
Chapter 1

Parallel Computational Chemistry:

an Overview of NWChem

David E. Bernholdt

1.1 Introduction

Computational chemistry has a long and venerable history, and with the help of improvements in compu-
tational methodology, and in computers themselves, it has been transformed into a virtually indispensable
tool, used by a large cross-section of the discipline. The ability to model \real world" chemical systems with
the necessary sophistication to obtain chemically meaningful results has helped produce a remarkable level
of synergy between computational and experimental treatments of chemical problems. This, in turn, has
fueled further interest in expanding the role of computational chemistry to even larger, more sophisticated,
and more demanding simulations.

Vector supercomputers played a prominent role in the rise of computational chemistry, as chemists went
beyond simple ports of existing codes, restructuring them and making important advances in algorithms. To-
day, few vector-based computers are still produced, but modern commodity CPUs make good use of the of the
optimizations and algorithms originally designed for vector machines. The cutting edge of high-performance
computing has shifted over to parallel computers, based on those same commodity CPUs, and computational
chemistry is of course following. Numerous packages can make e�ective use of modestly sized shared memory
parallel systems, but fewer are available for the high-end systems which use distributed memory architec-
tures (including those in which each node is a shared memory multi-processor). The two inter-related issues
primarily responsible for this situation are ease of programming and scalability of algorithms.

Computational chemistry methods tend to be computationally complex, and resource intensive (memory
and disk as well as CPU), so parallelizing chemistry methods can be challenging, especially if scalability
to large numbers of processors is required. In a shared-memory environment, programming is relatively
straightforward, and reasonable parallel algorithms can provide adequate performance and scalability for
many applications { suÆcient for the modestly-sized shared resources typically available within a research
group, department or university. However the largest and most complex problems require the largest mas-
sively parallel processors (MPPs), which are presently distributed memory systems. Chemistry algorithms
scalable to hundreds or thousands of processors are far more challenging, and often too complex to be imple-
mented within the message passing programming models widely used in distributed memory environments.

Computational chemistry is a rather broad �eld, and a comprehensive review of the state of the art in
parallel computing across the entire �eld would require a book of its own. In this chapter, I will focus on
a portion of the �eld in which high performance computing has had a particularly signi�cant impact on
the day-to-day conduct of the science of chemistry: molecular quantum chemistry. I will use the NWChem
software package[1, 2, 3, 4, 5, 6, 7, 8] as a representative of the current state of the art in highly-scalable
fully-distributed parallel computational chemistry software focusing on molecular structure methods. At it's
inception the goal for the NWChem project was to deliver molecular modeling software that provides 10
to 100 times the e�ective capability of what was currently available on conventional supercomputers. This

1

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 2

necessitated the use of algorithms that exhibit parallel scalability; both in the size of the computational
resource and in the molecular system being modeled. Scalable applications must not only e�ectively par-
allelize the requisite computations but must also utilize the aggregate subsystems of the MPP. Algorithms
must distribute data across the total system memory, not limiting the the functional problem size by the
e�ective memory of any single computational node. Furthermore, other MPP subsystems that algorithms
exploit (i.e. communication and secondary storage) must be utilized in a scalable fashion.

The scalable modules in NWChem span a broad range of computational chemistry methods: Hartree-Fock
or self consistent �eld (SCF), density functional theory, ab initio molecular dynamics, perturbation theory,
coupled cluster, multicon�guration self-consistent �eld (MCSCF), con�guration interaction (CI), molecular
mechanics, molecular dynamics, free energy simulations, Car-Parinello, etc. These modules have been im-
plemented in the environment provided by a collection of supporting modules providing basic computational
capabilities and fundamental services required for chemical computations. After a general outline of the
equations and their solution, I will describe the overall architecture of the NWChem package, and several
critical supporting modules. I will then focus on two of the NWChem chemistry methods, emphasizing focus-
ing on their implementation in the NWChem environment and their performance. I will conclude by trying
to place the methods and tools used within NWChem in the broader context of computational chemistry
and computational science in general.

1.2 Molecular Quantum Chemistry

The various methods of molecular quantum chemistry ultimately derive from the time-independent Schr�odinger
Equation,

(Te + Tn + Ven + Vee + Vnn)	 = E	: (1.1)

The �ve terms in parenthesis on the left are components of the Hamiltonian operator, representing respec-
tively the electronic and nuclear kinetic energies, and the potentials due to interactions of electrons and
nuclei, electrons with other electrons and nuclei with other nuclei; E is the energy of the system, and 	 is
the wavefunction. The Hamiltonian terms are

Te(r) = �
1

2

X
i

r2
i (1.2)

Tn(R) = �
X
A

1

2Ma

r2
i (1.3)

Ven(r; R) = �
X
i;A

ZA

jri �RAj
(1.4)

Vee(r) =
1

2

X
i6=j

1

jri � rj j
(1.5)

Vnn(R) =
1

2

X
A6=B

ZAZB

jRA �RB j
(1.6)

In these expressions, i and j refer to electrons, A and B to nuclei; RA and ri refer to the spatial coordinates of
nucleus A and electron i, respectively; ZA andMA are the charge and mass of nucleus A. The unsubscripted
symbols r and R refer to the complete set of position vectors of the electrons and nuclei, respectively. Since
the nuclei are about 1836 times more massive than the electrons and therefore move much more slowly, it is
common to invoke the Born-Oppenheimer approximation to separate the nuclear and electronic portions of
the problem. Since the nuclei are essentially �xed in space relative to the electrons, the Tn term drops out and
the Vnn term becomes a simple constant. The result is referred to as the electrostatic Hamiltonian, and, per
Eq. 1.1, when this operator is applied to the electronic wavefunction, it gives the (scalar) electronic energy
of the molecular system. Other areas of computational chemistry deal with other forms of the Schr�odinger
Equation, or other equations entirely. Quantum dynamics methods generally start from the time-dependent
Schr�odinger Equations, and the nuclear portion of the Hamiltonian and wavefunction are considered together
with the electronic part. Molecular dynamics, on the other hand, uses a simpli�ed \ball and spring" model
of the molecule in which the interactions between the atoms are treated classically, and the positions of the
atoms are evolved in time according to the computed forces and Newton's Laws.

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 3

The Schr�odinger Equation cannot be solved exactly for more than two electrons, however it (or more
commonly certain approximations) can be evaluated numerically. Numerical solution of the Schr�odinger
Equation begins with the choice of a basis. The common choice in molecular quantum chemistry is to use
three-dimensional Gaussian functions. These functions are usually (but not necessarily) chosen to mimic the
atomic orbital (AO) description of atomic structure used in chemistry and physics. That is, basis functions
are centered on atoms and have shapes and shell structure like the atomic s, p, d, etc. orbitals. A complete
(in�nite) basis would span all of space and thus allow an exact description of the wavefunction. In practice,
however, computational resources place limits on the size of the basis that may be employed, and it is
necessary to compromise between the cost of the calculation and the accuracy required. Evaluation of the
Hamiltonian operator over the basis functions results in matrix elements or integrals, the most numerous of
which (O(N4) for N basis functions) are the two-electron integrals arising from the Vee term,

(��j��) =

Z
��(r1)��(r1)

1

jr1 � r2j
��(r2)��(r2)d

3r1d
3r2; (1.7)

where r1 and r2 are the positions of the two electrons, and the f��(r)g are the basis functions.
Thus far, we have said nothing about the mathematical form of the electronic wavefunction. In molec-

ular quantum chemistry, the usual approach is to make a \one-electron approximation", which says that
we can represent the total wavefunction of the molecule as a simple product of functions representing indi-
vidual electrons within the molecule. These molecular orbitals are represented linear combinations of the
original atomic orbital basis functions. The molecular orbitals are calculated by the Hartree-Fock (HF) Self-
Consistent Field (SCF) method, and this model corresponds to the qualitative ideas about molecular orbitals
often used by chemists and taught beginning at the General Chemistry level. The SCF approach is at the
heart of molecular quantum chemistry, and is also the basis of semiempirical methods, in which instead of
being computed outright, integrals are approximated by much simpler phenomenological expressions which
are parameterized based on experimental data.

The SCF procedure provides a very useful qualitative description of molecules, but it is generally in-
adequate for quantitative applications requiring high accuracy. The method considers each electron in the
average �eld of all others, which ignores the fact that the motion of each electron is instantaneously correlated
with all others (due to the Pauli Exclusion Principle). When higher accuracy is required, it is necessary to go
beyond the one-electron approximation and treat correlation e�ects in the system. This is usually formulated
in terms of the interaction between di�erent \con�gurations" of a set of one-electron functions. The SCF
one-electron orbitals are used as a starting point, but electrons are placed in them in di�erent ways. Each
distinct way of placing electrons in the the orbitals is a con�guration, and the interaction energies between
con�gurations can be evaluated numerically, leading to an expression for the energy and wavefunction corre-
sponding to the particular correlated method. There are numerous correlated methods with di�erent levels
of sophistication and complexity. The interested reader may wish to refer to the classic text by Szabo and
Ostlund[9] for a more in-depth presentation of the material sketched in this section, and for further pointers
to the classic quantum chemistry literature.

NWChem is one of many codes in this area of computational chemistry. It implements the SCF method
and a number of correlated methods, as well as molecular dynamics and a variety of related methods targeted
to periodic systems (i.e. solids) as opposed to isolated molecules. Because it focused from the start on
parallelism and its relatively recent development, it serves as an excellent example of the current state of
the art in high-performance computational chemistry software.

1.3 The NWChem Architecture

In order to meet the original goals of the project, the initial NWChem development team recognized that
NWChem would be a fast-growing code, in which ease of development (a short learning curve) and the ability
to rapidly prototype algorithms would be critical to its success. Consequently, we chose a highly structured
approach to the design of the package, using object oriented (OO) design throughout[10]. In deference to the
fact that relatively few chemists have experience with truly object oriented languages, we chose to implement
the OO design of NWChem in a combination of Fortran77 and C. Since these languages do not provide the
kind of enforcement mechanisms that are built into OO languages, such an approach relies on the developers
themselves to enforce the OO design, but overall we have found it to be quite e�ective. Newcomers to the

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 4

Figure 1.1: The NWChem architecture representing general functionality within NWChem which is built
upon layers of other modules, tools, chemistry APIs, and computational and computer science standards.
The link between NWChem and Ecce is a loosely coupled interface. The umbrella symbol identi�es some of
the software described in this section of the manuscript.

code who are unfamiliar with OO design concepts can easily pick up the basics required to work successfully
in the NWChem environment, and are quickly productive since they can work in familiar languages.

Figure 1.1 provides a schematic representation of the overall architecture of NWChem. The bottom two
layers depict some of the fundamental tasks that NWChem can do (compute an energy, a gradient, perform
Newtonian dynamics, etc.) and some of the chemistry methods with which these tasks can be carried out
(i.e. MP2, SCF, DFT). These are the two layers most directly visible to the NWChem user; the remaining
modules constitute the environment or \umbrella" which allows for (relatively) easy parallel implementation
of the various chemistry methods and tasks. On the left are modules that \know something about" chemistry,
in other words those providing basic objects needed for chemical calculations. On the right are modules that
provide the computational infrastructure for the NWChem: the parallel programming environment, parallel
I/O support, etc. While most of these modules were developed in conjunction with NWChem, they are
not speci�c to chemistry applications. Most are freely available separately from NWChem and have been
adopted by other software developers both inside and outside of chemistry.

At the heart of the NWChem programming environment is the Global Array parallel programming model,
which provides the developer with the appearance of a global shared memory environment in a portable
fashion. This important component of the NWChem umbrella will be described in greater detail below, along
with the PeIGS parallel eigensolver. Many other components of the NWChem programming environment
are relatively straightforward conveniences with the important function of facilitating general, portable, and
rapid development of computational chemistry software. For example, MA is a portable memory allocator,
implementing both stack and heap memory management models, which provides equal access to objects from
both Fortran and C code. It also provides support for debugging and veri�cation (especially detecting array
overwriting, and memory leaks). The run-time database (RTDB) provides a simple mechanism to allow the
storage of name/value pairs (values can be of the basic Fortran datatypes, including one-dimensional arrays;
other modules may provide convenience routines to read/write more complex data structures to the RTDB
in an opaque fashion) which NWChem uses to communicate information between high-level modules and
also as persistent storage between related jobs. The ParIO module is an abstraction layer which provides

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 5

the user with three types of �les:

� Disk-Resident Arrays (DRA) are a simple means of providing secondary storage for global arrays, the
distributed arrays provided by the global array toolkit. All operations are collective, and are therefore
open to additional optimizations on some parallel �le systems.

� Exclusive Access Files (EAF) are sets of process-private �les which can be accessed independently.
They are typically used for out-of-core computations which do not lend themselves to collective I/O
operations and the use of DRAs.

� Shared Files (SF) are shared by all processes and can be read or written in non-collective fashion at
any arbitrary location in the �le.

The ParIO library is layered on top of a \device library", ELIO (for elementary I/O), which provides a
portable interface to the �le system and allows NWChem to take advantage of special high-performance I/O
libraries which might be available on various platforms.

The chemistry-speci�c portion of the NWChem umbrella is similarly designed to facilitate the rapid
development of chemistry software. Consistent with the object oriented design philosophy used throughout
NWChem, these modules typically expose well-de�ned \application program interfaces" (APIs) to provide
the developer with access to all the information and functions of the object while hiding the speci�c data
structures. This helps protect the underlying data structures against manipulation (accidental or intentional)
which does not conform to their API { an all to common occurrence in older, less well structured chemistry
software. Another distinction from older chemistry software is that where appropriate, multiple instances of
objects are supported. This allows the developer to, for example, refer explicitly to three di�erent basis sets
to be used in di�erent aspects of a calculation by simple \handles" rather than error-prone manipulations
of a single monolithic basis set data structure. Two excellent examples in NWChem include the most
fundamental chemical objects in quantum mechanical electronic structure calculations are the de�nition of
the molecular system (the \geometry" object in NWChem) and the basis set. The geometry object is a well
de�ned, extensible API that provides all the geometrical and atomic data for the molecular system under
study (e.g., masses, atomic number, nuclear charges, coordinates, applied external �elds, etc.). The basis
set object is also a well de�ned, extensible API that provides all the basis set functionality for all NWChem
modules that utilize basis sets. The basis set object is interfaced to a library that contains a wide variety of
published basis sets. The NWChem basis set library is periodically synchronized with the EMSL basis set
library which is available to the public via a WWW interface[11]. Currently the NWChem library has 3762
Gaussian basis sets and 462 e�ective core potentials conveniently speci�ed for the user community.

Other modules encapsulate various chemistry-speci�c computations which used by the main chemistry
methods rather than being invoked directly at the user level. Perhaps one of the most widely used within
NWChem is the integral evaluation module (\int api"). This module computes integrals of the (usually
Gaussian) basis functions, possibly belonging to di�erent basis sets, with various operators, an operation
which is central to all quantum mechanical electronic structure methods. The module provides a uniform in-
terface to �ve separate integral evaluation codes with di�erent capabilities and strengths. The choice of which
method of integral evaluation to use is normally made within the module based on details of the requested
computation, but it can also be explicitly controlled by the software developer, or even by the NWChem
user if the need arises. Because these codes are hidden behind a uniform interface, all modules which use
the integral package can bene�t immediately from the introduction of new methods and optimizations.

The NWChem umbrella modules are not set in stone. Though we tried to design from from the start with
the necessary exibility and generality, inevitably there have been occasions which require existing objects
to be modi�ed or extended. In general, the most substantial changes have been extensions of functionality,
and rarely are signi�cant changes required in existing application code. Implementation of new chemistry
methods within NWChem will sometimes occasion the extension of the functionality of the existing umbrella
or the development of new supporting modules. New modules are also sometimes created by abstracting the
repeated use of the same or similar functionality in di�erent places.

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 6

1.4 NWChem Parallel Computing Support

1.4.1 The Global Array Toolkit

The Global Array (GA) Toolkit[12, 13, 14] implements the primary parallel programming model used within
NWChem, though traditional message passing is also available and is used as needed. GAs provide a
portable shared memory programming programming environment, which is implemented using native one-
sided communications on distributed memory systems, and the common System V interface on true shared
memory systems. The shared memory programming environment is important for two reasons. In the �rst
place, it is much easier for the software developer to deal with, thus shortening the learning curve and
facilitating development. Second, and more fundamentally, many sophisticated, highly scalable chemistry
algorithms (and those in other �elds) are extremely complex when written in message-passing form; others
may be impossible to implement in the message-passing model because of the coordination required among
processors.

Another important feature of the global array model is the fact that it explicitly exposes the memory hier-
archy to the programmer. Speci�cally, global arrays distinguish between \local" and \remote" memory with
di�erence latency and bandwidth characteristics. This is di�erent from most shared memory programming
environments, in which all memory is presumed to have the same access characteristics, but we have found
the distinction quite useful because it helps software developers create algorithms that work well on both
distributed and shared memory systems. It is also easy to integrate this distinction into the non-uniform
memory access (NUMA) hierarchy with which the most programmers are already familiar: registers, cache,
local memory, remote memory, etc. (Note that the Disk Resident Array component of the ParIO module
described above can be thought of as extending the hierarchy one more level, to disk storage.)

At the simplest level the programming model o�ered using GA assumes that all \remote" memory access
is the rate limiting step and that local memory access is much faster. Memory access using GA provides
one-sided or asynchronous access to global data elements. Using the GA programming model, algorithms can
be designed with knowledge of data locality, that can be tuned for many di�erent computational resources
to essentially cover the worst case scenario. This may require multiple algorithmic implementations to cover
di�erent ranges of bandwidth and latency. For example, consider the situation where one has two algorithms
for a speci�c kernel in an application. The �rst algorithm has low latency requirements and the second
algorithm can tolerate latency but with a factor of four in computation. The second algorithm would likely
be the mainstream choice to work on \all" machines. The �rst algorithm could be turned \on" after testing
the viability on each system as the application is ported. This is obviously not limited to two algorithms.

Global arrays themselves are multidimensional arrays which are distributed among processors in blockwise
fashion. The distribution can be completely speci�ed by the programmer, and may be regular or irregular, or
a GA convenience routine can be used to quickly create a regular blocked distribution. Data may be accessed
locally or remotely using block-oriented \put", \get" and \accumulate" functions. It is also possible for the
programmer to inquire as to boundaries of the local block a global array, and to obtain direct access to the
appropriate region of memory. This makes it convenient to write data parallel operations using GAs. By
knowing the locality of data, programmers can explicitly manage the nature of the memory hierarchy for their
parallel algorithm. The operations mentioned above can be used in asynchronous or one-sided fashion by any
processor. Other GA functions are collective, including creation and destruction of GAs, synchronization,
and high-level linear algebra and convenience routines. The GA library also includes interfaces to a variety
of external linear algebra libraries, including the PeIGS parallel eigensolver described below.

The Global Array Toolkit is implemented on top of the Aggregate Remote Memory Copy Interface
(ARMCI) library[15, 16], developed jointly by researchers at the Paci�c Northwest National Laboratory
and the Northeast Parallel Architectures Center at Syracuse University. As the name suggests, this library
provides general remote memory access capabilities through the use of one-sided messaging or true shared
memory, according to the hardware on which it is used. From a performance viewpoint, one of the most
important features of ARMCI is the ability to describe in a succinct way transfers which involve multiple
non-contiguous blocks of memory and automatically aggregating such data into a contiguous chunk before
sending over the wire and disaggregating it on the other side.

Although the primary focus of the design and development of the Global Array Toolkit has been to support
NWChem, the model is suitable for a much broader range of applications (especially if it is combined with
the normal message passing model) and is freely distributed separate from NWChem. It is not however

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 7

suitable for all applications. General guidelines with respect to algorithmic design and usability imply that
GA would be appropriate for applications:

� with dynamic and irregular communication patterns,

� with a need for 1-sided access to shared data structures,

� when data locality is important,

� when a message passing implementation is too complicated,

� with a need for high-level operations on distributed arrays for out-of-core array based algorithms,

� where simulations are driven by dynamic load balancing,

� when portable performance is important.

GA is not necessarily appropriate for algorithms that:

� have systolic or nearest neighbor communications,

� require synchronization and point-to-point message passing (e.g., Cholesky factorization),

� can be e�ectively parallelized using interprocedural analysis and compiler parallelization,

� can use existing parallel constructs of a programming language and robust compilers are available.

GAs are being used in at least �ve other computational chemistry packages besides NWChem, and others
have implemented similar models. It is also being used in a variety of other problem domains, including
electron microscopy, geological simulations, astrophysics, parallel graphics rendering, computational uid
dynamics (CFD), �nancial modeling, and atmospheric chemistry. So far, it is the CFD application which
is pushing GA the furthest beyond the functionality required to satisfy the chemistry community. Among
the most signi�cant requested additions are support for higher dimensional arrays (now implemented), ghost
cells around GA data blocks on individual processors, and sparse data structures[17].

1.4.2 Parallel Linear Algebra: PeIGS

PeIGS is a collection of commonly used linear algebra subroutines for computing the eigensystem of the
real standard symmetric eigensystem problem Ax = �x and the general symmetric eigensystem problem
Ax = �Bx. A and B are dense and real matrices with B being positive de�nite. � is an eigenvalue
corresponding to the eigenvector x. PeIGS can also handle associated computations such as the Cholesky
factorization of a positive de�nite matrices in packed storage format and linear matrix equations involving
lower and upper triangular matrices in distributed packed row or column storage.

The numerical algorithms implemented are \standard" (c.f., References [18] and [19]) with the exception of
the subspace inverse iteration and reorthogonalization scheme for �nding basis vectors for degenerate eigen-
subspaces[20, 21] and the Dhillon-Fann-Parlett algorithm for computing eigenvectors of a real symmetric
tridiagonal matrix[22].

The current version of PeIGS has some unique features not found in any other eigensystem library:

� The Dhillon-Fann-Parlett inverse iteration algorithm.

� Guaranteed orthonormal eigenvectors in the presences of large clusters of degenerate eigenvalues.

� packed storage for matrices.

� small scratch space requirements.

The second feature is particularly important in quantum chemistry applications, where degenerate eigenval-
ues are common and orthogonality is critical.

The performance of PeIGS in sequential mode is impressive. The data in Table 1.1 compares the current
version of PeIGS with other standard solvers. The parallel performance of the three major components and

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 8

Table 1.1: Time for the solution of the tridiagonal matrix of rank 966 on a single IBM RS6000/590
processor[22]. The tridiagonal matrix was generated via Householder reduction of the �tting basis set,
overlap matrix from a resolution of the identity, second-order M�ller-Plesset (RI-MP2) simulation of a uo-
rinated biphenyl.

Method Time (s)
PeIGS 3.0 6
PeIGS 2.0 126
eispack 32
LAPACK: bisection + inverse iteration 112
LAPACK: QR 46
LAPACK: divide and conquer 20

Figure 1.2: The performance of PeIGS using a
tridiagonal matrix (rank 966) which was gener-
ated via Householder reduction of the �tting basis
set, overlap matrix from an RI-MP2 simulation of
a uorinated biphenyl.

the total time to solution is shown in Figure 1.2. The solution of the tridiagonal problem is scalable and
fast; however at this point, the householder reduction and it's back transform (i.e., producing the tridiagonal
representation) is the identi�ed bottle neck accounting for over 90% of the serial performance of the solver
and up to 65% at 128 nodes.

Internally, PeIGS uses the traditional message-passing programming model and a column-wrapped dis-
tribution of the matrices. In NWChem the interface to PeIGS is hidden behind a GA based API, where
the necessary data reorganization is conveniently hidden from the application programmer. The data trans-
formation from the GA based global storage to that required for optimal PeIGS performance is very fast
compared to the O(N3/P) time required for the eigensolution operations.

Like the GA Toolkit, PeIGS is freely distributed separately from NWChem and can be used in other
packages.

1.5 NWChem Chemistry Modules

NWChem implements a broad range of computational chemistry methods, emphasizing quantummechanically-
based methods. There is insuÆcient space to describe all of them in detail, but I will provide a list of
NWChem's current capabilities here, and focus on a more detailed discussion of two methods: Hartree-Fock
self-consistent �eld (SCF), and the resolution of the identity approximation to second-order many-body
perturbation theory (RI-MP2).

1. Molecular electronic structure
The following quantum mechanical methods are available to calculate energies, and analytic �rst deriva-

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 9

tives with respect to atomic coordinates. Second derivatives are computed by �nite di�erence of the
�rst derivatives.

� Self Consistent Field (SCF) or Hartree Fock (RHF, UHF, high-spin ROHF). Code to compute
analytic second derivatives is being tested.

� Gaussian orbital based Density Functional Theory (DFT), using many local and non-local exchange-
correlation potentials (RHF and UHF) with formal O(N3) and O(N4) scaling.

� MP2 including semi-direct using frozen core and RHF or UHF reference.

� Complete active space SCF (CASSCF).

The following methods are available to compute energies only. First and second derivatives are com-
puted by �nite di�erence of the energies.

� CCSD(T), with RHF reference.

� Selected-CI with second-order perturbation correction.

� MP2 fully-direct with RHF reference.

� Resolution of the identity integral approximation MP2 (RI-MP2), with RHF and UHF reference
(analytic �rst derivatives are being implemented).

For all methods, the following operations may be performed:

� Single point energy

� Geometry optimization (minimization and transition state)

� Molecular dynamics on the fully ab initio potential energy surface

� Numerical �rst and second derivatives automatically computed if analytic derivatives are not
available.

� Normal mode vibrational analysis in Cartesian coordinates.

� Generation of an electron density �le for graphical display.

� Evaluation of static, one-electron properties.

� Electrostatic potential �t of atomic partial charges (CHELPG method with optional RESP re-
straints or charge constraints)

In addition, interfaces are provided to:

� The COLUMBUS multireference CI package

� The natural bond orbital (NBO) package

� Python scripting language

� The POLYRATE package for the computation of chemical reaction rates

2. Pseudopotential plane-wave electronic structure
The following modules are available to compute the energy, minimize the geometry and perform ab

initio molecular dynamics using pseudopotential plane-wave DFT with local exchange-correlation po-
tentials.

� Fixed step length steepest descent

� Car-Parinello (extended Lagrangian dynamics)

With

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 10

� LDA and LSDA exchange-correlation potentials (Vosko et. al.)

� (G point) Periodic orthorhombic simulation cells

� Hamann and Troullier-Martins norm-conserving pseudopotentials

� Modules to convert between small and large plane-wave expansions

3. Periodic system electronic structure. A module (Gaussian Approach to Polymers, Surfaces and Solids,
GAPSS) is available to compute energies by periodic Gaussian based DFT with many local and non-
local exchange-correlation potentials.

4. Molecular dynamics The following classical molecular simulation functionality is available:

� Single con�guration energy evaluation

� Energy minimization

� Molecular dynamics simulation

� Free energy simulation (multistep thermodynamic perturbation (MSTP) or multicon�guration
thermodynamic integration (MCTI) methods with options of single and/or dual topologies, double
wide sampling, and separation-shifted scaling)

NWChem also has the capability to combine classical and quantum descriptions in order to perform:

� Mixed quantum-mechanics and molecular-mechanics (QM/MM) energy minimization and molec-
ular dynamics simulation

� Quantum molecular dynamics simulation by using any of the quantum mechanical methods ca-
pable of returning gradients.

The classical force �eld includes:

� E�ective pair potentials (functional form used in AMBER, GROMOS, CHARMM, etc.)

� First order polarization

� Self consistent polarization

� Smooth particle mesh Ewald (SPME)

� Twin range energy and force evaluation

� Periodic boundary conditions

� SHAKE constraints

� Consistent temperature and/or pressure ensembles

1.5.1 Hartree-Fock Self-Consistent Field

The Hartree-Fock self-consistent �eld module is an essential functionality for NWChem or any quantum chem-
istry package. The NWChem SCF module and associated gradient module computes energies, wave functions,
and gradients for closed-shell restricted Hartree-Fock (RHF), restricted high-spin open-shell Hartree-Fock
(ROHF), and spin-unrestricted Hartree-Fock (UHF). The algorithms are designed around using the aggregate
memory available on the parallel supercomputer or cluster.

The construction of the Fock matrix. is the most time-consuming part of any SCF calculation[23, 24],
and is iterated until the wavefunction reaches self-consistency. The \Fock build" provides an interesting
illustration of the form which parallelism often takes in computational chemistry. The most computationally
demanding part of the Fock matrix is de�ned by

F�� D��f2(��j��)� (��j��)g (1.8)

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 11

where D is the density matrix, and the (��j��) are the two-electron integrals, Eq. 1.7.
The cost of the Fock build scales with the number of integrals, which is formally O(N4) for N basis

functions. The NWChem SCF module was designed with a goal of 10,000 basis functions, so that the Fock
and density matrices would be 10,000�10,000 and the number of two-electron integrals is formally 1016

(neglecting permutational symmetries of the indices and other factors).
Evaluation of the integrals occurs in irregular blocks, according to details of the basis set structure, so

that a block may contain anything from a single integral to 10,000 integrals or more. The cost of each block
is also highly variable and can only be crudely estimated in advance; it averages 500 FLOPs per integral
value. Their cost, combined with permutational symmetries among indices makes it most eÆcient to drive
the Fock build with a loop over the unique integrals, making the four di�erent contributions dictated by
those symmetries at one time rather than duplicating integral evaluation. In NWChem, integral evaluation is
dynamically distributed across the processors (controlled by an atomic read-and-increment counter) without
regard to the distribution of the global arrays containing the density and Fock matrices. Each processor
fetches into a local bu�er the four patches of the density matrix it needs to contract with the integral block it
has been assigned, and puts the results into another set of local bu�ers which are accumulated into the proper
places in the Fock matrix global array when the integral block is completed. To minimize communications,
multiple integral blocks are aggregated into parallel tasks (maintaining a roughly 100 tasks per processor
to insure load balance), and intelligent caching is used to avoid unnecessary communications for density
and Fock matrix patches. Because of the irregular distribution, dimensions and timings of the parallel
tasks, programming the Fock build using message passing, this algorithm would be extremely challenging
to implement in a message passing environment, requiring synchronization between sender and receiver[25].
However using the one-sided communications of the GA model, it is straightforward; and the fact that the
NUMA nature of the parallel processor is exposed to the programmer leads to the aggregation of integral
blocks, and the use of intelligent caching, both of which provide signi�cant performance gains.

The integrals do not change from one iteration of the SCF algorithm to the next, and may be stored or
recomputed. Many SCF codes o�er either \conventional" or \direct" modes, in which the integrals are either
stored on disk and reused or are recomputed every iteration (the relative eÆciency of these two approaches
depends on both hardware performance factors, and on the particular molecule and basis set). NWChem
provides a more exible \semi-direct" algorithm, which includes memory as well as disk storage, and can
span the entire range from fully disk- (or memory-) based to full recomputation according to available disk
and memory space, or directly under user control. In addition to the fully distributed Fock build, a replicated
data algorithm (Fock and density matrices replicated; integral evaluation distributed across the machine)
is also implemented to take advantage of those situations where available memory and the molecule under
study allow this approach. The convergence algorithm is the quadratic SCF[23] with both preconditioning
and line search mechanisms built in.

Figure 1.3 shows the speed-up obtained for a modi�ed crown-ether complex running on an IBM SP
system using the semi-direct algorithm and taking advantage of the local secondary storage on the system.
The 105 atom system, shown in Figure 1.4, has 1342 basis functions, and the calculation was completed in
5.7 hours on 240 nodes (160 MHz).

1.5.2 Resolution of the Identity Second-Order Many-Body Perturbation Theory (RI-MP2)

The RI-MP2 method is the result of applying the so-called \resolution of the identity" (RI) integral ap-
proximation [26, 27, 28] to the traditional second-order many-body perturbation theory method [29], often
abbreviated MP2. MP2 is the simplest method to include the e�ects of dynamic electron correlation, which
are important to the proper description of many chemical phenomena, and it is also the most widely used
correlated method. MP2 calculations can be systematically improved upon by going to higher orders of
perturbation theory or to coupled cluster methods [29].

The MP2 energy can be simply expressed (in spin orbital form), as

E(2) =
1

2

X
i;j;a;b

(iajjb)[(iajjb)� (ibjja)]

�i + �j � �a � �b
; (1.9)

with the f�pg being the SCF orbital energies. The integrals are the same as in the SCF method, but
transformed from the original \atomic orbital" (AO) basis to the \molecular orbital" (MO) basis which is

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 12

Figure 1.3: The scaling of the semi-direct SCF
module for a modi�ed crown ether system on an
IBM SP, 160 MHz nodes, 512 MB memory per
node, 3 GB of disk per node. 15 MB/sec/node
sustained read bandwidth was achieved.

Figure 1.4: The modi�ed crown ether system, with
105 atoms, 1343 basis functions using the Dunning
augmented cc-pVDZ basis set, and 362 electrons.

one of the products of the SCF calculation. Given the MO basis integrals, the energy expression above costs
O(N4) to evaluate, but the transformation of the integrals from the AO to MO basis has a cost of O(N5),
which dominates the calculation.

The RI approximation represents the two-electron integrals in the form [28]

(pqjrs) =
X
�;�

(pqj�)V �1
��(�jrs) (1.10)

involving three-center two-electron integrals

(pqj�) =

Z
�p(r1)�q(r1)

1

jr1 � r2j
��(r2)d

3r1d
3r2 (1.11)

and two-center two-electron integrals

V�� =

Z
��(r1)

1

jr1 � r2j
��(r2)d

3r1d
3r2; (1.12)

where upper case Greek indices denote functions from a \�tting basis" introduced by this approximation.
Essentially, the �tting basis f��(r)g is used to approximate the product space of the AO basis (f�i(r)�j (r)g).
To obtain the RI-MP2 energy[26, 30], Eq. 1.10 is simply substituted into the MP2 energy expression (Eq. 1.9)

E(2) =
1

2

X
i;j;a;b;�;�

(iaj�)V �1
��(�jjb)[(iaj�)V

�1
��(�jjb)� (ibj�)V �1

��(�jja)]

�i + �j � �a � �b
: (1.13)

The RI approximation has several important strengths. Most obviously, it replaces a fourth-rank tensor
(two-electron integrals) with a combination of third- and second-rank quantities, dramatically reducing the
volume of data which must be computed, stored, and manipulated. Second, as the AO basis set gets larger
(for a �xed molecule) the product space will be increasingly redundant, making it possible to (nearly) span
the space with a �tting set that is smaller, in relative terms. In a sense, the RI approximation could be said
to \take advantage of" the use of large basis sets.

RI-MP2 calculations occur in two steps: the integral transformation, followed by the energy evaluation[30,
31]. The general form of the integral transformation can be written as

(aij�0) = (aij�)V
� 1

2

�� = C�aC�i(��j�)V
� 1

2

�� (1.14)

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 13

0

32

64

96

128

160

192

224

256

0 16 32 48 64 80 96 112 128

Linear Scaling

Total

Integral Transformation

Energy Evaluation

P
ar

al
le

l S
pe

ed
up

Figure 1.5: Parallel speedup of RI-MP2 calcu-
lations on tetramethoxycalix[4]arene on the IBM
RS/6000 SP computer[31]. All speedups are ref-
erenced to the 16-node timings.

Figure 1.6: The four conformations of
tetramethoxycalix[4]arene[33]. The molecule
is composed of four anisoles linked at the meta
position by methylene bridges and conformations
di�er in the relative orientation of the anisoles.

where the indices � and � represent the AO basis and C is the SCF eigenvector matrix, which de�nes the
transformation from AOs to MOs. The V � 1

2 term comes from rewriting Eq. 1.10 in a symmetric form that
further simpli�es integral handling, as �rst suggested by Rendell and Lee [32]. This step requires O(N4)
operations as opposed to the O(N5) for the exact MP2 transformation. The �rst two transformation steps
(C�a and C�i) are handled, in succession, locally to each processor. The �tting basis index is distributed
across processors, so that each node generates AO integrals for all � and � and a subset of �. In order
to make the matrix multiplications more eÆcient, the integral blocks are aggregated in a local bu�er sized
according to the available memory before the two transformations are applied. The results are accumulated
into a global array with ai as the combined row index and � as the column index, distributed in the same
fashion as the integral evaluation loop (making the accumulate a local operation). The third transformation
step is carried out as a parallel matrix multiplication (ga dgemm) of the GA just produced with another GA

holding V � 1

2 (computed using GA and PeIGS routines). If there is insuÆcient total memory available to
complete the entire transformation in a single pass, multiple passes are made based on the i index.

The primary data structure of the energy evaluation phase is a fourth-rank tensor representing quantities
like the (approximate) four-center two-electron integral (iajjab). It is organized as a supermatrix with row
and column indices i and j, each element of which is a complete matrix labeled by a and b. The calculation
is performed as a loop over i and j, blocked according to available memory. All of the GAs of this type
are distributed across the machine in regularly sized blocks. For given i and j blocks, the �rst step of the
energy evaluation is to produce the approximate integrals (iajjb) according to Eq. 1.10. It is implemented
straightforwardly by reading in blocks of transformed three-center integrals corresponding to the i and
j ranges required and multiplying them in parallel with ga dgemm in a step costing O(N5). Given the
approximate (iajjb), the remaining operations (formation of (iajjb) � (ibjja), application of denominators,
and the evaluation of the actual energy contributions) are carried out almost entirely in data parallel fashion
{ each process working with the portion of the data it \owns". As in the exact MP2, these remaining
operations cost O(N4).

The RI-MP2 method illustrates a di�erent use of the GA toolkit than the SCF algorithm described
above. The RI-MP2 integral transformation uses many of the same concepts as the Fock build, but in this
case constitutes a small portion of the computational e�ort. The dominant cost in the RI-MP2 calculation
is a simple call to the GA matrix multiplication routine. And the remainder of the calculation involves
mostly data parallel operations implemented variously with standard GA calls, as adaptations of standard
GA routines speci�c to this application, or built from the lower-level utility routines provided by the GA
toolkit.

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 14

Figure 1.5 shows the parallel speedup of a large RI-MP2 calculation on an IBM RS/6000 SP parallel
computer (120 MHz Power2 Super CPU, 512 MB RAM, 5 GB local scratch disk per node)[31]. The calcu-
lations were part of a study of the relative energetics of the four conformations of tetramethoxycalix[4]arene
(Fig. 1.6)[33], in which this 68 atom molecule was treated with a modi�ed aug-cc-pVTZ AO basis (just cc-
pVTZ on the hydrogens) and the corresponding aug-cc-pVTZ-�t2-1 (cc-pVTZ-�t2-1 on H) �tting basis (2460
AO basis functions, 8260 �tting functions) [34, 35]. The total wall clock time for the RI-MP2 calculation
ranged from 55.6 hours on 16 nodes to 4.7 hours on 128 nodes. The overall scaling is quite good { the line is
fairly straight, and at 128 nodes shows no sign of saturation. The jumps in the curve are clearly associated
with jumps in the integral transformation speedup. The overall speedup it is uniformly at or above the
\ideal" linear speedup line, primarily due to the fact that as the graph is presented, the 16-node calculation
is implicitly assumed to be 100% eÆcient. If the actual eÆciency (<100%) at 16 nodes were known, it would
shift the entire curve downwards. The apparently extraordinary speedup of the transformation arises from
the fact that 16 nodes (the reference point) the algorithm is forced to make �ve passes through the integrals
to complete the transformation. As more nodes are added, the algorithm uses the additional memory as well
as CPU, so that the number of passes required drops to one by 66 nodes.

1.6 NWChem's Place in the Computational Chemistry Community

As described in the Introduction, the primary goal of NWChem was to improve the performance and capa-
bility of computational chemistry tools by focusing on the development of scalable parallel algorithms and
implementations. But of course this work did not take place in a vacuum { there are numerous other software
packages, both sequential and parallel, that have some overlap with the functionality provided by NWChem.
The development of NWChem began in 1993, in an environment in which the chemistry community had for
some years been experimenting with parallelism, but vector computing was the norm and there was little or
no use of parallelism in \production" computational chemistry. The prior experimentation had been based
primarily on message passing programming models, it shown that using parallel computers in chemistry was
possible but not easy, and had produced few enduring (i.e. scalable) algorithms.

NWChem was then, and remains today one of the very few codes in the chemistry community designed
from scratch for parallelism { in most other packages, parallelism has been included as a retro�t to existing
code. This is understandable given the tremendous investment that has been put into many widely used
packages over many years. (It has been estimated that more than 100 person-years of e�ort have gone into
NWChem[36], which is still a fairly young code in this community.) On the other hand, our experience
with NWChem suggests that highly scalable algorithms can be signi�cantly di�erent from the traditional
sequential algorithms, so that \retro�t parallel" codes are generally rather limited in scalability compared
to \designed parallel" codes unless the developers are willing to make more extensive changes. There is a
signi�cant gap between the size of leading edge MPPs, which NWChem is speci�cally intended to exploit,
and the class of parallel machines which are routinely available to researchers at a research group, depart-
ment, or campus level; indeed, even state or national supercomputer centers often operate their systems to
accommodate the greatest number of users or greatest throughput at the expense of being able to run the
most demanding jobs with a reasonable turnaround. This, together with the extra e�ort typically required to
obtain the best possible performance, may explain why many developers of parallel chemistry codes accept
lower levels of scalability, which are nevertheless suÆcient for the machines to which they have access.

Although parallel computing in this community is still far from universal, one can now �nd multiple
parallel implementations of virtually every important method in computational chemistry and see them
being used routinely in a \production" context by researchers would not claim to be experts in parallel
computing. Many factors have contributed to this transition. I believe that the principle contributions of
the NWChem project in this respect have been twofold:

� it has served as a demonstration of what is possible in terms of scalability, and the types of algorithms
required to achieve it, and

� in the Global Array Toolkit, it has o�ered an eÆcient, easy to use programming model which is well
suited to the expression of scalable chemistry algorithms.

It is worth noting that parallelism is not the only way to increase performance of chemical computations.
In recent years, there has been a signi�cant amount of research activity on techniques which take advantage of

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 15

the size of molecular systems which can now be treated computationally to reduce the cost of the calculation,
typically by replacing some of the longer range interactions with simpler approximations. The previously
described RI-MP2 method is one example of the numerous approaches. Others often include phrases such
as \linear scaling", \O(N)", \pseudospectral", \local correlation" and \multipole expansion" in their names
or descriptions. These approaches can in principle yield much greater performance improvements than can
be obtained from parallelism because in some cases they can actually reduce the computational complexity
of the problem in an asymptotic sense { in other words, for suitably large molecules, where \large" depends
both on the computational method and characteristics of the molecule. However no single \fast" method
will provide the desired performance improvement across the entire computational chemistry problem space,
and all such methods depend in some fashion on the molecule being large enough that the approximations
introduced do not destroy the overall accuracy and reliability of the calculation. Therefore \fast" methods
should be viewed as complementing parallelism rather than competing with it, and are being implemented
in sequential and parallel codes alike.

1.7 A Larger Perspective: Common Features of Computational Chemistry Al-

gorithms

The two NWChem methods described earlier were chosen as examples of di�erent patterns of use of the
parallel programming environment in NWChem. In the Hartree-Fock case task-based parallelism and dy-
namic distribution of those tasks are the key features. This is characteristic of algorithms that compute and
(directly) process the two-electron integrals such as Eq. 1.7 or 1.11. Density Functional Theory and the
transformation step in higher level methods such as MP2 (including RI-MP2), coupled cluster theory, and
con�guration interaction methods are other examples of where this pattern is used.

In the RI-MP2 example, task-based parallelism is used in the transformation step, but the bulk of the
work is done in parallel linear algebra calls and in essentially data parallel (or \owner computes") code
using GAs. This pattern is seen in some of the higher-level methods, where, after the required integrals are
evaluated and processed (usually task-based), one is left with a number of large data structures, typically
tensors of rank 4 or higher, which must be contracted in various ways and otherwise manipulated. Some
other methods, such as electronic structure codes using regular grid of plane wave basis functions instead
of Gaussians, also lead to algorithms that are predominantly data parallel + linear algebra (in this case a
three-dimensional FFT).

The importance of task-based parallelism comes from the irregular nature of most quantum mechanical
calculations employing Gaussian basis sets. The basis functions are usually associated with the individual
atoms rather than being laid out on a regular grid. Both the number and type of basis functions will vary
with the atom, reecting some basic concepts of atomic structure. This gives rise to the tremendous range
of sizes and times involved in the evaluation of integrals over these basis functions, as described in 1.5.1, and
the need for dynamic load balancing.

The irregular and dynamic nature of these computations is also what makes the shared-memory aspect
of the programming model so important to the development of fully-distributed-data parallel algorithms in
chemistry. Models such as message passing models which implicitly synchronize communicating processes
can, and have been, used in these types of algorithms, but they make the task much more complex and error
prone and they can represent a signi�cant hurdle to producing scalable algorithms[25]. Of course in data
parallel algorithms, the choice between message passing and shared memory becomes a lot less important.
In NWChem, the majority of methods have both task- and data-parallel portions, and the shared memory
model provided by the Global Array Toolkit is convenient to use throughout. However some methods, such
as the plane wave density functional theory module referred to above, are almost entirely data parallel
and chose to use message passing throughout. As mentioned before, the Global Array model is meant to
complement message passing, not to exclude it, so this is quite natural.

Linear algebra has historically played a signi�cant and interesting role in the development of chemistry
software. In the chemistry domain, a great deal of computational e�ort goes into producing the matrix which
is fed into a linear algebra code { quite often it is the production of the matrix (or subsequent processing of
the linear algebra result) that is the computational bottleneck, not the linear algebra itself. In some cases,
the nature of the chemical problem imposes requirements which \standard" linear algebra packages don't
meet or allows optimizations they don't support. Historically concerns about eÆciency and data structures

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 16

suitable to chemical applications were not always satis�ed by standard linear algebra packages. As a result
of all of these facts, it used to be quite common in the chemistry community for software developers to
produce their own linear algebra routines as well, either by adapting them from existing libraries or creating
them from scratch.

With the rise of vector computing, chemists began to recognize the performance advantages of replacing
their own linear algebra routines with standard libraries which computer vendors had an incentive to optimize
for their platforms, such as BLAS, EISPACK, LINPACK, and later LAPACK. The general wisdom within the
community came to be that algorithms should be couched in terms of standard linear algebra library routines
wherever possible, at least for \simple" things such as BLAS, direct linear equation solvers, and eigensolvers.
(Iterative solvers, in methods that require them, are still often \hand crafted".) The BLAS library has
been particularly inuential in the evolution of algorithms in chemistry. The \discovery" by chemists of the
BLAS, particularly the level 3 matrix multiplication (xGEMM) routines, lead to e�orts to recast algorithms
in terms of matrix multiplication operations wherever possible, and this has become the accepted wisdom
in the �eld. Such codes bene�t not only from the performance of the (often, optimized) BLAS routines
themselves, but also due to the fact that structuring the equations and code to make maximum use of the
matrix multiply kernel tends to result in better cache utilization outside of the BLAS routines as well.

Nevertheless, standard numerical libraries cannot satisfy all of the needs of the chemistry community,
particularly with the move towards parallel computing, where the linear algebra tools are not yet as mature
as the sequential libraries were when the chemistry community �nally adopted them. Parallel eigensolvers
are a particular example. The traditional implementation of a number of fundamental quantum chemistry
methods (e.g. SCF and DFT) involves repeated diagonalization of a matrix until the iterative process reached
self-consistency. Overall, the cost of these methods scale with the fourth power of the problem size, while
the diagonalization portion scales with the third power. However at the time development of NWChem was
begun, the state of the art in eigensolvers did not provide very good parallel scalability and this portion
of the calculation rapidly become the performance bottleneck on large parallel machines. The eigensolvers
available at the time su�ered from other problems as well, for example they did not always provide strongly
orthogonal eigenvectors and didn't handle well situations with large clusters of degenerate eigenvalues { both
important in chemical applications. This has lead some to develop new \diagonalization-free" methods, or
to fall back on known but little-used alternative algorithms that avoid the eigenproblem as much as possible.

In the case of NWChem, we were able to take a unique two-fold approach. In designing the �rst module
implemented in NWChem, the Hartree-Fock method described in Sec. 1.5.1, we adopted a \quadratically
convergent" algorithm, which requires only an initial and �nal diagonalization and elsewhere uses matrix
exponentiation, instead of the traditional approach which involves diagonalization every iteration. At the
same time because the development team included not only chemists, but also computer scientists and
numerical analysts working in close collaboration, we were able to launch a research e�ort to address the
problems with parallel eigensolvers, which led to the PeIGS package described in Sec. 1.4.2. As a result,
when later we began development of the density functional theory module, suÆcient progress had been made
on the eigensolver problem that we felt performance would be acceptable using the traditional repeated
diagonalization algorithm and we did not need to undertake the development of a DFT equivalent to the
quadratically convergent SCF method.

The SCF and DFT methods are two examples where eigenproblems are prominent in the algorithms,
at least in the traditional formulations of the problem, where they appear in the main iterative step of
the algorithm. These methods generally use dense matrices and direct solvers, and require all eigenvalues
and eigenvectors. This kind of eigenproblem also crops up frequently in minor roles in a great many other
quantum chemistry methods, and is typically solved using libraries like PeIGS, SCALAPACK, LAPACK, etc.
A class of more sophisticated methods, known as con�guration interaction (CI) methods also revolve around
eigensolvers, in this case iterative sparse solvers, where the interest is in a limited number of eigenpairs[37].
In these problems, the matrix-vector product required by the eigensolver is the most complex and time-
consuming aspect of the calculation, and specialized data structures and storage formats supporting this
aspect of the calculation usually mean that \o� the shelf" library solvers are not suitable solutions. Large
linear or non-linear equations also play roles in a broad range of chemistry methods. Coupled cluster
methods, similar in purpose and sophistication to CI methods mentioned above use a slightly di�erent
formulation of essentially the same problem and result in very large systems of non-linear equations instead
of CI's eigenproblem. As with CI, the evaluation of the matrix elements and the matrix-vector product

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 17

rather than the solver itself is where the computational complexity lies, and the solvers tend to be relatively
unsophisticated. As with eigenproblems, smaller linear and non-linear equations also play minor roles in a
great many chemical methods. Once again, for the smaller problems it is more common to use solvers from
standard libraries. In codes like NWChem, there has also been some e�ort made over time to standardize
and generalize and re-use non-library solvers incorporated within the code rather than having multiple
implementations. As might be expected this process tends to start with the smaller/less important problems
and work up to the larger more prominent ones.

Sparsity, as manifested in most quantum chemistry methods, is based primarily on the distance between
atoms but also depends on the details of the molecular system and the basis set. This means that a simple
distance-only \cut-o� radius" does not provide a good guide as to sparsity. While the formal number of
two-electron integrals (see Eq. 1.7), for example, is O(N4) for N basis functions, it has been shown that
the actual number of non-zero values :tends asymptotically to O((N lnN)2)[38]. However even the largest
calculations currently possible rarely reach this limit { in other words they have more than (N lnN)2 non-
zero integrals. Because basis sets are usually atom-centered and have a blocked structure on each atom,
quantities like the two-electron integrals also tend to have a blocked structure, though the size of blocks may
vary over several orders of magnitude. This blocked structure is helpful to chemistry software developers in
that they can in most cases work with dense matrices and standard libraries (like the BLAS) rather than
less developed sparse matrix tools which also tend not to make as eÆcient use of the memory hierarchy. A
common technique is to use a local bu�er to aggregate neighboring blocks into a matrix large enough to allow
the CPU to obtain good performance, but small enough that it is possible to completely avoid processing
large chunks of zeros. This approach is used, for example, in the integral transformation phase of the RI-MP2
computation. In some cases, particularly on parallel systems with programming environments like Global
Arrays, it is far simpler and more eÆcient to design the algorithm to process a large data object by making
multiple passes with fully dense matrices sized according to the available memory. The RI-MP2 energy
evaluation is an example of such an algorithm. Sparsity is more commonly used in disk storage of large
data objects, though as mentioned in the discussion of the NWChem SCF, it is often possible to recompute
certain values as fast or faster than retrieving them from disk storage, and these so-called \integral direct"
techniques appear in many programs besides NWChem and many methods besides SCF. However deciding
a priori whether storage or recomputation will be more eÆcient in a particular case remains as much art
and intuition as science because of the number of factors involved.

In addition to sparsity, many molecules have symmetry, which reduces the number of unique integrals
because the symmetry properties of the atoms and the basis set are reected in relationships among integrals
and related values. Taking advantage of redundancies caused by symmetry can give a useful performance
improvement, but it has a tendency to reduce the natural size of non-zero blocks and introduces relationships
among values which might be far apart in either a geometrical or lexigraphical (based on their indices) sense.
It is the latter factor in particular that represents the biggest hurdle to utilizing symmetry in parallel
algorithms. Together with the fact that the larger a molecule is, the less likely it is to posses any symmetry,
many have found it easy to decide not to incorporate symmetry into their parallel implementations of
computational chemistry methods. This was the decision made, for example, during the design of the
RI-MP2 code described above.

1.8 Conclusions and Futures

I have presented an overview of NWChem as an example of the state of the art in fully-distributed parallel
computational chemistry software package. The Global Array programming model is at the heart of almost
all of the parallel algorithms in NWChem, and parallel linear algebra libraries such as PeIGS have also
proven extremely important both for ease of development and performance. I have sketched the parallel
algorithms behind two chemistry methods in NWChem, SCF and RI-MP2, which illustrate the importance
of the GA programming model as well as its exibility. Both methods have been demonstrated to be scalable
to hundreds of processors, and work eÆciently on distributed memory parallel systems, as have the other
methods implemented in NWChem. I have also tried to provide a sense of NWChem's relationship with
the larger computational chemistry community, and describe in a more generic sense some of the notable
features of computational problems in this domain.

The development of NWChem continues in conjunction with a variety of projects. Most of the work

CHAPTER 1. PARALLEL COMPUTATIONAL CHEMISTRY: AN OVERVIEW OF NWCHEM 18

currently centers on extending and enhancing chemistry methods already in NWChem, and implementing
new methods based on the needs of the user community. While the requirements of the chemistry have always
been the primary driver for the development of NWChem's computational infrastructure, it is possible to
suggest some of the ways that NWChem might change in the near future, from a computational viewpoint:

� Increasing use of scripting languages at the top levels of the package. The object oriented scripting
language Python[39, 40] is already incorporated into NWChem, so that Python scripts can be used to
drive some calculations. An interface to the GAs has been created, and interfaces to other NWChem
modules are under development. The use of scripting languages as (part of) the high-level control
structure of a package like NWChem makes it easier for users to perform more complex calculations
that would otherwise require unmaintainable \one-o�" modi�cations to the source of NWChem itself.

� With the recent release of version 3.0 of the GA Toolkit, general multidimensional arrays became
available (previously, GA supported only two-dimensional arrays). Because they are new, they have
not yet been used extensively in NWChem chemistry modules. However they promise to be particularly
useful in high-level correlated methods (perturbation theory and coupled cluster methods especially)
where the primary data structures are tensors of rank 4 and 6. Expressing these data structures in their
natural multidimensional form o�ers opportunities for the introduction of block-structured sparsity and
automatic rearrangement of data to make tensor contractions more eÆcient.

� With development tending to focus on more complex and sophisticated chemistry methods (especially
CI and coupled cluster approaches), and adoption of the GA Toolkit by users from other �elds, there is
an increasing interest in extending the GA model to support sparsity. This could be in two basic forms:
providing new objects and interfaces which support some of the common sparse data structures used
in other �elds, or retaining most of the current dense matrix interface, but internally using sparsity
in storage and manipulation of the objects. The latter approach would obviously be a particularly
convenient way to support many existing GA codes with better performance and eÆciency, however
the �rst approach would probably allow codes from other domains to be ported to GAs more easily.
Ultimately, both approaches will probably be used to varying extents.

� The current trend in large MPPs is a distributed memory system composed of multiprocessor shared
memory nodes. While GAs can already take advantage of this type of system, the parallel algorithms
in NWChem are not currently designed with explicit consideration of this new layer in the NUMA
hierarchy { they assume that all memory not \local" is essentially equally \remote". One can imagine
several di�erent ways in which algorithms in NWChem might be adapted to incorporate this deeper
memory hierarchy. It will be interesting to see which are most e�ective in terms of both performance
and ease of development.

1.9 Acknowledgments

NWChem has been the work of more than forty people since 1993[1], under the leadership of the High
Performance Computational Chemistry Group at the Paci�c Northwest National Laboratory. I gratefully
acknowledge their contributions to the experience described in this paper. All opinions expressed in this paper
are the opinions of the author alone, and do not necessarily represent those of other NWChem developers.

The Paci�c Northwest National Laboratory is a multiprogram laboratory operated by the Battelle Memo-
rial Institute for the U.S. Department of Energy (DOE) under Contract DE-AC06-76RLO-1830, and the
development of NWChem has been supported by the DOE's OÆce of Scienti�c Computing and OÆce of
Health and Environmental Research. Work at Syracuse has also been supported by the Alex G. Nason Prize
Fellowship.

Finally, I am grateful to George Fann, Rick Kendall and Jarek Nieplocha, for their assistance with parts
of this presentation.

Bibliography

[1] R. J. Harrison, J. A. Nichols, T. P. Straatsma, M. Dupuis, E. J. Bylaska, G. I. Fann, T. L. Windus,
E. Apra, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, B. de Jong, M. Deegan,
K. Dyall, D. Elwood, H. Fr�uchtl, E. Glendenning, M. Gutowski, A. Hess, J. Ja�e, B. Johnson, J. Ju,
R. Kendall, R. Kobayashi, R. Kutteh, Z. Lin, R. Little�eld, X. Long, B. Meng, J. Nieplocha, S. Niu,
M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, K. Wolinski, A. Wong, and
Z. Zhang. NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.0. Paci�c
Northwest National Laboratory, Richland, Washington 99325-0999 USA, 2000.

[2] Paci�c Northwest National Laboratory Environmental Molecular Sciences Laboratory. NWChem home-
page. http://www.emsl.pnl.gov:2080/docs/nwchem/.

[3] Ricky A. Kendall, Edo Apr�a, David E Bernholdt, Eric J. Bylaska, Michel Dupuis, George I. Fann,
Robert J. Harrison, Jailin Ju, Je�rey A. Nichols, Jarek Nieplocha, T. P. Straatsma, Theresa L. Windus,
and Adrian T. Wong. High performance computational chemistry; overview of NWChem a distributed
parallel application. Computer Phys. Comm., in press.

[4] M.F.Guest, E.Apra, D.E.Bernholdt, H.A.Fruchtl, R.J.Harrison, R.A.Kendall, R.A.Kutteh, X.Long,
J.B.Nicholas, J.A.Nichols, H.L.Taylor, A.T.Wong, G.I.Fann, R.J.Little�eld, and J.Nieplocha. High-
performance computing in chemistry; NWChem. Future Generation Computer Systems, 12(4):273{289,
December 1996.

[5] M. F. Guest, E. Apr�a, D. E. Bernholdt, H. A. Fr�uchtl, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Little�eld, and
J. Nieplocha. Advances in parallel distributed data software; computational chemistry and NWChem.
In Applied Parallel Computing. Computations in Physics, Chemistry and Engineering Science, volume
1041 of Lecture Notes in Computer Science. Springer, Heidelberg, 1996.

[6] D. E. Bernholdt, E. Apr�a, H. A. Fr�uchtl, M. F. Guest, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Little�eld, and
J. Nieplocha. Parallel computational chemistry made easier: The development of NWChem. Int. J.

Quantum Chemistry: Quantum Chem. Symposium, 29:475{483, 1995.

[7] M. F. Guest, E. Apr�a, D. E. Bernholdt, H. A. Fr�uchtl, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Little�eld, and
J. Nieplocha. High performance computational chemistry: NWChem and fully distributed parallel
algorithms. In High Performance Computing: Technology, Methods, and Applications, volume 10 of
Advances in Parallel Computing, pages 395{427. Elsevier, Amsterdam, 1995.

[8] M. F. Guest, E. Apr�a, D. E. Bernholdt, H. A. Fr�uchtl, R. J. Harrison, R. A. Kendall, R. A. Kutteh, J. B.
Nicholas, J. A. Nichols, M. S. Stave, A. T. Wong, R. J. Little�eld, and J. Nieplocha. High performance
computational chemistry: Towards fully distributed parallel algorithms. In A. M. Tentner, editor, High
Performance Computing 1994: Grand Challenges in Computer Simulation, pages 511{521, San Diego,
1994. Society for Computer Simulation.

[9] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic

Structure Theory. McGraw-Hill, New York, revised �rst edition, 1989.

19

BIBLIOGRAPHY 20

[10] David E. Bernholdt. Object oriented methods without object oriented languages. In Michael E. Hender-
son, Christopher R. Anderson, and Stephen L. Lyons, editors,Object Oriented Methods for Inter-operable

Scienti�c and Engineering Computing, pages 40{49. Society for Industrial and Applied Mathematics,
1999.

[11] Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, developed and
distributed by the Molecular Science Computing Facility, Environmental Molecular Science Laboratory
which is part of the Paci�c Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
The database is accessible via the URL http://www.emsl.pnl.gov:2080/forms/basisform.html.

[12] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Little�eld. Global arrays: A non-uniform-
memory-access programming model for high-performance computers. J. Supercomputing, 10(2):169,
1996.

[13] Global Array Toolkit home page. http://www.emsl.pnl.gov:2080/docs/global/.

[14] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Little�eld. Global arrays: a portable \shared-
memory" programming model for distributed memory computers. In Supercomputing'94, pages 340{349,
Los Alamitos, California, USA, 1994. Institute of Electrical and Electronics Engineers and Association
for Computing Machinery, IEEE Computer Society Press.

[15] Aggregate remote memory copy interface home page. http://www.emsl.pnl.gov:2080/docs/parsoft/armci/.

[16] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory copy library for distributed
array libraries and compiler run-time systems. In Parallel and Distributed Processing, volume 1586 of
Lecture Notes in Computer Science. Springer, Heidelberg, 1999.

[17] Jarek Nieplocha. private communication.

[18] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

[19] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammerling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 2nd edition, 1994.

[20] G. Fann and R. Little�eld. Parallel inverse iteration with reorthogonalization. In Proceedings of the 6th

SIAM Conference on Parallel Processing for Scienti�c Computing, pages 409{413, Philadelphia, 1993.
Society for Industrial and Applied Mathematics.

[21] G. I. Fann, R. J. Little�eld, and D. M. Elwood. Performance of a fully parallel dense real symmetric
eigensolver in quantum chemistry applications. In Proceedings of High Performance Computing '95,

Simulation MultiConference, San Diego, CA, 1995. The Society for Computer Simulation.

[22] Inderjit Dhillon, George Fann, and Beresford Parlett. Application of a new algorithm for the sym-
metric eigenproblem to computational chemistry. In Michael Heath, Virginia Torczon, Greg Astfalk,
Petter E. Bj�rstad, Alan H. Karp, Charles H. Koebel, Vipin Kumar, Robert F. Lucas, Layne T. Watson,
and David E. Womble, editors, Proceedings of the Eighth SIAM Conference on Parallel Processing for

Scienti�c Computing. Society for Industrial and Applied Mathematics, 1997.

[23] Adrian T. Wong and Robert J. Harrison. Approaches to large-scale parallel self-consistent �eld calcu-
lations. J. Computat. Chem., 16(10):1291{1300, 1995.

[24] Robert J. Harrison, Martyn F. Guest, Rick A. Kendall, David E. Bernholdt, Adrian T. Wong, Mark
Stave, James Anchell, Anthony Hess, Rik Little�eld, George I. Fann, Jarek Nieplocha, Greg S. Thomas,
David Elwood, Je� Tilson, Ron L. Shepard, Albert F. Wagner, Ian T. Foster, Ewing Lusk, and Rick
Stevens. High performance computational chemistry. II. A scalable SCF program. J. Computat. Chem.,
17:124, 1995.

[25] Thomas R. Furlani and Harry F. King. Implementation of a parallel direct SCF algorithm on distributed
memory computer. J. Computat. Chem., 16(1):91, January 1 1995.

BIBLIOGRAPHY 21

[26] Martin Feyereisen, George Fitzgerald, and Andrew Komornicki. Use of approximate integrals in ab
initio theory. An application in MP2 energy calculations. Chem. Phys. Lett., 208(5,6):359{363, 1993.

[27] Rick A. Kendall and Herbert A. Fr�uchtl. The impact of the resolution of the identity approximate
integral method on modern ab initio algorithm development. Theoret. Chem. Acct., 97(1{4):158{163,
1997.

[28] O. Vahtras, J. Alml�of, and M. W. Feyereisen. Integral approximations for LCAO-SCF calculations.
Chem. Phys. Lett., 213(5,6):514{518, 1993.

[29] Frank E. Harris, Hendrik J. Monkhorst, and David L. Freeman. Algebraic and Diagrammatic Methods

in Many-Body Theory. Oxford University Press, New York, 1992.

[30] David E. Bernholdt and Robert J. Harrison. Large-scale correlated electronic structure calculations:
The RI-MP2 method on parallel computers. Chem. Phys. Lett., 250:477{484, 8 March 1996.

[31] David E. Bernholdt. Scalability of correlated electronic structure calculations on parallel computers: A
case study of the ri-mp2 method. Parallel Comp., in press.

[32] Alistair P. Rendell and Timothy J. Lee. Coupled-cluster theory employing approximate integrals: An
approach to avoid the input/output and storage bottlenecks. J. Chem. Phys., 101(1):400{408, 1 July
1994.

[33] John B. Nicholas, David E. Bernholdt, and Benjamin P. Hay. On the conformational energetics of
tetramethoxycalix[4]arene: RI-MP2 benchmark calculations. J. Am. Chem. Soc., submitted.

[34] Thom H. Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms
boron through neon and hydrogen. J. Chem. Phys., 90(2):1007{1023, 15 January 1989.

[35] David E. Bernholdt and Robert J. Harrison. Fitting basis sets for the RI-MP2 approximate second-order
many-body perturbation theory method. J. Chem. Phys., 109(5):1593{1600, 1 August 1998.

[36] Jr. Thom H. Dunning. private communication.

[37] Gerard L. G. Sleijpen and Henk A. Van der Vorst. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM Review, 42(2):267{293, 2000.

[38] Volker Dyczmons. No n4-dependence in the calculation of large molecules. Theoret. Chim. Acta, 28:307{
310, 1973.

[39] Python language website. URL: http://www.python.org.

[40] Mark Lutz. Programming Python. O'Reilly and Assoc., 1996.

