Requirements

Introduction

<Give a general description/purpose of the system>

<State the need for this system>

Next, we describe users of the system followed by use cases of the system, i.e., the major scenarios that will derive the development process. We later continue by describing client, server and performance specific requirements.

Users

Give a general description of users and a case for having different types/classification of users.

It is essential that we specify the types of users that will integrate with the system to better understand the needed functionality and to fulfill needs of the users.

[image: image1.wmf]�

Administrator

�

Agent

�

Author

�

DomainOwner

�

User

�

WebMaster

User

This is the generic user type. It has basic capabilities of being authenticated, searching through metadata, retrieving metadata and launching the objects pointed to by the metadata. All other user types are based on this and inherit its capabilities.

ContentProvider

ContentProvider provides metadata content. They are given permissions post and update one or more branches (domains) in a tree of metadata at the server. They are capable of doing everything that a User can do.

DomainOwner

These users are responsible for one or more domains (usually large branches of the metadata tree). They validate new additions and updates to the metadata. They also are responsible for maintaining the Domain Schemas. Since they are capable of doing everything that a ContentProvider can do, they can post, update and correct other ContentProviders’ updates within the domains they own.

WebMaster

This class of users has the exact same capabilities as the DomainOwner as far as metadata.opennet is concerned. We classify these users here only because we will implement WebMaster as part of the functional sample application "Metadata based Web Authoring" which will be distributed with the core metadata.opennet. The major responsibility of a WebMaster is to update relative parts of a server when it receives an Expiration Event, i.e., the expiration of a web page. It is very likely that with small sites a web master will act as a WebMaster, DomainOwner and a ContentProvider and therefore it makes sense to extend WebMaster from DomainOwner.

Administrator

The Administrator is responsible only for managing users of the system. They are also capable of doing everything that a User can do.

Agent

The Agent doesn't represent an actual person or a user. Agents will act as a user of the system would, for example, to automate repetitive tasks. Discussion of whether one should extend Agent or another type of user for implementing agents is postponed for later. Regardless, we include Agent here for completeness of issues to be discussed and handled.

Use cases

[image: image2.wmf]�

XMLBuilderForms

�

XMLBuilderTree

�

Agent

�

XMLSchema

�

XMLDocument

�

Administrator

�

WebMaster

�

Add User

�

Delete User

�

Update User

�

Expiration Notification

�

UpdateServer

�

EventQueue

�

Notifier

�

FormatMetadata

�

ApplicationServer

�

MIMEHelper

�

User

�

UserDatabase

�

Author

�

XMLBuilder

�

Update Notification

�

EventManager

�

DomainOwner

�

DomainSchema

�

Search

�

Launch Object

�

Retrieve Metadata

�

Add Domain Schema

�

Add Format Schema

�

Authenticate User

�

Post Metadata

�

<<trigger>>

�

Update Metadata

�

<<trigger>>

�

AddTimeout

�

Verify Metadata

�

<<include>>

�

<<include>>

�

Metadata

�

MetadataRepository

We have organized the use cases by the most generic user that initiates.

Authenticate User/Add User/Delete User/Update User

These are a set of use cases describing management of users. Here we suggest a universal scheme to be used throughout the .opennet project similar to Microsoft’s Passport. These use cases are outside the scope of this contract.

Search

This use case describes the scenario of searching for objects using the metadata. This use case might seem trivial at first glance, yet it is very important to specify the functionality that would be provided to the user while searching. There are a number of questions to be answered. Are users only allowed to search through string fields in the metadata? Will they be allowed to view and search within the selected fields of the XML Schemas? If this is not a simple search utility, then this use case will surely be complex.

Launch Object

[image: image3.wmf]�

User

�

MIMEHelper

�

MetadataRepository

�

ApplicationServer

�

Launch Object

�

The ApplicationServer will be built as part of the sample/demo/"proof of

�

concept" application that will be distributed with the metadata.opennet

�

system. It is not part metadata.opennet. In our sample application,

�

the ApplicationServer is responsible for the storage of the objects

�

pointed to by the metadata stored within the system. Notation of a

�

stick figure here might be missleading. The ApplicationServer does

�

not represent a person or a user. In UML a stick figure is used to

�

represent "actors," i.e., an entity outside the system being built that is

�

defined/represented within the system. A class for ApplicationServer

�

in the Logical model might include attributes like IP Address, port

�

number and methods that allows for communication with the actual

�

application server.

�

Launch Object usecase allows a user to retreive an XLink or a URI from the

�

MetadataRepository, retreive the object from an ApplicationServer, and with the help of the

�

MIMEHelper launches the object at the client. The Launch Object usecase is one of the

�

most complex use cases because of the wide variety of possible client platforms and object

�

types that must be supported.

�

If the client does not

�

already have a link to

�

the object pointed to by

�

the metadata, then the

�

link to the object will be

�

retreived from the

�

MetadataRepository.

�

MIMEHelper is a component

�

that is meant to run on the

�

client to facilitate correct

�

selection of

�

environment/application in

�

launching the object. It might

�

have a server component that

�

serves as a database of MIME

�

types(?)

This use case is within the scope of this contract. Its main purpose is to describe how an Object will be launched at the client. Since an Object can be a variety of things including a platform specific application or an application specific document, there will be limits as to its capabilities, i.e., there will be clients who won’t be capable of launching every object, yet might be able to save it.

Retrieve Metadata

This use case is here for completeness. This use case would be most important for Agents.

Post Metadata/Update Metadata

[image: image4.wmf]�

Update Notification is a

�

usecase that is triggered by

�

the Post Metadata

�

usecase. This use case

�

notifies DomainOwners that

�

there have been updates to

�

the metadata they are

�

responsible for.

�

Verify Metadata is a sub-usecase

�

of Post Metadata. To simplify the

�

model and give special attention

�

to the verification of updated

�

metadata, we have extracted this

�

sub-scenerio into a usecase of its

�

own. This use case is better and

�

more extensively explained in

�

other parts of the model.

�

Author

�

MetadataRepository

�

Verify Metadata

�

Update Notification

�

Post Metadata

�

<<include>>

�

<<trigger>>

�

XMLBuilder

�

Since we still are not sure of the

�

architecture for the server and since

�

this is a high level view, we are

�

combining most of the server

�

architecture into a single class called

�

SchemaRepository. As the

�

architecture is better defined, the

�

model will change to better reflect

�

reality.

�

This abstract class is the base

�

GUI class for authoring and

�

updating metadata conforming to a

�

Domain Schema. Currently two

�

classes will extend this class to

�

provide two different styles for

�

presenting the metadata XML

�

document. These classes are

�

XMLBuilderForms and

�

XMLBuilderTree representing the

�

metadata using forms and trees

�

respectively. This class will be

�

used at the client and/or the

�

server.

�

Although we could have used the stereotype <<include>> here

�

for the relationship, we are specifically naming the relationship

�

<<trigger>> to point out the fact that Update Notification usecase

�

might be postponed and executed executed later, i.e., the

�

DomainOwner could be notified later when he/she logs in to the

�

system or emailed as part of a batch job.

�

The Author initiates the Post Metadata usecase by wanting to post

�

metadata conforming to a pre-existing DomainSchema.

�

The new metadata is posted using a combination of the following

�

methods:

�

1. A metadata extractor is used to partially compose a metadata XML

�

document.

�

2. A pre-prepared martial or complete metadata XML document is

�

submitted.

�

3. A partial or complete metadata XML document is completed/edited

�

with the help a GUI (XMLBuilder) before submission to the system.

These use cases will have a number of sub-use cases that describe methods of authoring metadata. These methods might include:

· Heuristically gathering metadata from object.

· Posting of metadata using Internet mail. For this we might want to quickly analyze how Network Solution uses email for allowing management of Internet Domains.

· Building and updating of metadata at the client using tree and form based tools. For a short discussion of proposed work on these tools see the Client Requirements Section below.

Verify Metadata

This use case describes the metadata verification process.

Add Domain Schema/Update Domain Schema

These use cases describe the maintenance of the Domain Schemas. Domain Schemas are XML documents like the Metadata Documents, yet they don’t have to conform to specific schemas therefore these use cases will be different from the Post/Update Metadata use cases.

Update Notification

This use case is a sub use case of the Verify Metadata use case. It describes the notification of Domain Owners of updates to the metadata.

Client Requirements, Architectures and Platforms

Authoring Metadata (Metadata Wizard)

For cases when metadata has to be updated or authored manually we propose to build a set of three tools which allow users to build metadata XML documents that strictly conforms to the Domain Schemas. First tool representing the metadata using a tree interface; built using java (for applets and applications). We imagine this tool being used mainly by advanced users who are already familiar with the structure of the metadata document they are trying to prepare. The second and third tools will be form based authoring tools behaving more like the typical “wizards.” One of these will be written in java (again for applets and applications) and the second one will be browser based using JSP and Servlets.

Server Requirements, Architectures and Platforms

Performance Requirements

Base of discussion as to how file format specific metadata will be handled.

Integration of shared browser with

