
Time Stamp Counters Library - Measurements

with Nano Seconds Resolution

Yoav Etsion and Dror G. Feitelson

September 12, 2000

School of Computer Science and Engineering
The Hebrew University, 91904 Jerusalem, Israel

{etsman,feit}@cs.huji.ac.il

Abstract

As current computers become faster, and more applications require

very tight time constraints and optimizations, there is a growing need for

a simple and robust manner to evaluate performance with extremely low

overhead. The best way to this is to directly measure the CPU cycles.

The standard method of evaluation is by extracting the system time using

operating system calls. This method incures a very substantial overhead

since it implicitly includes two context switches - to the system context and

back - and thus can only be used in a very coarse grained methodolgy. In-

tel, makers of the most popular workstation CPUs, has incorporated into

its P5 processors family (Pentium and up) an opcode which allows to read

the CPU's cycle counter from user level. Our library enables the user to

use this opcode and to take these coveted cycle measurements, that can be

used for �ne grained performance evaluation. These cycles measurements

can be easily converted, using the CPU speed, into nanosecond resolution

time measurements. Also, we designed the library to be very portable

across most of the common operating systems that are used with the P5

processor family.

1 Overview

Starting with the Pentium processor family, Intel introduced a new opcode,
�rdtsc� [3], which enables a program running at user level to read the proces-
sor's Time Stamp Counter � the number of cycles since the processor was last
reset. This feature enables a user level program to take cycles measurements
with an extremely low overhead. Furthermore, since this cycle count can be
easily converted into nano seconds (using the CPU speed), using this library

one can take time measurements with only a fraction of a system call overhead
(section 3). Note that even though most operating systems mesaure times using

1



the CPU cycle counter, there is usually no way to get the cycle count, only time
measurements with limited resolution. Thus our library supplies the program-
mer with a powerful tool to evaluate performance.
Even though there are a few other libraries out there with the same functional-
ity, we experimented with one or two, only to �nd out that they they are overly
complicated for our needs, and are di�cult to learn and use. This motivated us
to write another library with the intention to supply the programmer with an
interface that is as simple as possible.

1.1 Design

Our two main goals designing the interface were performance and portability,
and we hope to have acheived both. The design was greatly in�uenced by both
goals: the interface o�ers three types to measure with (section 2.1), two of
them are special, library speci�c types. Also, most of the library is written
inlined, and the implementation was detached from compiler speci�c syntax
(such as assembly code syntax and non-standard integral types), using a special
low level Abstract System Interface (ASI), which o�ers easy porting to new
operating systems and compilers. This low level interface does not degrade
performance, because its time critical sections are inline functions and macro
de�nitions. This interface is further discussed in the porting section (section 6).

1.2 Supported systems

Since the library uses a Pentium - speci�c opcode, it is desgined for Intel plat-
forms, and currently cannot be used on other platforms.

However, since the library uses a few operating system services (time mea-
surement and sleep functions), and use some compiler syntax which is not stan-
dard (assembly code, non-standard types), we detached the implementation
from the system using an Abstract System Interface.

We implemented the library using the ASI for several development environ-
ments:

� GNU compiler set, tested on Linux, BSDI and Solaris. Since the GNU
compiler set is implemented on other platforms, this library can probably
be compiled for them, but it was not tested. If you have compiled it for
new systems, please send email to the authors, describing the compilation,
system and any necessary patches.

� Visual C++ which was tested on Windows NT4. Again, it was not tested
on other windows systems (95/98, 2000, and ME), but since all these
platforms use the same compiler set, there shouldn't be any problem using
the library on those systems.

� Watcom compiler, tested on QNX Real-Time OS (RTOS). The Watcom
compiler set is also used with DOS system, but again, we did not test it
for DOS.

2



Table 1: Compiler optimizations �ags
Compiler Optimization �ag

GNU compiler collection -O and up (-O2, -O3)

Visual C++ /O2

Watcom compiler (QNX RTOS) -Oe

1.3 Compilation

The library code is highly optimized. However, some of the optimizations might
not take e�ect with most compilers if the code is compiled without a compiler
optimization �ag. Since most of the code is inlined, it is not compiled into
the library, but rather straight into the user code when using the library. Be-
cause of this reason, always make sure when using the library to compile your
code at least at the minimal compiler optimization level. On the compilers we
used, these �ags are shown in table 1. If you port the library to a new plat-
form/compiler, please send us compiler optimization �ag required, along with
the ASI implementation.

2 Interface

When designing the interface our goals were to give the user both performance
and convenience. When those con�icted, we tried to o�er a choise.

2.1 Types

The hardware's time stamp counter is a 64 bit integral register. Currently, the
biggest standard integral type that is supported by the Intel hardware is only 32
bits in size. Some compilers support 64 bit integral in software, but such types
are not standard so even the compilers that do support it name it in various
ways, such as �long long� or �int64�. Such support is less than optimal since all
operation are simulated in software using 32 bit integers. This problem forced
us to o�er the user three possible type to work with:

1. tsc_counter_t
The basic storage type of the clock cycle counter. Since some systems
do not o�er 64 bit integral support, the only type that can hold such
big numbers is double. However, since a double precision type cannot
represent all 64 bit integer values, and since conversion to and from it incur
unnecessary overhread, we found it necessary to keep the raw data (two 32
bit integers) in an internal data structure, for later processing. Using this

type in measurements gives the fastest and most accurate measurements,
but is more complicated to manipulate. Such measurements have to be
saved and later converted into one of the other two types, for manipulation.

3



2. tsc_counter_int_t
The integral type, or actually the best atomic type available by the system
that is large enough to hold a 64-bit unsigned integral value. Basically,
the only assurances on this type is that is supports mathematical manip-
ulations, and it's e�ceincy is no better than tsc_counter_t and no worse
than double. We give the user an abstraction of the actual type, because
not all systems support such integral types, and sometimes we have to em-
ulate using double values, and those that do support such large integers
does not have a standard name for it. The only assurance the library gives
a user is that this type can be used with all mathemtical operators (+,-
,*,/, etc.) to calculate time di�erences. The library also provides the user
with a function that translates the integral value into a character array.
On platforms that supports a 64 bit integral type, there is no advanage for
using the tsc_counter_t type, and this type could be used instead. This
can be determined by the presence of the macro TSC_UINT64 is de�ned
(see section 2.2).

3. double
The trivial data type known by all. This is not the best type to measure
with � manipulating double variables su�ers a bigger overhead than the
other two types (see section 3), but it is still much faster than a system
call. Also, using doubles may be less accurate because not all integers can
be accurately represented by it. Using doubles may incur an inaccuracy
overhead of some units (either nanoseconds or cycles). This type is best for
users who do not measure with nanosecond resolution, but rather prefer
a more convenient type to work with over fastest possible measurements.

2.2 Macros

The macro API o�er the programmer a some special values, that are used as
special parameters and return values. Also, it gives the programmer a way of

knowing what features are supported by the system, which the library uses.
This simply helps knowing how optimized the library can be on the current
system.

2.2.1 Hardware Related Macros

This section describes the macros that are used to describe the features sup-
ported by the compiler and used by the library.

� TSC_UINT64

De�ned if the system supports 64 bit integers. This simply o�ers the
user a way to know how optimized the tsc_couner_int_t type is com-
pare to the fastest tsc_counter_t type. When this macro is de�ned the
tsc_counter_int_t type is actually a synonym for a 64 bit integer, and as
such its overhead is no bigger than that of tsc_counter_t type. Since the
tsc_counter_int_t type can be mathematically manipulated, it is more

4



convenient to work with so in this case the programmr can use it with no
extra overhead.

2.2.2 Special Value Macros

These macros are special values to be used a function parameters and return
value.

� TSC_NOSPEED

A macro which indicates the user asks the library to calculate the CPU
speed at runtime, instead of hardcoding it. More in section 2.3.1.

� TSC_OK, TSC_ERROR
Macros that indicates the success of an operation. Any function that can
fail returns one of these macros, to indicate the status of the operation.

2.3 Functions

The three types are repesented in the function names by C (tsc_counter_t),
CI (tsc_counter_int_t) and D (double) (and another type acronym, STR, de-
scribes the null terminated string type, const char* ). Each critical operation
was implemented using the all the three mathematical types. A function's name
indicate its functionality, while the symbol in the function name's su�x indicates
its type. This is also the case in the conversion functions: the functions used to
convert values between the types. The functions can be grouped according to
their functionality:

2.3.1 Initialization

� int tsc_init(int processor_speed_Hz)

Initializes the library's internal data. This function must be called only
once, and before any other library function, in order for the data to be
consistent.
Parameter : the processor's speed in Hz (not MHz). If the user supplies

the TSC_NOSPEED macro as parameter, the library measures the CPU
speed by itself (see section 2.3.2).

Return value:
On success TSC_OK, on error TSC_ERROR (if one ever happens...).
Note:
this function might take up to 1 second to run, for an accurate CPU
measurement.

2.3.2 CPU speed

� double tsc_CPUSpeed()

5



Returns the CPU speed calculated in the init function (or passed to it).
The calculation is straight forward: the function takes a cycles counter
reading, an operating system time measurement and sleeps for some time.
After the sleep, it takes another cycles counter reading and operating sys-
tem time measurement. Then it is simply a matter of calculating the
number of cycles the CPU executed during the measured time. We found
that sleeping for 200 miliseconds is accurate enough even for CPUs run-
ning at 600MHz, but this might increase for faster CPUs when available.
The best option is to check the measurement accuracy on a given host
(section 5.2).
Return value:

The calculated CPU speed, in Hz (not MHz).

2.3.3 Cycle Counter Read

� tsc_counter_t tsc_readCycles_C()

� tsc_counter_int_t tsc_readCycles_CI()

� double tsc_readCycles_D()

The main issue. Takes a reading of the cycles counter, and returns the
number of cycles the CPU executed since it was last reset. As said
before, the return type implicates the measurement's e�ciency. Using
tsc_counter_t values (C su�x) is the fastest measurement, but the val-
ues must be converted later to a calculable type. When using the fatest
measurement, it takes ~35 CPU clock cycles (see section 3.2).
Return value:

The number of cycles since the last CPU reset.

2.3.4 Nanoseconds Time Measurement

� tsc_counter_int_t tsc_readNsec_CI()

� double tsc_readNsec_D()

Get a direct time measurement. Returns the time in nanoseconds since
the CPU was last reset, a data which is unimportant in itself, but can be
used to time �ne grained operations. Since the time measurement involves
some mathemtical calculations from the original cycles counter, there is no
point returning fastest type (tsc_counter_t). Since the CPU speed itself
is not accurate, and depends on volatile factors such as temprature, CPU
age, etc. we can safely assume that calculating the nanoseconds time will
not be impaired if we use double variables. This is why all the internal
calculations are done using doubles, so there is actually no di�erence be-
tween the two functions. The �rst is given simply for sake of versatility,
although on some systems the it incurs a much bigger overhead. More in

6



sections 3.3 and 5.1.
Return value:

Number of nanoseconds since the last CPU reset.

2.3.5 Cycles Count to Nanoseconds Conversion

All unit conversion functions are named after a simple naming acheme: �orig_type
2 new_type� . The types' acronyms are described in the beginning of this sec-
tion.

� tsc_counter_int_t tsc_cycles2Nsec_C2CI(tsc_counter_t counter)

� double tsc_cycles2Nsec_C2D(tsc_counter_t counter)

� double tsc_cycles2Nsec_CI2D(tsc_counter_int_t counter)

� double tsc_cycles2Nsec_D2D(double counter)

Convert a CPU cycles measurement into a time measurement, either to
tsc_counter_int_t type, or to double. Again, if the compiler supports
64 integral types (TSC_UINT64 is de�ned) the �rst option is faster and
more accurate. In other cases, there is no di�erence. The time is mea-
sured in nanoseconds since the computer was last reset. Both the pa-
rameter and the return value's type are determined by the functions' suf-
�xes. For example, the CI2D su�x indicates that the function accepts a
tsc_counter_int_t parameter, and returns double.
Parameter:

The CPU cycles measurement. Its type is determined by the name's pre�x
(C, CI or D).
Return value:

The time since the CPU was last reset, in nanoseconds. Its type is deter-
mined by the name's pre�x (CI or D)

2.3.6 Type conversion

All type conversion functions are named after a simple naming acheme: �orig_type
2 new_type� . The types' acronyms are described in the beginning of this sec-
tion.

� tsc_counter_int_t tsc_C2CI(tsc_counter_t counter)

� double tsc_C2D(tsc_counter_t counter)

� double tsc_CI2D(tsc_counter_int_t counter)

Translate the tsc special types to double, and among themselves. The
special types are optimized for percision and speed, but sometimes it is
more convenient to convert them.

7



Parameter :
The original typed value.
Return value:
The new typed value.

� const char* tsc_C2STR(tsc_counter_t counter, int char_num)

� const char* tsc_CI2STR(tsc_counter_int_t counter, int char_num)

Convert a number value to a string. This function can be used to print a
specially typed value.
Parameters :
counter - need I say more?
char_num: the number of characters to print. If the actual value is bigger,
only prints the least signi�cant digits. If char_num is 0 the string is not
truncated.
Return value:
A static bu�er containing the string representation of the value.
Note:
Both functions return a pointer to a single static bu�er, so the next call
to either one of these functions will corrupt the value.

3 Overhead

Like every measurement function, ours also incur some overhead. Since the li-
brary is designed to let the programmer separate the measurement itself from
the time/cycles calculations, we only measured the overhead of the di�erent
measurements, and not the type conversions. We also report the overhead of
some frequently used system calls, including the most common for time mea-
surements � gettimeofday [1]and time [2].
All the overhead measurements were taken on a Pentium III running at 500MHz,

with 128MB RAM, using special benchmarks, which are described in section 5.1.

3.1 System Calls Overhead (Placebo)

Since we deal with time measurements, we �rst measured the most common
method to obtain such data � the operating system services, or system calls.
These measurements we've taken on Linux and BSDI only, but there is not
reason to assume that QNX or Windows NT are any faster.

System Call Overhead in Cycles Overhead in nanosecs (PentiumIII 500MHz)

time 2504.21 5035.13

gettimeofday 1192.79 2394.85

dup2 9479.65 19041.35

close 2381.47 4781.66

8



As we can see, it is impossible to measure at a resolution of less than a few
microseconds.

3.2 Cycles Count

The test and library were compiled with the optimization �ags (see section 1.3)
on Linux, QNX, and Windows NT 4. The fastest function (tsc_readCycles_C )
was measured on all platforms, whereas the other two only on Linux and BSDI.
Since the measurements that were taken on all platforms were identical (up to
1%), we will only report the results of the Linux measurements (the number are
averages of 1000 iterations):

Library Function Overhead in Cycles Overhead in nanosecs (PentiumIII 500MHz)

tsc_readCycles_C() 35.05 70.42

tsc_readCycles_CI() 36.03 87.25

tsc_readCycles_D() 87.25 175.24

Our library o�ers the programmer a way to take time measurements two
order of magnitude faster than system calls. This is a very powerful tool that
allows very �ne grained time measurements.

3.3 Time Measurements

Again, all measurements were taken on Linux. There is no reason to suspect that
there will be any di�erence between any development environments that support
a 64 integral type (such as Windows NT + Visual C++), but on environments
that do not support such type the tsc_counter_int_t type is implemented using
double so there will be no di�erence between the two functions.

Library Function Overhead in Cycles Overhead in nanosecs (PentiumIII 500MHz)

tsc_readNsec_CI 312.20 627.57

tsc_readNsec_D 92.51 185.96

This vast di�erence is simply explained: Since the conversion between cycle
count and time is done in double values, and since all functions are inlined,
the �rst function is implemented using a call to the second, and then a type
conversion from double to tsc_counter_int_t (which is implemented on Linux
using a 64-bit integral type unsigned long long). Since 64 bit integrals are not
supported by the hardware, such conversion takes place in software and thus is
very slow.

4 Limitations

Since we are using some non-standard types to maintain 64-bit integral numbers,
certain counters might over�ow in speci�c situations. Also we are using a very

9



hardware oriented code that relies on the CPUs' own counters. When using
such code, we must take into account the limitations posed on us:

1. The library is not SMP safe! To make it so we must lock the process to
run on a speci�c CPU, so we won't get di�erent values when migrating
from one CPU to another. Most SMP operating systems support such
requirements using a special interface, but currently the library itself does
not wrap these OS speci�c calls into one interface.

2. The most strict but least signi�cant limit: The CPU's Time stamp Counter
will, of course, over�ow after 264 cycles (64-bit counter). For a 1GHz pro-
cessor this will occure after: 264 cycles � 2

34 seconds (230 � 1G) � 213503
days � 584 Years, so we realy don't think it matters. If you do encounter
such problems, please send a bug report to our descendants...

3. No limitation section is complete without a Microsoft speci�c limitation,
so here is ours: Although Microsoft were gracious enough to supply the
programmer with an unsigned 64 bit integral type, they did not bother
to implement a direct cast between this type (unsigned __int64 ) and
double. To do this, one has to cast the unsigned type to the signed type
(cast unsigned __int64 to signed __int64 ), and only then cast it to
double. This means of course, that all double measurements (especially
time measurements which are calculated using double) over�w at half the
values, or after ~277 years. Again, since no Microsoft computer will ever
get that uptime, this is really not a problem.

5 Benchmarks

In order to asses our library we wrote several benchmarks, which are part of the
library distribution.

5.1 Overhead benchmarks

� test_overhead

Measures the overhead of the library's cycle and nanoseconds measure-
ment functions. Simply iterates on a single measurement 1000 times, and
returns the average overhead for each possible return type (tsc_counter_t,
tsc_counter_int_t and double). The overhead is displayed both as cycle
count and as nanosecond timer.

� test_syscall <syscall name> <sleep time> <iterations>

Measures the overhead incured by the two most common time measure-
ment system calls (time and gettimeofday), and by two other common
system calls (dup2 and close). Executes the system call then sleeps for

10



the requested number of iterations. Displays the overhead for each itera-
tion, as well as the average overhead over all iterations. The sleep between
two measurements is required because we noticed that calling a system call
consequtively shortens its runtime, whereas in the real world a system call
are rarely called consequtively.
Parameters :
syscall name - the name of the syscall to measure (one of the four men-
tioned above).
sleep time - the time to sleep each iteration, in milliseconds.
iterations - the number of iterations to repeat the measurement.

5.2 CPU Speed Measurements benchmarks

� test_cpuspeed <iterations>

Tests the self measured CPU speed. This test gives the user and indica-
tion that the CPU speed time measurement done internally by the library
is correct, and very close to the operating system measurement (that can
be found on Linux in /proc/cpuinfo, or in the Windows NT registery).
Parameter :
iterations - the number of times to iterate the test. The more time, the
more accuate the mesurement is.

6 Porting issues

Because this library is very hardware oriented and uses inline assembly instruc-
tion, and since it requires some non-standard types, we found it necessary to
rewrite the low level bindings for each development environment. In order to
refrain from clobbering the code with numerous ifdef clauses, we decided to
extract all the non-standard de�nitions into one abstract interface, which will
hide the operating platform from the implementation (much like the HAL for
Windows NT). We called this interface Abstract System Interface � ASI. It
is composed of macros, typedefs and inline functions. The exact interface is
described in the following section.

6.1 Abstract System Interface

6.1.1 typedefs and types

� typedef struct {
unsigned long low;
unsigned long high;
} tsc_int64;
This is the only type that is de�ned by the library and not by the ASI. It
is a library internal struct that consists of two unsigned long values, and is
used to hold the counter values read from the CPU's time stamp counter.

11



It is used to pass parameters to the low level rdtsc inline function (section
6.1.3).

� TSC_UINT64

The type for the 64-bit integral values received from the CPU's time stamp
counter. Such integral types are not standard, thus only exist on few
development environments, and when they do exist there is no standard
naming convention. If non suc integral type exists, this should simply be
an alias to double. However, if this is indeed a large enough integral type,
the macro TSC_UINT64 should be de�ned (see section 6.1.2).

6.1.2 Macros

� TSC_UINT64
This macro indicates that the typedef binding of TSC_UINT64 is to a
64-bit integral type, and not to double. If the type TSC_UINT64 is an
alias to double, this macro should not be de�ned.
Note:
The idectical names of this macro and the typedef are for clarity. There
is not colision problem if the macro is de�ned as: �#de�ne TSC_UINT64
TSC_UINT64�

� UINT64_TO_DOUBLE(ull), DOUBLE_TO_UINT64(d)

These one parameter macros are used convert to between the bound type
and double. Their names suggest their functionalities.

� INLINE

This macro is used to declare a function as inlined for best performance.
Although most platforms accept the word inline, some compilers either
recognize some underscored version of the word (__inline, __inline__
etc.), or give a more optimized inlining version (GNUC has extern inline).

This macro should be bound to the best inlining command available by
the compiler.

6.1.3 Inline functions

� void rdtsc(tsc_int64 * const counter)

This is the heart of the library. This inline function contains the assembly
code to operate the rdtsc opcode that reads the time stamp counters o�
the CPU [3]. It reads the value into the struct whose pointer is passed as
a parameter.
Parameters :
counter - A pointer to the struct to which the counter data will be read.
NOTE:

12



Since this is the basis of all measurements, this function is best when im-
plemented using a macro, but in any case it should be super optimized.
We suggest compiling the code into assembly �rst to see that the function
is indeed inlined and it is optimized. Sometimes the best idea if to write
is all in assembly (as the case with Windows NT and QNX).

The following functions are library internal functions, and it is best if they are
not exported. Since they are inlined, a simple static declaration is not enough.
For this reason the library de�ned the macro TSC_PRIVATE_FUNCTIONS

before including the platform speci�c �le, and it is best to protect those func-
tions' declarations with a precompiler ifdef clause: #ifdef TSC_PRIVATE_FUNCTIONS.

� char *tsc_platformUINT64ToStr(TSC_UINT64 counter, char* bu�er)

Convert the library's special type into a character array. Since the type
itself is platform dependant, and each platform that support 64-bit inte-
grals has its own method of printing them, this function is required. The
bu�er is guarenteed to be big enough to hold any 64-integer.
Parameters :
counter - The integral value
bu�er - The bu�er to which the string representation of the counter is to
be written.
Return value:

A pointer to bu�er

� double tsc_msTime(void)

Simply return a millisecond time counter. Since this function is only used
when we measure the CPU speed, its speed is not important and actually
it should usually be a wrapper of some system call. We do not care what
is the epoch time for the function (the time where its counter started),
since we only measure time di�erences.

Return value:
The current time in milliseconds

� void tsc_msSleep(unsigned long msec)

Sleeps for msec milliseconds. A wrapper for each operating system's own
sleep functions.
Parameters:

msec - The time to sleep, in milliseconds.

Acknowledgements

A special thanks goes to Avi Kavas, who su�ered as our beta tester while using
the initial versions of this library in his M.Sc. thesis' research.

13



References

[1] gettimeofday system call manual page.

[2] IEEE Standard Portable Operating System Interface for Computer Environ-

ments.

[3] Intel Corp. Intel Architecture Software Developer's Manual, 1997.

14


