Shared Display Event Bus Protocol Specification

Index

Introduction
1

Message Structure
2

Event Types
2

Data Compression Scheme (RLE)
4

Introduction

This document contains a specification of the protocol used by Shared Display (henceforth referred to as SD). The communication between the SD Clients goes through the Event Bus Architecture. The SD uses JMS Bytes messages to wrap up the SD events and broadcast them on the Event Bus. The other clients receive these messages and extract the SD events and take appropriate action depending on the Event type.

Message Structure

The SD messages travels on the Event Bus as Bytes Messages. Thus each message contains an array of bytes. The first byte of each message indicates the type of SD Event and the meaning of the rest of the bytes depend on the Event type.

Event Types

Currently the following Event Types are defined –

	SDP_DISPLAYFORMAT = 0

	BYTE
	Type
	0

	DWORD
	CaptureToken
	See Token Usage

	WORD
	Width
	Display area width in pixels

	WORD
	Height
	Display area height in pixels

	SDP_DISPLAYUPDATE = 1

	BYTE
	Type
	1

	DWORD
	CaptureToken
	See Token Usage

	BYTE
	Not Used
	

	WORD
	Left
	Coordinate Relative to Display Area

	WORD
	Top
	Coordinate Relative to Display Area

	WORD
	Width
	Update Width in pixels from Left

	WORD
	Height
	Update Height in pixels from Top

	DWORD
	DataSize
	Update data size in bytes

	BYTE
	Data[1]
	See Compression Details

	SDP_FULLUPDATE = 2

	BYTE
	Type
	2

	DWORD
	RequestID
	Implementation Specific, Not Required

	DWORD
	DataSize
	Update data size in bytes

	BYTE
	Data[1]
	Series of SDP messages providing a snapshot of the current state.*

	SDP_MOUSEUPDATE = 4

	BYTE
	Type
	4

	DWORD
	InputToken
	See Token Usage

	DWORD
	uMsg
	WM_MOUSEMOVE
	0x0200

	
	
	WM_LBUTTONDOWN
	0x0201

	
	
	WM_LBUTTONUP
	0x0202

	
	
	WM_LBUTTONDBLCLK
	0x0203

	
	
	WM_RBUTTONDWN
	0x0204

	
	
	WM_RBUTTONUP
	0x0205

	
	
	WM_RBUTTONDBLCLK
	0x0206

	
	
	WM_MBUTTONDOWN
	0x0207

	
	
	WM_MBUTTONUP
	0x0208

	
	
	WM_MBUTTONDBLCLK
	0x0209

	DWORD
	wParam
	Ignore

	DWORD
	lParam
	Lo Word = xpos relative to the Display Area

Hi Word = ypos relative to the Display Area

	SDP_KEYBOARDUPDATE = 5

	BYTE
	Type
	5

	DWORD
	InputToken
	See Token Usage

	DWORD
	uMsg
	WM_KEYDOWN
	0x0100

	
	
	WM_KEYUP
	0x0101

	
	
	WM_SYSKEYDOWN
	0x0104

	
	
	WM_SYSKEYUP
	0x0105

	DWORD
	wParam
	Ignore

	DWORD
	lParam
	Bits
	Description***

	
	
	0-15
	Repeat Count

	
	
	16-23
	Scan Code

	
	
	24
	Extended Key Flag

	
	
	25-28
	Reserved

	
	
	29
	Context Code

	
	
	30
	Previous Key State

	
	
	31
	Transition State

	SDP_ANNOTATION = 6

	BYTE
	Type
	6

	BYTE
	AnnotationType
	0 = HIGHLIGHT

1 = MARKER

2 = ALL**

	BYTE
	Action
	0 = ADD_ANNOTATION

1 = DELETE_ANNOTATION**

	RECT
	Rect
	Boundary rectangle of the annotation

	COLORREF
	Color
	Color of the annotation

	SDP_MOUSEPOSITION = 9

	BYTE
	Type
	9

	DWORD
	InputToken
	See Token Usage

	DWORD
	uMsg
	WM_MOUSEMOVE
	0x0200

	DWORD
	wParam
	Ignore

	DWORD
	lParam
	Lo Word = xpos relative to the Display Area

Hi Word = ypos relative to the Display Area

	SDP_ENABLEANNOTATION = 10

	BYTE
	Type
	10

	DWORD
	CaptureToken
	See Token Usage

	bool
	Enable
	Specifies whether annotation mode is on or off.

	SDP_PALETTE = 11

	BYTE
	Type
	11

	DWORD
	CaptureToken
	See Token Usage

	COLORREF
	Palette[256]
	COLORREF = (DWORD) 0x00BBGGRR

* - Data should be processed as a series of Events until all events have been processed as it may contain any or all of the other event types.

** - AnnotationType = 2 & Action = 1 will clear all annotations other combinations involving either of these values are meaningless.

*** - See Microsoft Platform Documentation for further details

Token Usage

There are two separate tokens, Capture and Input, which should be used in the same manner. You should store the current token locally starting at 0 and compare each event token to your current token.

EventToken = CurrentToken : Process Event

EventToken > CurrentToken : Update CurrentToken and Process Event

EventToken < CurrentToken : Ignore Event

Compression

Currently there are three different bit depths at which the image data will be transmitted.

24bit Raw RGB Pixel Format

16bit RLE(Uses 565 RGB Pixel Format)

8bit RLE(Uses 332 RGB Pixel Format)

The first data byte will define the types of compression that have been used.

0x00 = None

0x01 = Huffman

0x02 = RLE565

0x04 = RLE332

0x08 = LZ77

The RLE compressions both encode the data using the same encoding scheme. A 16bit value starts each chunk defining its type and size.

	Chunk Type
	Code
	Meaning

	Copy
	Value < 0x4000
	Copy next Value pixels from Stream to Image

	Ignore
	Value & 0x4000
	Skip the next Value & 0x3FFF pixels from the image they haven’t been changed

	Repeat
	Value & 0x8000
	The next pixel from Stream should be placed into the Image Value & 0x3FFF times

	End of Data
	Value = 0xC000
	Indicates that there is no more data.

Event Bus (Carries Java Message Objects)

Shared Display Client - A

SD Event

Bytes Message with SD Event wrapped

Bytes Message with SD Event wrapped

SD Event

Shared Display Client - B

Anabas Inc.

