller/"></url>

 </student>

 <student id="John.Baldwin">

 <name>John Baldwin</name>

 <email>baldwin@foo.com</email>

 </student>

</department>
Bringing up the help information:

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMWriter -h data/department.xml

Result:

usage: java dom.DOMWriter (options) uri ...

options:

 -n | -N Turn on/off namespace [default=on]

 -v | -V Turn on/off validation [default=off]

 -s | -S Turn on/off Schema support [default=on]

 -d | -D Turn on/off deferred DOM [default=on]

 -c Canonical XML output.

 -h This help screen.

 -e Output Java Encoding.

 Default encoding: UTF-8

Searching for elements:

Command :

C:\independent_study\XML4J-3_1_1>java dom.DOMWriter -c data/department.xml

Result:

data/department.xml:

<department>
 <student id="Beytullah.Yildiz">
 <name>Beytullah Yildi

z</name>
 <email>beytullah@ecs.syr.edu</email>
 </student>

 <student id="Bill.Smith">
 <name>Bill Smith</name>
<email>smith@ foo.com</email>
 </student>

 <student id="Nancy.Miller">
 <name>Nancy Miller</name>
 <url ref="http://www.foo.com/~nmiller/"> </url>
 </student>

 <student id="John.Baldwin">
 <name>John Baldwin</name>
 <email>baldwin@foo.com</email>
 </student>
</department>

5.2 Running SAXCount and DOMCount

SAXCount and DOMCount invoke the parser on an XML document, and print out information about the document. By default, SAXCount creates a non-validating SAX parser and DOMCount creates a validating DOM parser. They both count the number of elements, attributes, text characters, and ignorable white-space characters in the document and display the amount of time it takes to complete the task.

The command lines expect the current directory to be the directory containing the JAR file.Xerces-J and JDK should be loaded on your computer.

The Source codes are:

· SAXCount.java

· DOMCount.java

To run SAXCount:

Command:
C:\independent_study\XML4J-3_1_1>java sax.SAXCount data/department.xml

Result:

data/department.xml: 390 ms (13 elems, 5 attrs, 18 spaces, 155 chars)

SAXCount also allows you to change the default behavior using the following command line flags:

· -p Specify the parser class to be used.
The available parsers are:

· org.apache.xerces.parsers.SAXParser [default parser]

· -h Print SAXCount help information. [default is no help]

· -v Turn on validation

Running SAXCount with the default settings is equivalent to running SAXCount like this

Command:

C:\independent_study\XML4J-3_1_1>java sax.SAXCount -p org.apache .xerces.parsers.SAXParser data/department.xml

Result:

data/department.xml: 390 ms (13 elems, 5 attrs, 18 spaces, 155 chars)

To run DOMCount:

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMCount data/department.xml

Result:

data/department.xml: 360 ms (13 elems, 5 attrs, 18 spaces, 155 chars)

DOMCount also allows you to change the default behavior via the following command line flags:

· -p Specify the parser class to be used.
The available parsers are:

· dom.wrappers.DOMParser [default parser]

· -h Print DOMCount help information. [default is no help]

Running DOMCount with the default settings is equivalent to running DOMCount like this :

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMCount -p dom.wrappers. DOMParser data/department.xml

Result:

data/department.xml: 371 ms (13 elems, 5 attrs, 18 spaces, 155 chars)

5.3 Running DOMFilter

DOMFilter parses an XML document, searching for specific elements by name, or elements with specific attributes. Xerces-J and JDK should be loaded on your computer.The Source code is DOMFilter.java

To run DOMFilter:

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMFilter data/department.xml

Result:

data/department.xml:

<department>

<student id="Beytullah.Yildiz">

<name>

<email>

<student id="Bill.Smith">

<name>

<email>

<student id="Nancy.Miller">

<name>

<url href="http://www.foo.com/~nmiller/">

<student id="John.Baldwin">

<name>

<email>

DOMFilter also allows you to change the default behavior using the following command line flags (type this in as one long command line):

· -p Specify the parser class to be used.
The available parsers are:

· dom.wrappers.DOMParser [default parser]

· -h Print DOMCount help information. [default is no help]

· -e Specify the name of the element to search for. [defaults to matching all elements]

· -a Specify the name of the attribute to search for. [defaults to matching all attributes]

Running DOMFilter with the default settings is equivalent to running DOMFilter like this:

Command:

C:\independent_study\XML4J-J-bin.3.1.1\XML4J-3_1_1>java dom.DOMFilter -p dom.wrappers.DOMParser data/department.xml

Result:

data/department.xml:

<department>

<student id="Beytullah.Yildiz">

<name>

<email>

<student id="Bill.Smith">

<name>

<email>

<student id="Nancy.Miller">

<name>

<url href="http://www.foo.com/~nmiller/">

<student id="John.Baldwin">

<name>

<email>

Bringing up the help information:

Command:

C:\independent_study\XML4J-J-bin.3.1.1\XML4J-3_1_1>java dom.DOMFilter -h

data/department.xml

Result:

usage: java dom.DOMFilter (options) uri ...

options:

 -p name Specify DOM parser wrapper by name.

 -e name Specify element name to search for. Default is "*".

 -a name Specify attribute name of specified elements.

 -p name Specify DOM parser wrapper by name.

 -n | -N Turn on/off namespace [default=on]

 -v | -V Turn on/off validation [default=on]

 -s | -S Turn on/off Schema support [default=on]

 -d | -D Turn on/off deferred DOM [default=on]

 -h This help screen.

To search for an element:

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMFilter -e name data/department.xml

Result:

data/department.xml:

<name>

<name>

<name>

<name>

To search for an attributes :

Command:

C:\independent_study\XML4J-3_1_1>java dom.DOMFilter –a href data/department.xml

Result:

data/department.xml:

<url href="http://www.foo.com/~nmiller/">

5.4 Running IteratorViev

The IteratorView is an interactive UI sample that displays the DOM tree. It shows the progress of the iteration by moving the selection within the DOM tree. Buttons act as a control panel, allowing the user to interactively iterate through the tree, removes nodes, add nodes, and view the results immediately in the tree.

The IteratorView uses an example filter, NameNodeFilter, that can be controlled from the UI and a DOMTreeFull class that displays the full DOM tree with all the nodes.The controls are called through to the corresponding iterator function.
The Iterator Group is:

· Next - calls the next() functions and selects the next node in the tree.

· Previous - calls the previous() function and selects the previous node in the tree.

The Selected Node Group is:
· remove - remove the selected Node and update the DOM tree. You must press an iterator button to see next or previous node selection.
· add a text node, to see the results of adding a node on the iterator. position. Again you must first press next or previous
The Iterator Setting Group is:

· createNodeIterator - calls the factory method to create a new iterator with the corresponding whatToShow and NameNodeFilter settings.

· The root is set to be the root of the document, so it starts at the top level each time.

· whatToShow - you can singly or multiply select values and the iterator is constrained to showing these types.

· NodeNameFilter - An empty string is converted to null and given to the NodeNameFilter class.
· An empty string matches all nodes.
· A non-empty string is forced to match node names.
To run IteratorView

Command:

C:\independent_study\XML4J-3_1_1>java dom.traversal.IteratorView data/department.xml

Result:
[image: image6.jpg]
5.5 Running TreeWalker

The TreeWalkerviewView is an interactive UI sample that displays the DOM tree. It show the progress of the tree traversal by moving the selection within the DOM tree. Buttons act as a control panel, allowing the user to interactively traverse the tree, remove nodes, add nodes, and view the results immediately in the tree.

The TreeWalkerviewView uses an example filter, NameNodeFilter, that can be controlled from the UI and a DOMTreeFull class that displays the full DOM tree with all the nodes.The controls are called through to to the corresponding TreeWalker function.

The Document Order Traversal Group is:

· Next - calls the next() functions and selects the next in the tree.
· Previous - calls the previous() function a and selects the previous node in the DOM tree.

The Walk Group is Parent, Previous Sibling, Next Sibling, First Child, Last Child - call the corresponding function in TreeWalker and show the result as a selected Node
The Selected Node Group is:

· current - set the current node to the selected node.

· remove - remove the selected node and update the tree. You must press a button to see next or previous node selection.
· add - add a text node. You must press a button to see next or previous node selection.
The Filter Setting Group is:

· createNodeTreeWalker - calls the factory method to create a new TreeWalker with the corresponding whatToShow and NodenameFilter settings. The selected node becomes the TreeWalker root.

· whatToShow - you can singly or multiply select these values by pressing the control key and the TreeWalker is constrained to these types.

· NodeNameFilter - an empty string is converted to null and given to the NodeNameFilter example filter class provided.

· An empty string (null) matches ALL nodes.
· A non-empty string is forced to match node names.
To Run TreeWalker

Command :

C:\independent_study\XML4J-3_1_1>java dom.traversal.TreeWalker View data/department.xml

Result:
[image: image7.jpg]
5.6 Running TreeViewer

TreeViewer displays the input file in a graphical tree based interface. This sample highlights the error handling capabilities of the parser, demonstrating how the parser can recover from many types of common errors. Xerces-J and JDK should be loaded on your computer.

The Source codes are:

· TreeViewer.java
· TreeView.java
· DOMTree.java
· DefaultImages.java
To run TreeViewer:

Command:

C:\independent_study\ XML4J-3_1_1>java ui.TreeViewer data/department.xml

Result:

data/department.xml:

START createUI:data/department.xml

START refreshUI:data/department.xml

START getRoot:data/department.xml

START readXMLFiledata/department.xml

END readXMLFiledata/department.xml

END refreshUI:data/department.xml

END createUI:data/department.xml
[image: image8.jpg]
6 References

1. http://www.megginson.com/SAX/
2. http://www.w3.org/DOM/
3. http://www.alphaworks.ibm.com/tech/xml4j
4. http://www.w3.org/XML/
5. http://www.oasis-open.org/cover/xml.html
6. http://www.javacommerce.com/tutorial/xmlj/intro.htm
7. http://www-106.ibm.com/developerworks/xml/
8. http://www.javaworld.com/javaworld/jw-09-1999/jw-09-howto.html
9. XML and Java Hioshi Maruyama, Kent Tamura,Naohika Uramoto

PAGE
39

_1051491602.vsd

_1051797449.vsd

_1051451285.vsd

_1051484000.vsd

_1051446456.vsd

