These words need to be in abstract/intro at “start” (abstract is simplified version of this)
We believe that it is interesting to study the system and software architecture of environments which integrate the evolving ideas of computational grids, distributed objects, web services, peer-to-peer networks and message oriented middleware. Such peer-to-peer (P2P) Grids should seamlessly integrate users to themselves and to resources which are also linked to each other. We can abstract such environments as a distributed system of “clients” which consist either of “users” or “resources” or proxies thereto. These clients must be linked together in a flexible fault tolerant efficient high performance fashion. In this paper, we study the messaging or event system – termed GES or the Grid Event Service -- that is appropriate to link the clients (both users and resources of course) together. For our purposes (registering, transporting and discovering information), events are just messages – typically with time stamps. The messaging system GES must scale over a wide variety of devices – from hand held computers at one end to high performance computers and sensors at the other extreme. We have analyzed the requirements of several Grid services that could be built with this model, including computing and education and incorporated constraints of collaboration with a shared event model. We suggest that generalizing the well-known publish-subscribe model is an attractive approach and here we study some of the issues to be addressed if this model is used in the GES. 

We have built a “production” system and an advanced research prototype. The production system uses the commercial Java Message Service (SonicMQ) and has been used very successfully to build a synchronous collaboration environment applied to distance education. The publish/subscribe mechanism is powerful but this comes at some performance cost and so it is important that it satisfies the reasonably stringent constraints of synchronous collaboration. We are not advocating replacing all messaging with such a mechanism – this would be quite inappropriate for linking high performance devices such as nodes of a parallel machine linked today by messaging systems like MPI or PVM. Rather we have recommended using a hybrid approach in such cases. Transport of messages concerning the control of such HPCC resources would be the responsibility of the GES but the data transport would be handled by high performance subsystems like MPI. This approach was successfully used by the Gateway computing portal.

Here we study an advanced publish/subscribe mechanism for GES which goes beyond JMS and other operational publish/subscribe systems in many ways. A basic JMS environment has a single server (although by linking multiple JMS invocations you can build a multi-server environment and you can also implement the function of a JMS server on a cluster). We propose that GES be implemented on a network of brokers where we avoid the use of the term servers for two reasons; the publish/subscribe broker service could be implemented on any computer – including a users desktop machine. Secondly we have included the many application servers needed in a P2P Grid as clients in our abstraction for they are the publishers and subscribers to many of the events to be serviced by the GES. Brokers can run on either on separate machines or on clients whether these are associated with users or resources. This network of brokers will need to be dynamic for we need to service the needs of dynamic clients. For example suppose one started a distance education session with six distributed classrooms each with around 20 students; then the natural network of brokers would have one for each classroom (created dynamically to service these clusters of clients) combined with static or dynamic brokers associated with the virtual university and perhaps the particular teacher in charge.

Here we study the architecture and characteristics of the broker network. We are using a particular internal structure for the events (defined in XML but currently implemented as a Java object). Further we assume a sophisticated matching of publishers and subscribers defined as general topic objects (defined by an XML Schema that we have designed). However these are not the central issues to be discussed here. Our study should be useful whether events are defined and transported in Java/RMI or XML/SOAP or other mechanisms; it does not depend on the details of matching publishers and subscribers. Rather, we are interested in the capabilities needed in any implementation a GES in order to abstract the broker system in a scalable hierarchical fashion (section 2); the delivery mechanism (section 3); the guarantees of reliable delivery whether brokers crash or disappear or whether clients leave or (re)join the system (section 4). This section also discusses persistent archiving of the event streams. We have emphasized the importance of dynamic creation of brokers but this was not implemented in our initial prototype. However by looking at the performance of our system with different static broker topologies we can study the impact of dynamic creation and termination of broker services.
