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Abstract This paper gives an overview of the VGDS (Virtual Global Data Structure) project. The VGDS

e�ort focuses on developing an integrated, distributed environment that allows fast prototyping of a diverse

set of simulation problems in irregular scienti�c and engineering domains, focusing on computations with

irregular and adaptive structures. The framework de�nes two base libraries: unstructured mesh and adaptive

tree, that capture major data structures involved in irregular scienti�c computation. The framework de�nes

multiple layers of class libraries which work together to provide data-parallel representations to application

developers while encapsulate parallel implementation details into lower layers of the framework. The layered

approach enables easy extension of the base libraries to a variety of application-speci�c data structures.

Experimental results on a network of workstations is reported.

Keywords: parallel and distributed data structures, scienti�c computation, object-oriented class libraries,

unstructured mesh, adaptive tree

1 Introduction

Numerous on-going e�orts attempt to provide a parallel version of C++ for High Performance

Computing. In recent years, these e�orts have emerged to a High Performance C++ (HPC++)

standard [15]. HPC++ supports various constructs to develop both task and data parallel ap-

plications. It also supports the standard high-level mechanism of transparent remote method

invocation that is essential to supporting object parallelism. Despite of these sophisticated lan-

guage features and library support, HPC++ has not been widely used by computational scientists

in the HPC community. A key reason is that the HPC++ community has not developed su�-

cient scalable technology to support rich and complex data structures expressible in C++. On the

other hand, Fortran 90 and High Performance Fortran (HPF) are counted among HPC's software

successes, because they demonstrate the utility of parallel arrays for hiding low-level distributed

memory details. This is possible because of Fortran's restrictions and the well understood prin-

ciples of mapping arrays and regular computation to HPC platforms.

In our opinion, the crucial and timely task for parallel C++ is to develop scalable technology

for supporting rich and complex distributed non-array data structures. The idea is to present a

virtual global data structure to the user where data distribution and communication are hidden

much like an HPF array. The goal is to allow the same code to be portable from uniprocessors to

shared memory processors, massively parallel processors, or network of workstations (NOW).



Tree structures and unstructured meshes are two important data structures that have gained

much attention in scienti�c computing community. For example, tree structures are oftenly used

as algorithmic approximation structures in numerically intensive applications, enabling a scale

of computation not attainable before. In recent years the so-called \tree codes" for N-body

simulations have received wide attention. Our recent work with Rutgers University and Bellcore

has led to new tree codes for multi-�lament simulations for vortex dynamics of turbulent 
ows

[7, 11].

Unstructured meshes are oftenly used in Computational Fluid Dynamics computations. The

use of CFD to predict internal and external 
ows has risen dramatically in the past decades.

In recent years, the availability of a�ordable high performance computers and e�cient solution

algorithms have led to a upsurge of interest in CFD, and indeed the technique spans a wide range

of industrial and non-industrial application areas.

Having discussed the signi�cance of tree structures and unstructured meshes, there remains the

question whether these data structure classes can be made more-or-less application independent

and be useful for a wide range of applications. We observed that all tree codes must resolve

common issues of building, traversing, updating and load-balancing large trees in distributed

memory, and all unstructured mesh codes follow similar patterns of neighborhood (adjacent edges

or vertices within small number of hops) data referencing and updating and load-balancing large

meshes. This motivated our e�ort in designing a general data structure framework for scienti�c

computation.

We have designed a data structure framework called Virtual Global Data Structures (VGDS)

for this purpose. The idea has been to provide high-level programming tools by presenting a

virtual global data structure to the user where data distribution and communication are hidden

much like an HPF array. The VGDS framework de�nes two base libraries: Graph, and Tree.

The framework implements virtual global data structures as object-oriented classes with explicit

associated method interfaces. Application-speci�c data structures and their optimizations can

be derived from the base libraries through class inheritance. Currently we have constructed an

unstructured mesh library from the Graph class and a Barnes-Hut tree library from the Tree

class. Both data structures are useful for various scienti�c simulation problems.

The idea of abstracting certain scienti�c code into libraries has been demonstrated by various

e�orts [3, 4, 8, 21, 32]. Our VGDS framework distinguishes itself from others in the following

aspects: (1) VGDS incorporates distributed, adaptive tree structures, which, to our knowledge,

has not been attempted before. (2) Most of the existing works focus on a speci�c data structure.

Instead of tackling one particular data structure, VGDS proposes a general data structure frame-

work from which a diverse set of application-speci�c data structures can be derived. (3) We use

layered object-oriented design and analysis in the construction of the VGDS base libraries. This

layered approach allows easy construction and optimization of application speci�c data structures.

It also provides a natural breakdown of responsibility in designing a complete HPC system.

In addition to programming support, the performance issue also needs be addressed as it is

the key point of exploiting HPC in the �rst place. The challenges for virtual global data structure

classes can be summarized as follows:

� The data can be irregularly structured and dynamic; as the data structure evolves, a good

mapping must change adaptively.

� The data access patterns can be irregular and dynamic; the overhead of gathering needed

data at runtime can be prohibitive unless done carefully.
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� The number of 
oating point operations needed to update the value of an element can vary

tremendously between elements. Therefore, good load balancing is crucial. This is a tricky

issue since it involves critical tradeo�s between sometimes con
icting requirements of data

locality and balance of workload.

To address these issues satisfactorily requiers novel algorithmic strategies, load balancing

techniques, data coherent strategies and innovative object-oriented class design methodology.

Our approach to these issues can be summarized as follows : (1) exploiting physical locality by

novel partitioning strategies, (2) reducing cost of gathering needed data by prefetching, (3) main-

taining data coherence by low-overhead duplication and synchronization, (4) minimizing cost of

dynamic structural change by incremental remapping, (5) reducing communication overhead us-

ing aggregate communication, and (6) optimizing all-to-some collective communication to exploit

characteristics of underlying machine.

The rest of the paper is organized as follows. Section 2 describes the organization and

functionality of the VGDS framework. Section 3 discusses our approach to the performance issue.

Section 4 uses the Tree library as an example to illustrates the core functionality of the VGDS

framework. Section 5 reports our experimental results on a network of workstations. Section 6

describes related works. Section 7 concludes.

2 The VGDS Framework

The �rst step towards an abstraction of application codes using complex data structures is to

separate data structures from their application context. A suitable representation must be chosen

so that a global data structure abstraction can be seen by the user while being implemented by an

actual collection of distributed parts. The VGDS framework de�nes three layers of C++ classes

for this purpose: the global layer, the parallel abstraction layer, and the local layer. Figure 1

depicts the structure of the VGDS framework.

(Uniprocessor/Workstation Clusters/MPP)
Machines

Array, Record, Pointer)
(Integer, Real, Double,

Base Language Data Types

Local Layer

Communication Primitives

MPI  or

Primitive Layer

Global Layer

basis

VGDS
Parallel Abstraction Layer

Application Layer

CFD simulations
solid mechanics simulations

computer animations

Nbody simulation
molecular dynamics simulation

adaptive multigrid computation

(Unstructured-mesh based) (Tree-based)

Global VGDS Data Types (Graph, Tree)

Local VGDS Data Types (LocGraph, LocTree)

Data decomposition, Interprocessor communication, Load balancing

Figure 1: The VGDS framework
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The global and local layers together de�ne various virtual global operations on graph-based

(such as unstructured meshes) and tree-based (such as Barnes-Hut trees) data structures. The

global layer de�nes global data types. Objects in the global layer are bookkeepers that dele-

gate computational tasks to the local layer. The local layer implements generic, processor-local

computational kernels for each VGDS component. The interactions between the global and the

local layers are mediated by the parallel abstraction layer that implements the abstraction of

parallelism, including data decomposition, interprocessor communication, and load balancing.

2.1 VGDS Classes

Base VGDS Classes. Currently, the VGDS framework de�nes two basic non-array data struc-

ture classes: Graph (for equation-solution based computation), and Tree (for tree-based particle

simulations). We call them the Base VGDS. The Base VGDS layer is generic to multiple ma-

chines; it contains the usual constructors and a destructor for storage allocation, and methods

for inserting/deleting data structure elements (e.g. tree nodes, graph nodes), building the data

structure in a manner to be speci�ed, performing computation on the data structure elements as

directed by the user, and travering the data structures in various ways.

Derived VGDS Classes. Application-speci�c VGDS data structures can be derived from the

Base VGDS classes via class inheritance. For instance, an unstructured mesh class can be derived

from the Graph class by inheriting the Graph class and de�ning additional methods essential

in unstructured mesh computation (�nite element method, �nite volume method, etc.). This

derived VGDS layer represents specialization of Base VGDS to di�erent target machines and

di�erent classes of algorithmic components (data coherent strategies, load balancing techniques).

The goal of the Derived VGDS has been to optimize the performance of the VGDS library classes

for di�erent classes of applications on a wide range of machines while shielding its complexity

from the application users.

Table 1 outlines the classes and functionality of each layer, details of which are described in

the following sections.

Table 1: VGDS classes and functionalities
Layers Classes Functionality

Base Derived

Global Graph UMesh data-parallel

Tree BHTree operations

AdaptGrid

Local LocGraph LocUMesh processor-local

LocTree LocBHTree operations

LocAdaptGrid

Mapper BlockPartitioner data distribution and

k-wayPartitioner load balancing

Parallel ORBPartitioner management

Abstraction Communicator RandomizedGather inter-processor

communication

Message FlattenMessage message

abstractions
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2.2 Global and Local Layers

A VGDS data structure at the global layer provide a global view of the data, in which the data

structure is treated as a monolithic whole, with operators that manipulate individual elements and

implicitly iterate over substructures. In the local view (the local layer), each processor contains

only a part of the whole, with operators acting only on the local data.

A VGDS data structure is implemented as mirrored pairs of global/local classes. When a

global data object is instantiated, it creates a constituent local data object on each processor.

Whenever a kernel operator associated with the data object is invoked, the operation is carried

out by �rst retrieving the handles to the local data, then delegating complete local computation

to each local data object. If communication is required, it is performed through system objects

in the parallel abstraction layer.

2.3 Parallel Abstraction Layer

The parallel abstraction layer de�nes classes for data layout, interprocessor communication, and

load balancing for virtual global data structures. Classes in this layer are implemented as abstract

classes and can be shared among various data structures. The key features of this layer are

encapsulated into two groups of classes { data decomposition classes that are responsible for

processor geometry, data partitioning and mapping, and load balancing, and communication

classes that take care of data movement between processors.

Data Decomposition Classes

The global data structure are partitioned into local substructures on each processor according to

the Mapper class. Mapper is an abstract class that de�ne common service interface for �nding

the geometry of a VGDS, identifying global neighbor relations between their constituent local

substructures, and deriving logical send- and receive-sets for a given global subscript resolved into

the local substructure. Concrete mapping classes that are derived from Mapper provide domain

speci�c information and functionality that can be tuned to the need of the speci�c data struc-

ture. For example, VGDS supports METIS's k-way partitioning strategy for graph-based data

structures and a ORBPartitioner (Orthogonal Recursive Bisection) for adaptive tree structures.

The Mapper class (Figure 2) de�nes a data partitioner (e.g. the ORB partitioner), a dynamic

load balancing (remap) method, and two associated geometry resolution functions: data to processor

(that translates a data coordinate to a processor domain) and dataset to processors (that

translates multiple data coordinates to a set of processor domains). In addition, it de�nes a sim-

ple data structure MappingTable to store the mapping information. By instantiating the Mapper

class, the user can also construct customized data decomposition strategies. In Section 4 we will

use the Tree class to show the implementation of the ORB mapper class.

Communication Classes

Two groups of classes are implemented to support portable, transparent message-passing com-

munication on distributed-memory machines { Message and Communicator. The Message class

is used to encapsulate data in a common format for easy data delivery and retrieval of di�erent

data structures. Currently VGDS supports a message abstraction that 
attens the attributes and

contents of a data structure section to be communicated into a liner bu�er on the sending side,
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template <class Data, class DataSet, class ProcessorDomain,

class MappingTable>

class Mapper {

protected:

MappingTable table;

public:

virtual MappingTable partition(DataSet*, ProcessorDomain)=0;

virtual MappingTable remap(MappingTable,DataSet*,ProcessorDomain)=0;

virtual ProcessorDomain data_to_processor(Data*)=0;

virtual Link_list<ProcessorDomain>

dataset_to_processors(DataSet*)=0;

};

Figure 2: De�nition of the Mapper class

and can quickly recovers the contents of the data structure on the receiving side. The Commu-

nicator is an abstract class that de�nes common service interfaces for bu�er allocation, message

delivery, and data handling related to communication. These services are encapsulated into three

methods: extract, communicate, and process (Figure 3). Communicating data elements be-

tween processors are performed in three steps. First, the Communicator extracts data elements

for sending by traversing the speci�ed region in the VGDS data object and packing data elements

into a Message object. Then the Communicator delivers (communicates) the Message object ac-

cording to the given communication scheduling algorithm. When a Message object is received,

the Communicator unpacks it and stores the data elements to the appropriate locations in the

VGDS data object. The extraction and the restoring process requires interaction with the VGDS

data object. The method communicate is implemented on top of MPI, to assure portability.

template <class Data, class DataPacket>

class Communicator {

protected:

Link_list<Data*> *data_list[MAX_NUM_PROCESSORS];

DataPacket send_buffer[MAX_BUFFER_SIZE];

DataPacket receive_buffer[MAX_BUFFER_SIZE];

public:

void communicate();

virtual DataPacket extract(Data*)=0;

virtual process(DataPacket*)=0;

};

Figure 3: De�nition of the Communicator class

Figure 4 depicts the interactions between data classes and systems classes in the VGDS frame-

work. When a VGDS data object invokes a method that requires remote data accesses, the data

object consults the Mapper object for the identi�ers of the processors on which the global sub-

scripts are mapped, and inserts them into a list of sends and receives (called communication

schedule). The data object then requests the Communicator to carry out the planned data move-

ment. During the course of computation, if the VGDS data object detects that a remapping is

necessary (e.g. for load balancing purpose), it invokes the remap method in Mapper, which in

turn redistributes the data structure incrementally.
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Mapper
load balancing

remapping

schedule
communicationdata movement

Communicator

VGDS data object

Figure 4: Interaction of classes in the VGDS framework

3 Implementation issues

This section discusses our implementation strategies for the VGDS framework. The issues include

our strategy for maintaining a virtual global data structure over distributed memories and a

number of optimizations that we have taken to improve the performance of the libraries.

3.1 Maintaining a virtual global data structure (data coherence)

P0

P0 P1

P1

P0 P1

P1P0

(a) duplication for unstructured meshes (irregular data structures)

(b) duplication for adaptive tree structures

Figure 5: Duplication for distributed data structures. The duplicated data are indicated by solid

black.

Since a virtual global data structure is distributed over local memories of processors, in order to

e�ect the same computation as in the global view, the local computations must be coordinated.

We adopt the owner-computes rule, which distributes computations according to the mapping

of data across processors. However, a local substructure may require information from other

processors to complete the computation of data assigned to it. When communications mostly

occur between neighboring processors and the same communication patterns may occur many

times during program execution, it is more e�cient to duplicate boundary data elements on

adjacent processors. For example, in an unstructured mesh computation where the new data

value of a mesh node is a function of its neighbors, by duplicating boundary mesh nodes to the

other side of partitioning lines, computations on the local submeshes on individual processors

can all be performed locally without communication. In reality, data elements may be read or
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updated, which raises the issues of data coherence and synchronization. We describe our approach

next.

We classify the data into two categories, master copy and duplication. A master copy is a data

region in the original global structure that is mapped to a processor. A master copy can make

copies of itself, called duplication, on other processors. That is, all the data elements that are

essential to the computations of the local master copies will be fetched into the local substructure

on the processor which owns the master copies. As far as each master copy is concerned, there

is no distinction between global and local structures. Note that we do not have the notion of

global pointers because all the pointers address a local memory address, be it a master copy or

a duplication. The computations read and update the master copy only { the duplications only

provide data and are read-only. Therefore, data coherence is guaranteed by allowing only the

master copy to be updated, and only one master copy exists for one data element.

Figure 5 shows the duplication mechanism for a regular array, an unstructured mesh, and

an adaptive Barnes-Hut tree for N-body algorithms. We assume that the computation of each

element in the regular array and the unstructured mesh requires its neighbors, and the per-particle

force computation of the Barnes-Hut algorithm requires a traversal on the adaptive Barnes-Hut

tree.

To assure data coherence, data elements are duplicated before the actual computation is per-

formed. After data are partitioned, system objects in the parallel abstraction layer duplicate the

data to the processors where they are essential to the computation. A barrier synchronization sep-

arates the duplication process from the computation, assuring that all the data are available and

the computation can proceed without any further communication. This mechanism guarantees

safety in a distributed environment.

Figure 6 summarizes the sequence of VGDS operations for irregular and/or adaptive scienti�c

simulations. Note that for adaptive structures, update on the values on the master copies may

change the shape of local substructures, and the data mapping may need incremental adjustments

to improve load balancing.

1. Assign data to processors and build local substructures.

2. For each iteration do:

(a) Duplicate data via communication.

(b) Update data on the master copies.

(c) Do computation and update local substructures.

(d) Update data mapping if load imbalance occurs.

Figure 6: VGDS operations for irregular and adaptive scienti�c simulations.

3.2 Optimizations for Good Performance

Four principles are essential to achieving good performance on complex, non-array data structures:

(1) exploiting data locality, (2) minimizing the cost for dynamic structural change, (3) using

aggregate communication and computation, and (4) using optimized communication functions.
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3.2.1 Exploiting Data Locality

Block distribution is oftenly used in array-based computation in that it keeps data that are

physically close in the same processor. For complex data strutures, we need to stick to the same

princple. VGDS provides a number of locality-preserving distribution methods for unstructured

meshes and trees. For example, the tree library provides a ORB distribution that maps elements

in a spatial domain to processors. At each recursive step, the separating hyperplan is oriented to

lie along the smallest dimension so as to reduce the surface-to-volume ratio. The ORB distribution

can be represented by a binary tree, a copy of which is stored in every processor and used as a

map to quickly locate data elements in the procesor space.

VGDS also allow other distribution methods such as clustering techniques. Domain special-

ists might come up with various distribution strategies and make them available to the user as

\swappable" components.

3.2.2 Minimizing Cost of Structural Change

The very nature of tree structures and unstructured meshes is dynamic and the applications

using them invariably require dynamic storage management and load balancing. Instead of doing

global change of data distribution to balance the work load among processors, VGDS employs

incremental remapping to reduce the overhead. For example, the ORB decomposition can be

maintained incrementally over the tree structure in parallel as described below.

Each ORB tree node represents a set of processors corresponding to the leaves of its subtree.

We call these processors the descendant processors of the ORB node. Each ORB node is assigned

a weight equal to the total number of operations performed in updating the states of elements

over all its descendant procerssors. An ORB node is said to be overloaded if its weight exceeds

the average weight of nodes at its level by a �xed percentage.

We identify ORB nodes which are not overloaded but one of whose children is overloaded; call

each such node an initiator. Only the processors within the corresponding subtree participate in

balancing the load for the region of space associated with the initiator. The subtrees for di�erent

initiators are disjoint so that non-overlapping regions can be balanced in parallel. At each steop

of the load-balancing process it is necessary to move bodies from the overloaded child to th enon-

overloaded child. This involves computing a new separating hyperplane; a binary search combined

with a tree traveral on the processor's local tree determines the total weight and the new location

of the hyperplane.

3.2.3 Using Aggregate Computation and Communication

The main idea of using aggregate computation and communication is that we want a working set

of data to be reused by many operations before signi�cant updates are required in the cache or

local memory. VGDS provides two mechanisms to help the users to program their applications in

this style. First, a set of communication methods are provided which combine multiple messages

for the same destination. Second, users are given aggregate data structure traveral methods

designed to do computation for multiple data elements at once. For example, a tree traveral

method starting at the root of a subtree processes the nodes of the subtree at once.
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3.2.4 Using Optimized Communication Functions

The communication style in computation using complex data structures can be characterized by

\all-to-some" communication, in which each processor sends a set of messages to dynamically de-

termined destination processors. There, the communication pattern is irregular and dynamically

changing. Communication operations such as gather, scatter, and all-to-all/all-to-some personal-

ized communication that are frequently used in tree codes and unstructured mesh codes all fall

into this category. E�ciency of communication is a key factor to the performance of this class of

applications.

VGDS employs a randomized scheduling for all-to-some communication. The scheduling al-

gorithm alternates sends with receives to avoid exhausting communication channels reserved for

messages that are sent but not yet received, and randomly permutes the destination so that any

processor will not be 
ooded by incoming messages at any given time. In an earlier paper [19] we

developed the atomic message model to investigate message passing e�ciency. Consistent with

the theory, we �nd that sending messages in random order worked best.

4 Case Study: BH Tree

In this section, we use the Tree class (and a BH Tree class derived from Tree) as an example to

illustrate the VGDS framework.

4.1 N-body problem and tree codes

Computational methods to track the motions of bodies which interact with one another have been

the subject of extensive research for centuries. So-called \N -body" methods have been applied to

problems in astrophysics, semiconductor device simulation, molecular dynamics, plasma physics,

and 
uid mechanics.

The problem can be simply stated as follows. Given the initial states of N bodies, compute

their interactions according to the underlining physic laws, usually described by a partial dif-

ferential equation, and derive their �nal states at time T . Fast algorithms have been reported

in [2, 5, 13, 28]. All these N -body algorithms explore the idea that the e�ect of a cluster of

particles at a distant point can be approximated by a small number of initial terms of an appro-

priate power-series. To apply the approximation e�ectively, these so called \tree codes" organize

the bodies into a hierarchy tree in which a particle can easily �nd the appropriate clusters for

approximation purpose.

4.2 The Barnes-Hut algorithm

We will focus on the Barnes-Hut algorithm as an example of N -body tree code. The Barnes-Hut

algorithm proceeds by �rst computing an oct-tree partition of the three-dimensional box (region

of space) enclosing the set of particles. The partition is computed recursively by dividing the

original box into eight octants of equal volume until each undivided box contains exactly one

particle. An example of such a recursive partition in two dimensions and the corresponding BH-

tree are shown in Figure 7. Note that each internal node of the BH-tree represents a cluster.

Once the BH-tree has been built, the mass and the location of the centers-of-mass of the internal

nodes are computed in one phase up the tree, starting at the leaves.

10



.

.

.

.
.

.

.

...
.

. .
.

..

Figure 7: BH tree decomposition

To compute accelerations, we loop over the set of particles observing the following rules. Each

particle starts at the root of the BH-tree, and traverses down the tree trying to �nd clusters that

it can apply center-of-mass approximation. If the distance between the particle and the cluster is

far enough, with respect to the radius of the cluster, then the acceleration due to that cluster is

approximated by a single interaction between the particle and a point mass located at the center-

of-mass of the cluster. Otherwise the particle visits each of the children of the cluster. Note that

nodes visited in the traversal form a sub-tree of the entire BH-tree and di�erent particles will, in

general, traverse di�erent subtrees. The leaves of the subtree traversed by a particle will be called

essential data for the particle because it needs these nodes for interaction computation.

Once the accelerations on all the particles are known, the new positions and velocities can be

computed. The entire process, starting with the construction of the BH-tree, is now repeated for

the desired number of time steps.

4.3 Parallel Implementation

To make the paper self-contained, we brie
y describe our parallel implementation of the BH

algorithm, upon which the BH-Tree library is built.

4.3.1 Data partitioning

The default strategy that we use to distribute bodies among processors is orthogonal recursive

bisection (ORB). The space bounding all the bodies is recursively partitioned into as many boxes

as there are processors, and all bodies within a box are assigned to one processor. Each separator

divides the workload within the region equally. The ORB decomposition can be represented by a

binary tree and is used as a map to locate points in space to processors.

4.3.2 Building the BH-tree in parallel

We construct the BH tree as follows. Each processor �rst builds a local BH-tree for the bodies

within its domain. At the end of this stage, the local trees will not, in general, be structurally

coherent. The next step is to make the local trees structurally coherent with the global BH-tree

by adjusting the levels of all leaves which are split by ORB bisectors.

Once level-adjustment is complete, each processor computes the centers-of-mass on its local

tree without any communication. Next, each processor sends its contribution to an internal node

to the owner of the node, de�ned as the processor whose domain contains the center of the
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internal node. Once the transmitted data have been combined by the receiving processors, the

construction of the global BH-tree is complete.

4.3.3 Collecting essential data

Once the global BH-tree has been constructed it is possible to start calculating accelerations.

It is signi�cantly easier and faster for a processor to �rst collect all the essential data for its

local particles, then compute the interactions the same way as in the sequential Barnes-Hut

method since all the essential data are now available. In other words, the owner of a data must

determine the area (called in
uence area) where its data might be essential, and send the data

there. Formally, for every BH-node �, the owner of � computes an annular region called in
uence

ring for � such that those particles � is essential to must reside within �'s in
uence ring. Those

particles that are not within the in
uence ring are either too close to u to apply center-of-mass

approximation, or far away enough to use u's parent's information. With the ORB map it is

straightforward to locate the destination processors to which � might be essential.

Figure 8 gives a high-level description of the parallel implementation structure. Note that the

local trees are built only at the start of the �rst time step.

Build local BH trees.

For every time step do:

1. Construct the BH-tree representation

(a) Adjust node levels

(b) Compute partial node values on local trees

(c) Combine partial node values at owning

processors

2. Owners send essential data

3. Calculate accelerations

4. Update velocities and positions of bodies

5. Update local BH-trees incrementally

6. If the workload is not balanced update the ORB

incrementally

Figure 8: Outline of code structure

4.4 The Tree Framework

To eliminate duplicated programming investments in developing similar tree-based scienti�c codes,

we have developed a VGDS tree frameowrk. The tree framework de�nes three layers of classes:

base tree layer, Barnes-Hut tree layer, and application layer. Each latter layer is built on top of

the former one. The base tree layer supports simple tree construction and manipulation methods.

System programmers can build domain-speci�c tree libraries (e.g. Barnes-Hut Tree) using the

classes in the base tree layer (Sec 4.4.2). Application programmers can write programs using

classes in the Barnes-Hut tree layer, or any other special library developed from the base tree

layer. Figure 9 depicts the hierarchy of tree classes and their associated methods.
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Tree Tree_node Tree_reduction
Tree_traversal_with_traverser

Tree_traversal

Compute_cluster_data

Check_Particle_bh_box_consistency

Find_edata

Interaction

BH_id
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Figure 9: The class hierarchy in base tree, Barnes-Hut tree, and application layers.

4.4.1 Base tree layer

The base tree layer is the foundation of our framework from which complex tree structures can

be derived. We de�ne basic tree manipulation methods in the base tree layer, including inserting

a new child from a leaf, deleting an existing leaf, and performing parallel tree reduction and

traversal.

template <class Data, const int n_children>

class Tree_node {

protected:

Data *data;

Tree_node *children[n_children];

};

template <class Data, class Tree_node, class Tree,

const int n_children>

class Tree_reduction {

public:

virtual void init(Data*) = 0;

virtual void combine(Data *parent, Data* child) = 0;

void reduction(Tree* tree);

};

template <class Data, class Tree_node, class Tree,

const int n_children, class Node_id>

class Tree_traversal {

public:

virtual bool process(Data*) = 0;

void traverse(Tree *tree);

};

template <class Data, class Tree_node, class Tree,

class Traverser>

class Tree_traversal_with_traverser :

public Tree_traversal<Data,Tree_node,Tree,N_CHILD,BH_id>

{

protected:

Traverser *traverser; // who is traversing?

};

Figure 10: Base tree layer classes.

Tree reduction computes the data of a tree node according to the data of its children, e.g.

computing the center of mass in Barnes-Hut's algorithm. Tree traversal walks over the tree

nodes and perform a user-de�ned operation (denoted as per node function) on each tree node

(Figure 10).

For tree reduction, users are required to provide two functions: init(Data*) and combine(Data

*parent, Data* child), which tell reduction class how to initialize and combine the data in

tree nodes, respectively. The class Data is the data type stored in each node of the tree on which
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the reduction operation is to be performed. For tree traversal, users are required to provide the

per node function bool process(Data*) that is to be performed on every tree node.

4.4.2 Barnes-Hut tree

The BH tree layer supports tree operations required in most of the N -body tree algorithms { it

supports tree operations common to both BH algorithm and fast multipole method, and all the

special operations used in the Barnes-Hut method.

By extending the Tree class, each tree node in BH tree contains a data cluster, and the data

cluster of each leaf node contains a list of bodies. The types of the particle and cluster are given by

the user of the BH tree class as template parameters AppCluster and AppBody. This abstraction

captures the structure of a BH tree without any application speci�c details.

template<class AppBody>

class Cluster {

protected: Link_list<AppBody*> body_list;

public: void add(AppBody* b);

};

template<class AppCluster, class AppBody>

class BH_tree : public Tree<AppCluster, N_CHILD> {

public:

void insert_body(AppBody*);

void remove_body(AppBody*, Tree_node<AppCluster, N_CHILD>*);

};

template<class AppCluster, class AppBody, class Tree_node,

class Tree, const int n_children>

class Compute_cluster_data: public

Tree_reduction<AppCluster, Tree_node, Tree, n_children>{

public:

void init(AppCluster* cluster) {

cluster->reset_data();

if (cluster->get_type() == Leaf)

for (every body in cluster's body_list)

cluster->add_body(body); }

void combine(AppCluster* parent, AppCluster* child)

{parent->add_cluster(child);}

};

Figure 11: BH tree layer classes.

The BH tree class also supports several operations: computing cluster data, �nding essential

data, computing interaction, and checking particle and BH box for consistency.

Cluster data computation is implemented as a tree reduction (Figure 11). init(AppCluster*

cluster) resets the data in the cluster and if the cluster is a leaf, it combines the data of the

bodies from the body list into the data of the cluster. The other function combine(AppCluster*

parent, AppCluster* child) adds children's data to parent's.

The essential data �nding class Find edata inherits

Tree traversal with traverser with two additional lists for essential clusters and bodies (Fig-

ure 12). The traverser is the particle that collects essential data. The per node function

process(AppCluster*) inserts the clusters that can be approximated into essential clusters

list, and adds the bodies from leaf clusters that cannot be approximated into essential bodies

list. The traversal continues only when traverser cannot apply approximation on an internal

cluster.

After collecting the essential clusters and bodies, a body can start computing the interactions.
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template<class AppCluster, class AppBody, class Tree_node,

class Tree>

class Find_edata: public Tree_traversal_with_traverser

<AppCluster,Tree_node,Tree,AppBody> {

Link_list<AppBody*> essential_bodies;

Link_list<AppCluster*> essential_clusters;

public:

bool process(AppCluster* c) {

if (c->is_edata_for(traverser)) {

essential_clusters.insert(c); return(0);

} else if (c->get_type() == Leaf) {

for (every body in c's body list)

if (body != traverser)

essential_bodies.insert(body);

return(0);

} return(1); }

};

template<class AppBody, class AppCluster, class Result>

class Interaction {

AppBody *subject;

Link_list<AppBody*>* body_list;

Link_list<AppCluster*>* cluster_list;

Result result;

public:

void compute() {

result.reset();

for (every body in body_list)

result += body_body_interaction(subject, body);

for (every cluster cluster_list)

result += body_cluster_interaction(subject,cluster);}

virtual Result body_body_interaction(AppBody*,AppBody*)=0;

virtual Result body_cluster_interaction(AppBody*,

AppCluster*)=0;

};

Figure 12: Class for �nding essential data and interaction computation.

The computation class Interaction (Figure 12) goes through the essential data list1 and calls

for functions to compute body-to-body and body-to-cluster interactions de�ned by the user of

Interaction.

4.4.3 Application Layer

Various N -body applications can be built upon the Bh tree layer. We brie
y describe the im-

plemenation of the gravitational N -body computation. First we construct a class Particle for

bodies that attract one another by gravity, then we build the cluster type Particle cluster

from Particle (Figure 13). Next, in the Particle cluster class we de�ne the methods for

computing/combining center of mass and the methods for testing essential data.

Then, in class Grav interaction, which is derived from the class template Interaction, we

de�ne methods to compute gravitational interactions. We specify the gravitation interaction rules

in the de�nition of body body interaction and body cluster interaction.

Finally, we de�ne the BH-tree type Grav BH tree and tree node type Grav BH node. These

two data types serve as template parameters to instantiate BH-tree related operations, like

Compute cluster data, Find edata, and Check particle bh box consistency.

1Lists obtained from the class Find Edata.
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class Particle {

protected:

Real mass;

Vector position;

Vector velocity;

};

class Particle_cluster: public Cluster<Particle> {

protected:

Center_of_mass center_of_mass;

public:

void reset_data(); // center of mass computation

void add_body(Particle *p);

void add_cluster(Particle_cluster* child);

bool is_edata_for(Particle*); // find essential data

};

class Grav_interaction:

public Interaction<Particle, Particle_cluster, Vector> {

public:

Vector body_body_interaction(Particle*, Particle*);

Vector body_cluster_interact(Particle*,Particle_cluster*);

};

typedef Tree_node<Particle_cluster, N_CHILD> Grav_BH_node;

typedef BH_tree<Particle_cluster, Particle> Grav_BH_tree;

Figure 13: Classes for a gravitational N -body application.

4.4.4 Parallel Abstraction

ORBPartitioner class

The ORBPartitioner class 15 inherits the Mapper class and de�nes functions that are special-

ized for the orthogoal recursive bisection partitioning method. The two associated geometry

resolution functions: data to processor translates a particle coordinate to a processor ) and

dataset to processors translates the coordinates of a box of particles to a set of processors.

RandomizedGather class

The communication phases in tree codes and unstructured mesh codes can be abstracted as an

\all-to-some" problem, in which each processor sends a set of personalized messages to dynami-

cally determined destination processors. Therefore, the communication pattern is irregular and

dynamically changing.

VGDS employs a randomized protocol for all-to-some communication. The protocol alternates

sends with receives to avoid exhausting communication channels reserved for messages that are

sent but not yet received, and randomly permutes the destination so that any processor will not

be 
ooded by incoming messages at any given time. The RandomizedGather class is implemented

by inheriting the Communicator class and specializing it with a randomized scheduling algorithm

for sending/receiving messages.

5 Experimental Results

The experiments were conducted on a cluster of four UltraSparc2 workstations. The workstations

are connected by a fast Ethernet network capable of 100M bps per node. Each workstation has

128 mega bytes of memory and runs SUNOS 5.5.1.

In the following, we report our experimental results with a set of application programs: a
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void simulation_step(Grav_BH_tree *bh_tree, Link_list<Particle*>* p_list, ORB *orb) {

Compute_cluster_data<Particle_cluster, Particle, Grav_BH_node, Grav_BH_tree,

N_CHILD> compute_com;

compute_com.reduction(bh_tree);

// every processor prefetches its remote essential data

send_recv_essential_nodes(bh_tree,p_list,comm,orb);

for (every particle in p_list) {

Find_edata<Particle_cluster, Particle, Grav_BH_node, Grav_BH_tree>

find_edata(particle);

find_edata.traverse(bh_tree);

Grav_compute_interaction interaction(particle,

find_edata.get_essential_bodies(), find_edata.get_essential_clusters());

interaction.compute();

// update particle positions & velocity according to the results

// from interaction.

}

Check_particle_bh_box_consistency<Particle_cluster, Particle, Grav_BH_node,

Grav_BH_tree> check_particle_bh_box_consistency;

check_particle_bh_box_consistency.traverse(bh_tree);

// move the out of box particle to correct BH bode.

}

Figure 14: One simulation step of gravitational N-body

airfoil simulation code developed using our unstructured mesh class library, a gravitational force

simulation code and a vortex CFD code developed using our BHTree class library. The VGDS

class libraries signi�cantly reduced the code sizes (e.g. for each of the two tree codes, from over

ten thousand lines down to a few hundred lines) and the development time (from over six months

down to a few days) of these applications, compared with their message-passing C counterparts.

Table 2 shows the performance of the VGDS codes. The gravitational force simulation code and

the CFD code achieved a speedup factor of 3.2 and 3.5 respectively. In all these cases, speedup

factor increases as problem size increases. This is because communication overhead becomes less

signi�cant, compared with computation time, for large problem sizes.

Furthermore, the codes developed using the VGDS classes achieved more than 90% of the

uniprocessor performance of their message-passing C version implementing the same algoritm.

The main sources of overhead in the libraries include dynamic memory allocation/deallocation

for data object creation and destruction, non-optimized computation kernel for long expressions,

and additional overhead in support of portability of the library. We expect that as the project

grows more mature, this overhead can be further reduced.

6 Related Work

The bene�t of data abstraction in object-oriented languages on scienti�c code development has

been demonstrated by various e�orts [12, 23]. Particularly in
uential and relevant to our ap-

proach are the work reported by Angus [1] and Shart and Otto[26] where class-speci�c compiler

optimizations are introduced into a compiler written in an object-oriented fashion. Our approach

has taken their class-speci�c philosophy further into the realm of runtime support for a diverse

set of parallel and distributed data structures (beyond simply array classes) on high performance

platforms.

Another line of work uses objects to de�ne data structures with built-in data distribution

capabilities. This again relates directly to our approach. Examples of work along this line include

the Paragon package [8], which supports a special class PARRAY for parallel programming, the

P++ Array class library [22], PC++ proposed by Lee and Gannon [18, 32], which consists of a set
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class ORBPartitioner : public Mapper<class Data, class DataSet, class ProcessorDomain,class MappingTable>

{

int root_index;

int P; // number of processors

Bisector bisector[MAXP];

void box2pset_helper(int, Box*, ProcessorSet);

void dataset_to_processors(DataSet* box, ProcessorDomain ps) {

for (int p = 0; p < MAXP; p++)

ps[p] = false;

box2pset_helper(root_index, box, ps);

}

....

};

void ORB::box2pset_helper(int bisector_index, DataSet* box, ProcessorDomain ps)

{

int dim;

Real pos;

Bisector *b;

if (bisector_index <= 0) { // leaf of ORB tree

ps[-bisector_index] = true;

} else {

b = &bisector[bisector_index];

dim = b->dim;

pos = b->pos;

if (box->start.cord[dim] > pos)

box2pset_helper(b->larger_side, box, ps);

else if (box->end.cord[dim] < pos)

box2pset_helper(b->smaller_side, box, ps);

else {

DataSet smaller_side_box, larger_side_box;

smaller_side_box = larger_side_box = *box;

smaller_side_box.end.cord[dim] = larger_side_box.start.cord[dim] = pos;

box2pset_helper(b->smaller_side, &smaller_side_box, ps);

box2pset_helper(b->larger_side, &larger_side_box, ps);

}

}

}

ProcessorDomain ORBPartitioner::data_to_processor(Data* p)

{

Bisector *b;

int dim, b_index = root_index;

while (b_index > 0) {

assert(b_index < P);

b = &bisector[b_index];

dim = b->dim;

if (p->cord[dim] >= b->pos)

b_index = b->larger_side;

else

b_index = b->smaller_side;

}

assert(-b_index < P);

return(-b_index);

}

...

}

Figure 15: The ORBPartitioner class
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Airfoil Simulation

problem size 36864 65536 147456 262144 589824

sequential time (C) 1.08 1.77 4.17 7.15 16.59

parallel time (VGDS) 0.38 0.61 1.41 2.38 5.33

speedup 2.84 2.90 2.93 3.00 3.09

Gravitational N-body

problem size 48k 56k 64k 128k 256k

sequential time (C) 65.62 81.23 93.59 186.12 413.75

parallel time (VGDS) 21.03 26.17 29.17 58.78 125.78

speedup 3.12 3.12 3.17 3.12 3.23

Vortex CFD

problem size 48k 56k 64k 128k 256k

sequential time (C) 148.60 175.46 204.18 404.34 801.81

parallel time (VGDS) 43.00 51.37 59.05 117.20 231.07

speedup 3.42 3.42 3.46 3.45 3.47

Table 2: Execution time of the VGDS codes. Time units are seconds

of distributed data structures (arrays, priority queues, lists, etc.) implemented as library routines,

where data are automatically distributed based on directives. Interwork II Toolkit [4] described

by Bain supports user programs with a logical name space on machines like iPSC. The user is

responsible for supplying procedures mapping the object name space to processors. In a related

work by ourselves [6], we report abstractions of adaptive load balancing mechanisms and complex,

many-to-many communications as C++ classes for supporting HPC challenging applications.

Instead of tackling one particular data structure such as arrays or matrics, we propose a general

design framework for a diverse set of distributed data structures, where data distribution, data

sharing, data coherence, and synchronization between data references are mediated by the runtime

system.

Our data structuring framework has similar goals and approaches to the POOMA package

[3, 17] and the Chaos++ library [25]. The POOMA framework de�nes a 5 layer class structure:

application layer, application component layer, global layer (�eld, particle,matrix), local layer

(l�eld,lparticle,lmatrix), and parallel abstract layer (comm, i/o, vnode, vnodemanager, data lay-

out). A global data structure is mapped onto Vnodes via a Data Layout class mapping. Then, one

or more Vnodes are mapped onto a Pnode via a VnodeManager mapping. This looks very much

like the structure of the Nexus run-time system which provides support for CC++ [] where mul-

tiple threads are mapped onto a context (Vnode in POOMA) and multiple contexts are mapped

onto a physical node. Up to this time, POOMA has focused mostly on array-based computations

that exhibit regular reference patterns.

Chaos++ is a general-purpose runtime library that supports pointer-based dynamic data

structures through an inspector-executor-based runtime preprocessing technique. Our framework

focuses on a more speci�c class of data structures essential to scienti�c simulations and engineering

computation; therefore, we are able to exploit optimizations that would be di�cult for a general

preprocessing technique.

The only tree code implementation e�orts related directly to ours are by Salmon and Warren
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at Caltech. The two approaches to implementing distributed data structures explore di�erent

points in a space-time tradeo�. While we use a controlled amount of redundant storage to save

time, they minimize the storage requirements, at the expense of e�ciency and programmability.

For multi-�lament vortex dynamics applications it is unclear whether their approach can be made

to work because of subtleties in maintaining the closed �lament structures, and also because the

number of particles is time-dependent.

Several parallel implementations of the algorithms mentioned above have been developed.

Salmon [24] implemented the Barnes-Hut algorithm on the NCUBE and Intel iPSC, Warren

and Salmon [29] reported experiments on the 512-node Intel Touchstone Delta, and later devel-

oped hashed implementations of a global tree structure which they report in [30]. Board and

Leathrum [16] have implemented the 3D adaptive fast multipole method on shared memory ma-

chines including the KSR [16], Zhao and Johnsson [33] describe a non-adaptive 3D version of

Greengard's algorithm on the Connection Machine CM-2, and Singh etal. [27] have implemented

the 2-dimensional adaptive method on the Stanford DASH. Nyland, Prins and Reif [20] describe

a data-parallel implementation of the 3d adaptive fast multipole method using the Proteus pro-

totyping system. Finally, Hu and Johnsson [31] have implemented the 3D non-adaptive version

of Anderson's method onthe CM-5E.

In contrast, our VGDS Tree library allows rapid development of high-performance applications

code for a variety of tree codes. Indeed, our hand-written prototypes substantially outperform all

the e�orts mentioned, while allowing greater generality.

A large body of work in the literature can be categorized as \object-parallelism," where objects

are mapped to processes that are driven by messages. Examples of parallel C++ projects using

this paradigm include the Mentat Run-time System [14] and Concurrent Aggregates (CA) [9, 10]

by Dally et al.. Our use of object-orientation is for structuring the VGDS classes and their

specializations for optimizations, which is entirely distinct in philosophy from that of object-

parallelism.

7 Conclusion

In this paper, we have presented the VGDS framework for scienti�c applications. We have im-

plemented a prototype of VGDS base libraries and a set of distributed data structures derived

from this basis, including unstructured mesh and BH tree. We reported our experimental results

on a workstation cluster. We demonstrated that the VGDS class libraries signi�cantly reduced

application development time and the program sizes. The penalty due to object orientation is

about 10% compared with its C-only implementation. We are currently investigating possible

approaches to reduing such overhead.

Our experiences with developing fast methods for gravitational simulations and preliminary

experience with vortex dynamics applications give us con�dence that such a framework will be

invaluable to applications scientists and engineers. For computer scientists, such a framework

will also allow design e�ort and heavy-duty optimization to be expended exactly where it is most

needed, without restricting the generality or portability of related codes. We hope that the basic

scienti�c results and concrete classes and templates libraries from our VGDS e�ort will encourage

value-added development of mapping and optimizing methods for classes of parallel applications.
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