1.0 Installing the Software

The software for the package comprises of several files. These files are usually compressed and this compressed file is then made available for download. A hacker could modify some of these files. These modified files are then compressed and made available for download. Users who download these files are not aware if these files have been modified. To ensure that the files have not been modified, we employ message digest functions. We could employ the MD5 message digest algorithm (RFC 1321). MD5 developed by Ron Rivest at MIT takes as input a message of arbitrary length and produces a 128-bit message digest while processing the input in 512-bit blocks. The software is then placed at the download site and users are free to download this software along with the message digest for the software. Users compute the message digest associated with the software, if the value returned matches the value posted on the website then the user concludes that the files have not been modified.

It is however possible that the software has been modified by a hacker. This hacker then proceeds to compute the message digest and places the modified software along with the newly computed message digest at the server. Users would then download this malicious software and when they compute the message digest, they would find that it matches with the one available at the web site. What needs to be ensured is that only the author of the package is allowed to modify the contents in the package, and not someone who has gained access to the server hosting the website. The author of the package needs to be able to state the value of the message digest while ensuring that no one else can change it.

To solve this issue of identity we use digital signatures. The author then encrypts the message digest function with his private key and users employ the author’s public key to decrypt the message and retrieve the message digest function. After downloading the software users compute the message digest, if they match it can be assumed that the software was developed by the author/organization whose public key is available for decryption. Since only the author is aware of the private key, only the author could have produced a valid signature. The approach for digital signatures outlined here is the scheme employed by RSA for digital signatures, we could also use the Digital Signature Standard (DSS) approach to providing digital signatures.

It is however possible that someone other than the author has modified the files, computed the message digest functions and then signed it with their own private key and put up the public key for download for subsequent decryption of the message digest. To circumvent this problem we use digital certificates, which provide a binding between the public keys to individuals or organizations. These certificates are issued by certifying authorities (CAs). Of course the CA must be someone whom both the author and the users trust. The CA is not responsible for the creation of the private-public key pair, and merely provides an accessible location for retrieving the public key associated with the author. The CA signs the certificate with its private key, this certificate contains the author’s public key. Users then use the author’s public key to verify the message digest function.

2.0 Authentication.

There are several levels of authentication. The first is of course that of authenticating the client. Clients connect to one of the servers for access to services. Any server that a client connects to then needs to authenticate itself to the client. A newly added server needs to be able to authenticate itself to the other server processes that it would connect to.

2.1 Authenticating clients:

We now very briefly outline the Kerberos Authentication service that we intend to use. The Kerberos Authentication server (AS) keeps of valid userID’s and their passwords. Every server in the system has a unique ID assigned by the system, this information is also maintained by the AS. When a client wishes access to a set of services, the client issues a ticket granting request on behalf of the user along with the ID of the Ticket Granting Server (TGS). The AS responds with a ticket encrypted using a key derived from the user’s password. The ticket is recovered only if the user enters the correct password, which would cause the key to be regenerated. The ticket granting ticket that this client receives from the AS is encrypted using a key that is known only to the AS and the TGS. The client then issues a request to the TGS requesting a service-granting ticket. The request comprises of the UserID, the ID of the desired service and the ticket granting ticket. Since the ticket granting ticket is encrypted using a key that only the TGS and the AS are aware of, the TGS decrypts the incoming request and confirms success in the decryption on finding its TGS-ID. It verifies the userID and associated network address to authenticate the user. The TGS also checks to see if the lifetime associated with the ticket-granting ticket has expired. If the lifetime has not expired and if the user is permitted to access the service a ticket is issued for that service.

This service granting ticket issued by the TGS is encrypted using a key known only to the TGS and the server that would provide access to the service, which the client seeks. The client proceeds to use this ticket for access to the server. This sever then authenticates the client based on the contents contained in the service-granting ticket.

2.2 Authenticating the server that a client connects to:

For authenticating the server to the client, Kerberos also has the notion of a session-key. This session key is securely routed by the AS to both the TGS and the client. When the TGS issues a ticket granting ticket it includes the session key, the server V that should receive this ticket, and a timestamp at which this ticket was issued. Server V is able to decrypt the ticket since it is encrypted based on a key that only TGS and V are aware of. Server V then retrieves the session key and uses this session key to decrypt the authenticating timestamp. It increments the timestamp by one and returns it to the client after encrypting it with the session key. Since it is encrypted with the session key the client is able to confirm that it could have been created only by the right server V, the contents further guarantee that this message is not a replay.

2.3 Authenticating a new server process to existing server processes:

When a new server process is added to the distributed server network, it is essential to verify if this server process runs the original software. It is conceivable that a user can make changes to the software, after the user has downloaded the original software. This software can then be modified such that it could serve as a black hole within the server network. Events could be routed to this modified server process and no further processing would be done by the process. Of course such a server could also perform other far more harmful activities. Users instantiating new servers would first need to authenticate themselves to the Kerberos authentication server in much the same way as clients do. Furthermore we check to ensure if the message digest, signature and certificates associated with the servers are intact. If these checks succeed we then proceed to share a unique key between the AS and this newly added server.

3 Communication between servers

We now proceed to outline schemes that could be used for encryption of traffic between the servers. The two possible approaches could involve symmetric key based approaches or asymmetric keys based one. Keys for communication between two servers, over a specific link, could be securely exchanged using the Diffie-Hellman key exchange. We could then encrypt the traffic between the servers using this key. We could use DES or triple-DES for encrypting the traffic. In the event that we plan to use triple DES we would need to exchange at least two keys securely.

In the asymmetric key based approach to encryption we could use RSA. Let us say that we need to encrypt the traffic between two servers A and B. Further, servers A and B are aware of the public keys that belong to each other. For data being sent from server A to server B, server A encrypts data to be routed to server B. This encryption is done using server B's public key and server B decrypts this data using its private key.

3.1 Communication between server and clients:

Communication between servers and clients can be encrypted in much the same as the traffic between two servers is encrypted.

