Program Announcements Notice 01-06

Scientific Discovery Through Advanced Computing

National Collaboratories and High Performance Networks

Solicitation Emphasis Area: Middleware

Middleware Technology to Support Science Portals: A Gateway to the Grid

Principal Investigators:

Dennis Gannon
Randall Bramley

Department of Computer Science
Department of Computer Science

Indiana University
Indiana University

Lindley Hall 215
Lindley Hall 215

Bloomington, IN 47405
Bloomington IN 47405

Tel: 812-855-5184
Tel: 812 855-7790

Fax: 812-855-4829
Fax: 812 855-4829

Email: gannon@cs.indiana.edu
Email: bramley@cs.indiana.edu

Kay Hane Connelly

Department of Computer Science

Indiana University

Lindley Hall 215

Bloomington, IN 47405

Tel: 812-855-0739

Fax: 812-855-4829

Email: connelly@cs.indiana.edu

Executive Summary

A Science Portal is problem solving environment that allows scientists the ability to program, access and execute distributed application using "Grid" resources which are launched and managed from a conventional Web Browser and other desktop tools. In such a portal, scientific domain knowledge and tools are presented to the user in terms of the application science and not in terms of complex distributed computing protocols. The goal is to allow the scientist to focus completely on the science.

Recognizing the importance of the science portal concept to success of Grid technology, the Grid Forum (www.gridforum.org) has recently established a working group on Grid Computing Environments (GCE) (www.computingportals.org) whose charter is to establish standard protocols, services and APIs for user and science portals. This proposal will fund one component of a larger collaboration that will design, test and deploy these GCE standards. Our focus will be on building a Science Portal that adheres to these GCE standards and integrates them with other emerging DOE standards including the Common Component Architecture [CCA] and Electronic Notebooks.

Our goal is to make the Grid a transparent extension of the users desktop computing environment. By moving beyond the simple web browser model used in most portal efforts, we will deliver a system that allows users to integrate their favorite productivity tools (spreadsheets, Matlab, document authoring) into an open, collaborative framework. When a user goes off-line a system of active registries and user agents continue to monitor the user’s Grid state. When reconnected, the user’s environment is updated to the current state of his or her remote computations by means of event histories maintained in the Grid registry.

This project will move the concept of the science portal away from its historical ties to web browsers and fully integrate Grid services with the desktop OS application framework. In this model Grid computations will be based on the concept of an "active document" which is a desktop object capable of orchestrating complex, remote grid computations. We will integrate the best collaboration technology available into the portal framework so that multiple users will be able to share views and control over the execution of Grid applications. By exploring code mobility concepts we will allow users to come and go from the Grid while a Grid-agent acts on their behalf. The same technology will also enable Grid applications to adaptively select the best executing environment to run on.
Table of Contents

Cover Page
i

iiExecutive Summary

Table of Contents
iii
Background and Motivation
1
The Evolution of Science Portals
1
Project Goals
4
Preliminary Studies and Related Work
5
A Brief Summary of Grid Concepts
5
A Survey of Existing Science Portal Technology
6
The Indiana Science Portal Prototype
8
Research Plan Details
13
References
15

Background and Motivation

The Evolution of Science Portals

The concept of a “Science Portal” was first introduced by the National Computational Science Alliance (NCSA) as part of a project designed to provide computational biologists with access to advanced tools and databases that could be shared by a community of users via web technology [cbiowb]. With the success of this biology workbench a group of NCSA partners began to work on extending this idea to other application disciplines. Within the Department of Energy, researchers began to look at collaboratories [colab] and electronic notebooks [enote]. These technologies demonstrated a new way to think about building frameworks for doing and documenting science. About the same time another new concept, the computational grid, was changing the way we think about distributed computing [Grid]. A Grid is a set of distributed services and protocols that have been deployed across a large set of resources. These services include authentication, authorization, security, name space and file/object management, events, resource co-scheduling, user services, network quality-of-service, and information/directory services. Taken together, these grid services provide applications the ability to access and manage remote resources and computations in many new ways.

With the first Grid testbeds were brought on-line, web-based “Grid Portals” emerged [npaci, ipg-portal] that allowed users a very simple way to launch and manage jobs on the grid. These user portals allow programmers to submit jobs to compute server queues, manage and stage files, and monitor job progress. Going beyond these job management portals, many researcher teams [Florida, Mississippi, Rutgers] began to explore the concept of a “Grid Science Portal” which is a problem solving environment that allows scientists the ability to program, access and execute distributed application using Grid resources which are launched and managed from a conventional Web Browser and other desktop tools. In such a portal, scientific domain knowledge and tools are presented to the user in terms of the application science and not in terms of complex distributed computing protocols. The goal is to allow the scientist to focus completely on the science. Using such a system the Grid can become a vast and powerful computation engine that seamlessly extends the user’s desktop to remote resources like compute servers, data sources and on-line instruments. To help leverage work done on these projects, a working group of the GridForum was established [GCE] to codify standard APIs and protocols for these Grid science portals.

To illustrate the type of application we envision for science portals consider the following problem. This application is taken from our work with the NCSA Chemical Engineering team. In this application semiconductor process engineers are working on a simulation to model the deposition of copper vapor to silicon wafers to form conductors (See Figure 1 for an example of experiment output). There are three parties to the experiment. One group has a continuum model of the copper vaporization in the fabrication plant. The second group has a Monte Carlo model of the surface of the silicon. The two simulations run on different platforms in different location on the Grid.

The third party to the experiment are the process engineers at company X who are interested in testing several possible process parameters with the simulation. The process engineers are not interested in the problems of Grid computing but do want to run the experiment to test ideas for optimizing their production facility. They also need to keep the sequence of parameter settings they are exploring from being discovered by competitors, since that could reveal the direction their research is taking. Similarly, they must make sure that the control parameters being sent to, and the results returning from, a simulation are not maliciously tampered with in an attempt to slow down or mislead their work. These security requirements must still allow the three parties to actively collaborate during a simulation, however.

[image: image1.jpg] [image: image2.jpg] [image: image3.jpg] [image: image4.jpg]
Figure 1. Simulation Results for Copper Deposition Model
(Courtesy of NCSA Chemical Engineering Team)

This scenario for Grid applications is common. One group of scientists is willing to configure Grid applications and resources to build a distributed application to solve a class of problems. A second group of users wish to use the application but are not interested in going beyond their desktop environment and are certainly not interested in Grid programming. Hence it is up to the first group to “package” the application in a form that makes it useable by the second group. It is also common that these applications may involve multiple interacting simulations and data analysis tools. Hence the application may need to be carefully “scripted”. The application will involve multiple simultaneous interactions among humans and tools, with different levels of security.

There are several ways in which the final application may be presented to the end users. The model we have found to be most interesting is as an active document. An active document is a digital object that contains text and graphics that explains the science to the user. It also contains execution scripts that can be parameterized in a way that allows the end-user to supply values by filling in simple forms. When an active document is executed on the end-user’s machine it authenticates the user with the Grid and then begins launching the remote components of the distributed application
. The local document process monitors Grid events related to the application and also captures output information such as the namespace links to output files. The document script may also connect a user’s local data analysis or graphics tools directly to the remote application output. In most cases the end user never sees the document scripts, but like any good document, it is easily edited. Consequently the ambitious user can modify the document and the script to change its behavior to fit a slightly different class of problems.

 In this particular case the team of chemical engineers worked together to produce a script that allowed the two applications to work together. This was accomplished by configuring Grid application manager processes for each application. The job of an application manager is to launch a grid computation and act as its interface to the user’s science portal (in this case, the active document script.) In this way, application events are conveyed back to the portal to inform the user about the current state of the computation, creation of data files, and possible performance problems. In addition these events can signal the main document script that a phase of computation is complete and it is time to go on to the next step in the process. As illustrated in Figure 2, the two applications communicate by exchanging data about common boundary conditions and this is accomplished on the Grid by having the application managers stage the files when they are ready. Outputs from the simulation processes (as illustrated in Figure 1) are collected into animations which are automatically linked to the application document.

[image: image5.jpg]
Figure 2. Chemical Engineering Grid Application Example

While the chemical engineering application has many features in common with compute-intensive simulations in universities and at the national laboratories, we believe that science portals will also be critical for research that is data- and collaboration-intensive. As an example of data-intensive applications, we are working with the Atlas application of the Grids for Physics Networks (GriPhyN) project [atlas-griphyn]. By 2005, Atlas will be receiving 10 Petabytes of data a year from the CERN Large Hadron Collider. That data will be staged to sites in the U.S., and Indiana University will be a Tier-2 site serving potentially hundreds of users. Atlas users will need to locate, access, and analyze portions of the data, and store and share the resulting analysis artifacts. A second application is a collaboratory for X-ray crystallographers [xray1,xport] using the beamlines at Argonne’s Advanced Photon Source (APS) and Lawrence Berkeley’s Advanced Light Source (ALS). This work will allow users at remote laboratories to send sample crystals to the beamlines, collaborate with the scientists preparing and mounting the sample, then to receive over the network initial images of the experiment. They can then dynamically upload new control parameters or, if the sample appears flawed, terminate the run. In addition to large amounts of data (up to a Terabyte/day) and numbers of files (1-3 per second) this application requires multiple video streams, accessing high-speed research networks, and synchronous geographically distributed collaboration. Our proposed science portals are designed to also support these applications.

Project Goals

In this project we propose to extend the Grid Science Portal concept in several new and important directions. It is our contention that the web browser is not the idea interface to access the Grid. The web provides us with a simple model for searching and displaying information. That is what it was designed for. The Web is also an excellent tool for providing a front-end for e-commerce transactions. However, the Web is not an appropriate tool for managing the process of creating science. Furthermore, we have learned that users are reluctant to use problem solving environment systems that take the form of a large monolithic applications that are not seamlessly integrated with the rest of their computing tools. The problem solving environment users want is the one they already have: their workstation/laptop desktop.

We maintain that the appropriate environment for doing science on the Grid would include the following capabilities.

1. An “open framework” for designing complex experiments that may involve the coupling of multiple data analysis and simulation tasks. Such a framework should allow users to design and record scripts that orchestrate the execution of these experiments as well as the journaling of the results and recording of the scientist’s observations. This framework should also be “open”, i.e. it should easily incorporate or interoperate with the user’s favorite desktop tools (word processors, spreadsheets, Matlab, etc.) To accomplish this, the framework must operate as a background process that connects Grid services into the operating environment of the user’s desktop. The Grid name spaces and file system should extend the user’s own file space. Desktop processes should be able to interact easily and securely with Grid processes. The portal processes is the bridge between your local operating system services and those of the Grid. The user-visible components of the portal are the active documents and proxy objects, which are local objects providing a window on and handle to remote computation or Grid service.

2. The portal should have simple and secure mechanisms that enable users to share the results of Grid experiments in either a synchronous or an asynchronous manner. In a synchronous collaboration, users should be able to federate their personal portals into “peer-to-peer” groups where common views of an application can be shared. In the asynchronous case, the scientist should be able to share or “publish” a journal consisting of the scripts, experimental results and annotations of an experimental session. Other uses should be able to access and modify the scripts to extend an experiment or to add further annotations.

3. A set of active repositories and user agents that manage and monitor computations and experiments while the user’s desktop is off-line. When the desktop reappears the current state of the user's Grid environment is automatically synchronized with his or her desktop/laptop environment. To accomplish this it must be possible for the control of a remote Grid computation to migrate from the desktop to the Grid and back. Providing this type of mobile code capability also makes many other things possible. For example, code mobility allows Grid computations to become very adaptive. If a resource becomes congested, the application can migrate to a more lightly loaded server, possibly located at a different site.

In the following section we first precisely define Grid terms and concepts that are central to our project. Then we survey the related work that has been done on portals. In the third section of this proposal we define the precise milestones that must necessarily be reached to accomplish our goals.

Preliminary Studies and Related Work

In this section of the proposal we begin with an outline of existing Grid services that are essential for placing the ideas that follow into proper context. This is followed by a discussion that summarizes many of the Grid portal projects and their main features. In the last part of this section we describe the prototype developed at Indiana University that has led us to the ideas presented in this proposal.

A Brief Summary of Grid Concepts

 In its simplest terms a Grid [ipg] is a collection of computers, on-line instruments, data archives and networks that are all tied together by a shared set of services which, when taken together, provide users with transparent access to the entire set of resources. Grid services include

1. Single sign-on authentication, authorization and security. This allows users to launch applications on any of the grid’s resources by means of a standard authentication certificate. By using “proxy certificates” a user’s application running on one machine may launch and communicate with another application running on another machine. Authorization services are automatically invoked to assure that the user or the user’s agent has the authority and funding to access the resources.

2. A standardized grid-wide name space for files and other objects. The World Wide Web uses the ubiquitous Uniform Resource Identifier (URI) as a wide area name space for delivering content between web servers and web browsers. Web caches provide mechanisms that allow data to replicated and moved to locations closer to the user. Network file systems such as NFS provide a way for local area network administrators build a single file system that provides users with location-transparent access to data as an extension to the user’s primary file system. A Grid data space provides the same location transparency as NFS but with the scalability and data migration features of the web. In addition the Grid data space also supports tools that manage network QoS and meta-data repositories that make it easier to access information.

3. Resource co-scheduling gives distributed applications a mechanism to access multiple, scarce or queue-managed resources such as on-line instruments and supercomputers simultaneously.

4. Information services provide users, grid managers and applications knowledge about the state of the Grid at any given time. For example, the information service can tell a user which machines have a particular application installed. The service can also tell an application scheduler how to access performance analysis tools such as network traffic monitors and resource load predictors.

5. The state of the Grid and the applications that run on it are communicated to the information services by means of an event service. Based on simple internet communication protocols like HTTP and data formats like XML, the event service provides a simple way for any application running on the Grid to generate messages encoding state information which are easily broadcast to interested event listeners or logged into searchable archives.

6. User management services, including a grid-wide trouble tracking system, are an essential part of operating a grid. Unlike systems like the web, which only require basic Internet services to operate, the Grid requires much more management to make the sophisticated services described above all operate correctly.

Taken in its totality, this set of service is very powerful. However, our experience with Grid testbeds has shown that it is almost impossible for application programmers to use these tools without a great deal of help. Grid Portals provide the human interface and much of the programming environment that make this service infrastructure usable.

A Survey of Existing Science Portal Technology

The area of Grid portal design is now an extremely active and important part of the emerging Grid research agenda. In 2000, the Grid Forum (www.gridforum.org) established the Grid Computing Environment (GCE) working group to help define standards and protocols that would be important for user and science portals. The working group has completed a survey of the portal projects [gce]. These project can be grouped into three categories.

· User Portals which provide for simple job submission and tracking, file management and resource selection.

· Portal Construction Toolkits that provide the APIs necessary for a portal to communicate with Grid services.

· Science Portals that define application-specific environments for using and programming complex tasks on the Grid.

In the user portal category, the NPACI Hot Page is the first and most successful system
. The European project Unicore is a more focused user portal effort and also a mature offering. Other projects in this category include Nimrod-G from Australia, which is designed for complex parameter studies and the IPG Launch Pad, which is the user portal for NASA’s IPG.

There are three projects that fit into the category of portal construction toolkits. These are the Argonne Commodity Grid (CoG) toolkit which is an excellent Java interface for Globus, and GPDK from Lawrence Berkeley Labs, which is a Java Server Pages API for CoG, and JiPANG from Tokyo Institute of Technology, which uses Sun Microsystem’s Jini to provide an interface to both CoG and networked solvers like NINF and Netsolve.

Science portals come in a variety of forms. Some are designed around relatively specific application domains. For example, the Cactus Portal from the Albert Einstein Institute was originally designed for black hole simulations. ECCE/ELN project from PNL is for Computational Chemical Engineering. The Lattice portal from Jefferson Labs is a user portal for high-energy physics. Though these projects focus on specific applications, it would be incorrect to assume that they did not incorporate new ideas that are very general in nature. One category of science portals addresses the problem of building multidisciplinary applications directly. The Gateway project and the Mississippi project (which have common roots at Syracuse University) use CORBA and Enterprise Java Beans (EJB) to build a three-tier architecture for launching and scheduling multiple applications. These two projects also make use of a scripting capability to orchestrate large, complex application scenarios. Another CORBA-based project is the Rutgers Discovery portal which also provides a good interface for computational steering and collaboration.

In the table below we have summarized some of the properties of each of these projects as derived from the GCE project summaries. For each project we have listed the Grid services supported by the portal and the Grid standards being used or currently planned. The code used to annotate services is

· JS – Arbitrary Job Submission from portal

· JM – Job Management utilities like file staging.

· IS – Uses Grid Information Services and presents the user with a view of the GIS.

· FM – Grid File and name space management directly from the portal.

· AA - Authorization and Accounting. Most systems handle authorization via Kerberos or the Grid Security Infrastructure (GSI) and very few handle accounting or authorization.

· CT – The ability to compose independent tasks either as components from a component architecture like CCA [cca] or as wrapped and managed applications which communicate through files.

· SC – The ability to allow a user to upload a script to the portal server which can be used to manage tasks.

· EJ - Execution Journaling. The portal automatically creates web pages which track the progress of each job. The user can often annotate these pages and have output results included in them.

In addition to services supported Table 1 lists the specific Grid technologies used or accessed by the Portal. These include the Grid security infrastructure (GSI), the Grid Information Service (GIS), the Globus job manager (GRAM), and the UCSD Storage Resource Broker (SRB). In addition commercial standard technologies such as CORBA, Jini, EJB, etc. are listed. The last column of the table lists Grid services that have not yet been standardized but are most important for making progress.

	Project
	Supported Grid Services
 JS JM IS FM AA CT SC EJ
	Grid Standards
used/ will use
	
	Services missing
from Grid

	Gateway
	 X X X X X X X
	Kerb/GSI, MDS,
Gram, CORBA, EJB
	
	Events, Collab, app
resource management

	Mississippi
Portal
	 X X X X X X X X
	Kerb/GSI, Gram, GIS,
CORBA.
	
	Event, Data access services

	Unicore
	 X X X X X X X
	GSI, GIS, Schededuling
	
	Abstract Job Metadata

	Hot Page/
Grid Port
	 X X X X X
	GSI, GIS, Gram, SRB
	
	Grid Accounting, portal-to-
portal protocols, cert/key
repository

	Indiana
Notebook
Portal
	 X X X X X X
	GSI, MDS, Gram,
GSIFTP, CoG
	
	Events, app schema
standards, RMI standard

	Nimrod-G
	 X X X X X X X
	Globus, Legion,
Condor
	
	Resrouce Auctions &
Allocations

	Cactus
Portal
	 X X X X X
	Globus via GPDK
HDF5, MPI
	
	Resource Brokers

	GPDK
	 X X X X X
	Globus via CoG
	
	

	CoG
	 X X X X X
	Globus
	
	Software Installation

	JiPANG/
Ninf
	 X X X X X X
	CoG, Jini, Ninf,
Netsolve
	
	Events

	ECCE+
ELN
	 X X X X X
	GSI, GIS,
Meta-scheduling
	
	Events

	IPG
Launch Pad
	 X X X X X
	GSI, GIS via GPDK
	
	Events

	Lattice
	 X X X X X
	OpenSSL, x.509
	
	

	Discover
	 X X X X X X
	CORBA
	
	

Table 1. Portal capabilities and common technology used.
Also listed are Grid service standards that are most needed.

The Indiana Science Portal Prototype
An initial prototype science portal that tests some of the features described above has been developed over the last year at Indiana University. This portal differs radically in its architecture from the examples described above because it does not user a centralized web server on a remote machine. In our system the portal software that runs on each user’s desktop/laptop has a built-in server. The reason for this is very simple. The Indiana portal engine is designed to integrate the user’s desktop environment directly with the remote grid resources. If the portal server resides elsewhere, the only tool the user can use to interact with the Grid is a Web browser or other HTTP client. In our model, the portal server provides a single, local gateway between Grid services and local applications. A local web browser can still interact with it through HTTP, but other applications can communicate with it via local protocols and services, such as COM, .Net, Bonobo/Gnome, etc. As illustrated in Figure 3, there are six major components to the portal server.

1. A Java-based (Tomcat) server engine which is driven by a set of Java Servlets that manage access to the other components.

2. A “notebook” database. A notebook is an active document defined by an XML object that describes a set of resources used in a computational experiment. It consists of documents, web pages, execution scripts and other notebooks.

3. A Script Engine that is used to execute complex Grid operations. The scripting is currently based on the Python language [python], which has become popular with many computational scientists. This scripting language has interfaces to the Argonne CoG toolkit, which in turn, provides access to Globus functionality and the GSI Grid authentication mechanisms. It also has an API that allows easy access to the DOE Common Component Architecture (CCA) services.

4. A Grid performance monitor that provides the user with a view of available resources, their current loads and (soon) network loads via the Network Weather Service [nws].

5. An Event Channel that is capable of receiving event messages (based on the XML SOAP protocol [soap]). Events may be generated by grid resources or user applications.

6. A remote file management interface that is built on top of the Grid GSI-FTP service.

The Indiana Active Notebook science portal combines two concepts. One is the idea of encapsulating Grid computations into active documents and the other is to use scripting in both the execution of the active document as well as in the remote management of Grid tasks. This dual role for scripting is described in the next subsection.

[image: image6.png]
Figure 3. Indiana Active Notebook Architecture.

Grid Application Scripting
The difference between a “user portal” and a “science portal” is based on the complexity of the tasks that the user undertakes. A user portal allows users to submit single jobs to the grid. The portal provides features to make it very simple to manage the job, providing load-time and runtime information, and to help the user select resources and to monitor the execution of the job. In a science portal, the applications tend to be much more complex. A single scientific experiment may involve running many different computational simulations and data analysis tasks. It may involve coupled, multidisciplinary applications and/or remote software components linked together to form a distributed application. Often these complex tasks may take a great deal of effort to plan and orchestrate, and the entire experiment may need to be run many times each with a slightly different set of parameter values. We have found that the best way to allow this sort of computation to be carried out is to allow the scientist access to a simple scripting language which has been endowed with a library of utilities to manage Grid applications. Furthermore, we provide a simple tool which allows the scientist to build a web-forms page interface to configure and launch the scripts. “Users” of the scripts simply fill in parameter values to the web form and then hit the “Run Experiment” button. This launches the script which executes on the users desktop, but manages the remote applications on the grid.

In our prototype, we use the Python language because it is popular with scientists and has an excellent interface to Java. A team at Lawrence Berkeley Laboratory [globus-python] has designed a Globus API for Python and we will be bringing our Python Grid interface in line with theirs.

Figure 4 below illustrates a notebook interface; this interface is typically application-dependent and in any case is configurable by the users. In the panel on the left, there is a view of an open notebook session. It consists of a set of pages and scripts forms. In this figure, the form for a simple script which launches a local visualization application is shown. Parameter values selected by the user from the form page are bound to variables in the script. By selecting “edit” both the script and the form page may be edited as shown in Figure 5. In this case, the script launches a simple local program called “animator” which takes as a parameter the name of a simulation output file to animate. In this example the script is trivial, but it is not much more difficult to write a script to launch an application on the grid or to manage remote files.

[image: image7.jpg]
Figure 4. Science Portal Notebook Interface. Left panel is the document contents. A script entitled
”visualizer_launch” has been selected. The right panel displays the form page to run that script.

[image: image8.jpg]
Figure 5. Selecting “Edit” from the form window allows the user to see, edit and debug the
script. In this case the script launches a local task called “animator” with the file name
 “datadir” which is bound to form value selection.

A second form of scripting is used to manage the local details of a program's execution on the Grid. As described in the examples above, remote applications are managed by application mangers. In most cases, the applications that scientists and engineers want to run on the Grid are not "grid aware", i.e, they are ordinary programs that read and write data to and from files. In some cases, we have access to the application source, but often even that is not available – for example, when using commercial applications codes. An application manager is an agent process that helps the application make use of grid services. For example, the manager can stage input files from remote locations or invoke post-processing on the application output when the application has finished. The manager also serves as an event conduit between the application and the portal. If the application dies or creates a file, the manager can send an event back to the portal script indicating that this has happened.

The application manager can also act as a service broker for the application. The manager can register itself with the Grid Information Service and advertise the application's capabilities. If a user with the right authorization discovers it, then the manager can launch the application on behalf of the user and mediate the interaction with that user. For example, suppose the application is a library for solving sparse linear systems of equations on a large parallel supercomputer. The manager can export a remote solver interface that takes a sparse linear system as input and returns solution vectors as output. If a user has a remote reference to the manager, the solver can be invoked by a remote method call passing a matrix (or its URI) as a parameter and getting back the solution vector as a result of the call. This is the model used by JiPang to invoke Ninf and Netsolve.

In the Indiana system, the application managers conform to the DOE Common Component Architecture (CCA) specification. They are designed as "scriptable" components, which has one standard port allowing the creator the ability to download a script which the component can run. The script language and library used by the component is identical to the language and library available to the portal engine.

[image: image9.png] [image: image10.png]
Figure 6. Application Managers act as proxies for conventional applications
The manager can invoke grid services such as file management, or it can relay application events back to the portal. The Application Managers are CCA components. They have one primary interface port, which is used to load and run an execution script.

 The application managers combine the advantages of a persistent remote shell with that of a remote object which may be invoked through a well defined set of interfaces. Furthermore, the interfaces that a manager component supports can change dynamically by simply downloading a new script. This allows the portal to dynamically change the behavior of a remote application to suit new problems or requirements.

Research Plan Details

The four objectives of this proposed project can be summarized as follows:

1. The Grid portal should take the form of a process that couples a user’s desktop environment to the services of the Grid. This will free the active document model for grid computations from the limitations of a traditional web-server based portal architecture.

2. Collaboration is one of the most important capabilities that user want. This can take the form of synchronous collaboration (multiple user sharing views of the same active document), or it may be asynchronous use and editing of the same document. We will address both forms of collaboration.

3. Exploring the concept of code mobility to allow users to de-attach and later re-attach to remote computations.

4. Security mechanisms must be provided before applications users will trust the Portals, and those mechanisms must handle multiple levels of trust simultaneously.

We consider the milestones for each project in turn.

Portal - Desktop Environment Integration

· Year 1. There are, in reality, two desktop environments and technology is evolving rapidly for both. For Microsoft platforms, the most important change affecting our requirements and needs is the introduction of .NET services. While much of the .NET architecture is still unknown, our initial experience with it is very promising. We have shown that our current prototype can interoperate with .NET based on our SOAP RMI implementation [soap]. In the first year we will complete the integration of the current portal prototype with Windows by building a bridge between .NET and Grid services. This will involve a collaboration with the Argonne CoG team.

· Year 2. In the second year of the project we will complete a new kernel for the portal server that allows it to integrate Grid services directly as extended OS services in the desktop environment. The most advanced implementation of this concept already exists as part of the Legion system [legion]. We will leverage that work as much as possible. A beta-version release will be scheduled for the end of year 2.

· Year 3. It is expected that over the next two years many of the Grid services will evolve and change. As they do our integration process will have to be updated. The final release will incorporate all the standard Grid services.

Collaboration

· Year 1. Asynchronous collaboration will be initially based on the use of the Web-DAV (Distributed Authoring and Versioning) protocol. By the end of year one we will have a DAV-based collaboration server in place.

· Year 2. Synchronous collaboration will be the focus of the second year. However, we will not develop the technology for synchronous collaboration. There is already a substantial industry working on this problem. We will adopt the prevailing standard and by the end of year two we will have collaboration integrated into the beta-release.

· Year 3. The Portals collaboration tools will be made to interoperate with the X-ray crystallography collaboratory project.

Research on Grid-Portal Code Mobility

· Year 1. In the first year of the project we will survey and analyze existing code mobility technologies. For example, Condor has a limited form of code mobility. Other work on this problem has been done for mobility based on the Java virtual machine. We will select a technology that is consistent with our use of scripting and remote objects. For example, if an object moves from one host to another, how do remote clients re-connect to it? By the end of the first year we expect to have the basic computer science done to begin integrating it with our portal system.

· Year 2. By the end of the second year we expect to be able to move an executing active document from one platform to another without disrupting the associated Grid computations. Also by the end of year two we will apply elusive interface technology [elusive] to provide secure distributed component interface connections.

· Year 3. By year three we will apply code mobility to adaptive Grid applications. Particular applications will include structure determination components for X-ray crystallography, and large scale sparse linear system solvers for scientific codes.

References

[Allan00]
B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt and J. A. Kohl, "The CCA Core Specification In a Distributed Memory SPMD Framework," submitted to Concurrency : Practice and Experience.
 [Armstrong99]
R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mcinnes, S. Parker, and B. Smolinski, “Toward a Common Component Architecture for High Performance Scientific Computing,” High Performance Distributed Computing Conference, 1999. See http://z.ca.sandia.gov/~cca-forum.

[Atlas-Griphyn]
Grid Physics Network (Griphyn) at Indiana University. Atlas Project. See http:// lexus.physics.indiana.edu/ ~rwg/griphyn

 [CAT]
J. Villacis, M.Govindaraju, D. Stern, A. Whitaker, F. Breg, P. Deuskar, B. Temko, D. Gannon, R. Bramley, "CAT: A High Performance, Distributed Component Architecture Toolkit for the Grid," Proceedings High Performance Distributed Computing Conference 1999.

[CCA01]
The Common Component Architecture Technical Specification, Version 0.5. See http://www.cca-forum.org.

[CCAT]
R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, M. Yechuri, "A Component Based Services Architecture for Building Distributed Applications," Proceedings of HPDC, 2000.

[CCA]
CCA Forum's Homepage at http://z.ca.sandia.gov/~cca-forum. Accessed February 15th, 2001.

[cbiowb]
Computation Biology Workbench. See: http://workbench.sdsc.edu for the current version. The Biology workbench now resides at SDSC.

[colab]
The DOE2000 collaboratory project is documented at their web site. See: http://www-unix.mcs.anl.gov/DOE2000/collabs.html
[elusive]
K. H. Connelly, A. Chien, “Elusive Interfaces: A Low-Cost Mechanism for Protecting Distributed Object Interfaces”, submitted for publication, May 2000. (Connelly, Chien). Available at http://www-csag.ucsd.edu/papers/ccs2000.ps
[enote]
The DOE2000 electronic notebook project resources can be found at the following location: http://www.csm.ornl.gov/enote
[Florida]
Gateway Computational Portal. See http://www.computingportals.org/CPdoc/Gateway_CP.doc

[GCE]
GridForum Grid Computing Environment working group (www.computingportals.org) survey of existing grid portal projects. www.computingportals.org/cbp.html.

[Globus-Wrap]
Kieth Jackson. Globus Wrap. http://www-itg.lbl.gov/~kjackson/globusWrap

 [Grid]
The Grid: Blueprint for a New Computing Infrastructure, Ian Foster and Carl Kesselman (Eds.), Morgan-Kaufman, 1998.

[GridBook]
D. Gannon, and A. Grimshaw, “Object-Based Approaches”, (The Grid: Blueprint for a New Computing Infrastructure}, Ian Foster and Carl Kesselman (Eds.), pp. 205-236, Morgan-Kaufman, 1998.

[ipg]
W. Johnston, D. Gannon, B. Nitzberg, A. Woo, B. Thigpen, L. Tanner, “Computing and Data Grids for Science and Engineering,” Proceedings of SC2000.

[ipg-portal]
NASA IPG Launch Pad Portal. See http:/www.computingportals.org/
Cpdoc/LaunchPad.doc

 [KG97]
K. Keahey and D. Gannon, “PARDIS: A Parallel Approach to CORBA,” Proceedings of the 6th IEEE International Symposium on High Performance Distributed Computation, August 1997.

[KG97a]
Katarzyna Keahey and Dennis Gannon, PARDIS: CORBA-based Architecture for Application-Level PARallel DIStributed Computation, Accepted for presentation at Supercomputing '97, November 1997.

[KG98]
K. Keahey and D. Gannon, Developing and Evaluating Abstractions for Distributed Supercomputing, Journal of Cluster Computing, special issue on High Performance Distributed Computing, Vol. 1, No. 1, May 1998.

[Legion]
Andrew Grimshaw. Legion: A Worldwide Virtual Computer. See http://www.cs.virginia.edu/~legion.

 [LSA1]
R. Bramley, D. Gannon, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman, F. Breg, S. Diwan, and M. Govindaraju, "Component architectures for distributed scientific problem solving,'' IEEE Computational Science and Engineering, 5, no. 2 (1998) pp.50-63.

[LSA2]
R. Bramley, D. Gannon, J. Villacis, A Whitaker, "Using the Grid to Support Software Component Systems,'' SIAM Conference on Parallel Processing 1999.

[Mississippi]
Mississippi Computing Web Portal. See http://www.computingportals.org/CPdoc/
mcwp.doc.

[npaci]
Mary Thomas. Hot Page. USCD User Portal http://www.computingportals.org/ CPdoc/HotPage.doc.

[nws]
Rich Wolski. The Network Weather Service. See http://www.npaci.edu/NWS for detials.

[OMG98]
The Common Object Request Broker: Architecture and Specification, Object Management Group, February 1998. See http://www.omg.org/corba.

[OMG99]
CORBA Components, Object Management Group, OMG TC Document orbos/99-02-95, March 1999. See http://www.omg.org.

[Ousterhout98]
J. Ousterhout, Scripting: Higher Level Programming for the 21st Century, IEEE Computer, March 1998.

[Parker97]
S.G. Parker, D.M. Weinstein, and C.R. Johnson, The SCIRun computational steering software system, Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset, and H.P. Langtangen ed., Birkhauser Press, pp. 1-44, 1997.

[Parker97b]
S. G. Parker, D. M. Beazley, and C. R. Johnson, “Computational Steering Software Systems and Strategies,” IEEE Computational Science and Engineering, 1997.

[Parker99]
S.G. Parker, The SCIRun Problem Solving Environment and Computational Steering Software System, Ph.D. Thesis, University of Utah, 1999.

[Python]
The Python Programming Language. See http://www.python.org for complete details.

[Rutgers]
DISCOVERY: An Interactive Computation Collaboratory for Grid Applications. See http://www.computingportals.org/CPdoc/discover.pdf
[SOAP]
Simple Object Access Protocol. See http://www.w3.org/TR/SOAP
[xray1]
“Using Computational Grid Capabilities to Enhance the Capability of an X-Ray Source for Structural Biology.” Gregor von Laszewski, Mary Westbrook, Ian Foster, Edwin Westbrook, Craig Barnes, Using Computational Grids (to be published). Prepress at http://www-fp.mcs.anl.gov/~gregor/papers/StructuralBiology.ps
[xport]

 “The Xport Project”, http://www.cs.indiana.edu/ngi/, 3/9/2001.

.

� The concept of an active document is certainly not new. Unfortunately, in its crudest form, this idea is at the heart of many Internet viruses and worms that arrive through email as MS word documents that contain malicious visual basic scripts. Consequently, authentication and security has been a major component of our work.

� see [GCE] for complete details about Hot Page and the other systems cited in this and the following two paragraphs.

Middleware for Science Portals
i
2
Middleware for Science Portals
ii

