Overview of Technologies

GXOS

GXOS define a universal XML syntax, which defines the architecture of XML meta-objects. Each meta-object contains necessary information about some real objects, for example, how to access, render or share them, or who the authors, owners, or users of some services or documents are. Specifications define one core object, TreeObject that holds links to its parent, child objects as well as rendering information and node profile. Furthermore, specifications define a meta-object event-based collaboration framework and its objects inherited from the core object, such as events, documents, users, all the players of such a system.

GNDI

GNDI is a JNDI service implementation and provide a naming and accessing mechanism for GXOS XML objects. It can simply be viewed as an associative memory; however, its simplistic design let naming services implement hierarchical models as well. Having a hierarchical object model such as GXOS, GNDI simply fits into this picture. 

Each GXOS object is named with a unique path starting from its root till the object itself including ancestors. At each level lies a collection object (a container), which is known as a context in JNDI terminology.

Castor Java-XML Data Binding

Castor is an open source project, which provides Java-XML data binding framework and implementer packages. SourceGenerator retrieves XML schema definitions, and generate corresponding Java classes. These classes contain data fields defined in XML schema as well as accessor (getter/setter), marshalling and unmarshalling methods. In-memory Java objects can be marshaled into XML objects, and XML objects can be unmarshalled into memory objects using these utility functions.

EJB

EJB is Sun’s “industry-backed server-side component architecture.” The specifications define EJB objects, which can be mapped to any back-end data model. Furthermore, EJB home interface defines how these objects will be constructed and removed from the memory either by user invokes or as the memory gets full. These home objects are also called EJB pools.

Current GXOS-GNDI Implementation

In the current implementation, GNDI provides accessing and object pooling mechanism for GXOS XML objects. Each GXOS object is addressed through its unique GNDI name. These names are mapped to their corresponding XML objects in the file system. As the names are broken down into their layers, each layer being a collection/context, parent collection/contexts of GXOS objects are accessed through the process, and, finally, objects are retrieved from their parents’ pool.

This architecture is expected to be reliable for thousands of XML objects stored in the file system. Objects access and persistency are provided by the file system through file names and storage. All the objects can be brought to the memory initially for lightweight applications.

Enterprise Applications

To implement this object model for enterprise level applications, we need to filter XML objects before they are brought to the memory because there might be more objects retrieved from a database than the memory can handle. Furthermore, lightweight implementation may require additional design and implementation for the enterprise level.

To solve these problems, we propose an architecture that uses advantages of both architectures.

GNDI will be used as the top-level object access and naming service by the enterprise level applications. Each object will be accessed by using its unique GNDI name. This assures compatibility between lightweight and enterprise level applications. GNDI contexts will now be implemented by EJB home objects. This provides object pool management at the collection/context level inside GNDI. In the current architecture, GNDI does not provide methods to remove objects from the memory, as it gets full. Now, EJB pooling handles this problem.

GXOS XML objects will be accessed by EJB home objects at the context level. For such an implementation, each object must implement EJB object interface so that they can be recognized by pooling managers. This will be provided by implementing EJB object interface for the core GXOS object, TreeObject.

We think such architecture provides scalability as the number of objects increases the model will adjust its memory usage through EJB pools, and switching implementation from lightweight to ASP for a back-end database rather it be an XML or traditional database, will be smoother, because the interface to applications will not get affected.

[Please also see the below figure]












GNDI





contexts



XML objects



Enterprise

applications



Current path:

Castor objects retrieved into contexts



EJB Homes serve as contexts



Proposed path



Castor objects implementing EJB object interface





