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Abstract

Increasing interest is being shown in the use of Java for large
scale or Grande applications. This new use of Java places
speci�c demands on the Java execution environments that
could be tested and compared using a standard benchmark
suite. We describe the design and implementation of such
a suite, paying particular attention to Java-speci�c issues.
Sample results are presented for a number of implementa-
tions of the Java Virtual Machine (JVM).

1 Introduction

With the increasing ubiquity of Java comes a growing range
of uses for the language that fall well outside its original de-
sign goals. The use of Java for large scale applications with
large memory, network or computational requirements, so
called Grande applications, represent a clear example of this
trend. Despite concerns about performance and numerical
de�nitions an increasing number of users are taking seriously
the possibility of using Java for Grande codes.

The Java Grande Forum (JGF) is a community initiative
led by Sun and the Northeast Parallel Architectures Center
(NPAC) that aims to address these issues and in so doing
promote the use of Java in this area. This paper describes
work carried out by Edinburgh Parallel Computing Cen-
tre (EPCC) on behalf of the JGF to initiate a benchmark
suite aimed at testing aspects of Java execution environ-
ments (JVMs, Java compilers, Java hardware etc.), perti-
nent to Grande Applications. The work involves construct-
ing a framework for the benchmarks, designing an instru-
mentation class to ensure standard presentation of results,
and seeding the suite with existing and original benchmark
codes.

The aim of this work is ultimately to arrive at a standard
benchmark suite that can be used to:

� Demonstrate the use of Java for Grande applications.
Show that real, large scale codes can be written, and
provide the opportunity for performance comparison
against other languages.

� Provide metrics for comparing Java execution environ-
ments, thus allowing Grande users to make informed
decisions about which environments are most suitable
for their needs.

� Expose those features of the execution environments
critical to Grande Applications, and in doing so encour-
age the development of the environments in appropriate
directions.

A standard approach, ensuring that metrics and nomencla-
ture are consistent, is important in order to facilitate mean-
ingful comparisons in the Java Grande community. The
authors are keen to invite contributions from the commu-
nity to add to the benchmark suite and comments on the
approach taken.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a brief survey of related work. Sections 3 and 4
outline the methodology we adopted in designing this suite
and describe the instrumentation API. Sections 5 and 6 give
the current status of the serial part of the suite, and some
results that illustrate the existing suite in action. Section 7
outlines directions for future work, concentrating on the par-
allel part of the suite, and invites participation in this e�ort,
and Section 8 provides some conclusions.

2 Related work

A considerable number of benchmarks and performance
tests for Java have been devised. Some of these consist
of small applets with relatively light computational load,
designed mainly for testing JVMs embedded in browsers|
these are of little relevance to Grande applications. Of more
interest are a number of micro-benchmarks [2, 7, 8, 9, 16]
that focus on determining the performance of basic opera-
tions such as arithmetic, method calls, object creation and
variable accesses. These are useful for highlighting di�er-
ences between Java environments, but give little useful in-
formation about the likely performance of large applica-
tion codes. Other sets of benchmarks, from both academic
[5, 14, 15, 19] and commercial [13, 17, 20] sources, consist
primarily of computational kernels, both numeric and non-
numeric. This type of benchmark is more re
ective of ap-
plication performance, though many of the kernels in these
benchmarks are on the small side, both in terms of execu-
tion time and memory requirements. Finally there are some
benchmarks [3, 10, 18] that consist of a single, near full-scale,
application. These are useful in that they are representative



of real codes, but it is virtually impossible to say why per-
formance di�ers from one environment to another, only that
it does.

Few benchmark codes attempt inter-language compari-
son. In those that do (for example [16, 19]), the second
language is usually C++, and the intention is principally to
compare the object oriented features. It is worth noting a
feature peculiar to Java benchmarking, which is that it is
possible to distribute the benchmark without revealing the
source code. This may be convenient, but if adopted, makes
it di�cult for the user community to know exactly what is
being tested without resorting to use of a Java de-compiler.
Furthermore, distributing byte code prevents the Java plat-
form bene�ting from analysis and optimisation at the source
code to byte code compilation stage.

3 Methodology

In this Section we discuss the principal issues a�ecting the
design of a benchmark suite for Java Grande applications,
and describe how we have addressed these issues.

For a benchmark suite to be successful, we believe it
should be:

� Representative: The nature of the computation in
the benchmark suite should re
ect the types of com-
putation that might be expected in Java Grande ap-
plications. This implies that the benchmarks should
stress Java environments in terms of CPU load, mem-
ory requirements, and I/O, network and memory band-
widths.

� Interpretable: As far as possible, the suite as a whole
should not merely report the performance of a Java
environment, but also lend some insight into why a
particular level of performance was achieved.

� Robust: The performance of the suite should not be
sensitive to factors that are of little interest (for exam-
ple, the size of cache memory, or the e�ectiveness of
dead code elimination).

� Portable: The benchmark suite should run on as wide
a variety of Java platforms as possible.

� Standardised: The elements of the benchmark should
have a common structure and a common `look and feel'.
Performance metrics should have the same meaning
across the benchmark suite.

� Transparent: It should be clear to anyone running
the suite exactly what is being tested.

We observe that the �rst two of these aims (representa-
tiveness and interpretability) tend to con
ict. To be rep-
resentative, we would like the contents of the benchmark
to be as much like real applications as possible, but the
more complex the code, the harder it is to interpret the
observed performance. Rather than attempt to meet both
these objectives at once, we provide three benchmark types,
re
ecting the classi�cation of existing benchmarks used in
Section 2: low-level operations (which we refer to as Section
I of the suite), simple kernels (Section II) and applications
(Section III). This structure is employed for both the serial
and parallel parts of the suite.

The low-level operation benchmarks have been designed
to test the performance of the low-level operations that will

ultimately determine the performance of real Java applica-
tions. Examples include arithmetic and maths library oper-
ations, serialization, method calls and casting in the serial
part and ping-pong, barriers and global reductions in the
parallel part. The kernel benchmarks are chosen to be short
codes, each containing a type of computation likely to be
found in Grande applications, such as FFTs, LU Factori-
sation, matrix multiplication, searching and sorting. The
application benchmarks are intended to be representative of
Grande applications, suitably modi�ed for inclusion in the
benchmark suite by removing any terminal I/O and graphi-
cal components. By providing these di�erent types of bench-
mark, we hope to observe the behaviour of the most com-
plex applications and interpret that behaviour through the
behaviour of the simpler codes. We also chose the kernels
and applications from a range of disciplines, that are not all
traditional scienti�c areas.

To make our suite robust, we avoid dependence on par-
ticular data sizes by o�ering a range of data sizes for each
benchmark in Sections II and III. We also take care to de-
feat possible compiler optimisation of strictly unnecessary
code. For Sections II and III this is achieved by validating
the results of each benchmark, and outputting any incor-
rect results. For Section I, even more care is required as
the operations performed are rather simple. We note that
some common tricks, used to fool compilers into thinking
that results are actually required, may fail in interpreted
systems where optimisations can be performed at run time.
Another potential di�culty, particularly relevant to Section
I benchmarks, is that very simple codes may fail to trigger
run-time code compilation. Typically each JVM uses some
heuristics, based on run-time statistics, to determine when
to use its just-in-time (JIT) compiler and switch from inter-
preted byte-code to a compiled version. Micro-benchmarks
may therefore re
ect the interpreted, rather than the com-
piled, performance of the JVM. This is sometimes referred
to as the JIT warm-up problem. This e�ect may, however
also impact on larger codes. Some Grande applications may
spend a signi�cant amount of time in methods that are called
only a few times. Failure to trigger the JIT in these cases
may have a signi�cantly detrimental e�ect.

For maximum portability, as well as to ensure adher-
ence to standards, we have taken the decision to have no
graphical component in the benchmark suite. While applets
provide a convenient interface for running benchmarks on
workstations and PCs, this is not true for typical supercom-
puters where interactive access may not be possible. Thus
we restrict ourselves to simple �le I/O.

For standardisation we have created a JGFInstrumen-
tor class to be used in all benchmark programs. This is
described in detail in Section 4.

Transparency is achieved by distributing the source code
for all the benchmarks. This removes any ambiguity in the
question of what is being tested: we do not consider it ac-
ceptable to distribute benchmarks in Java byte code form.

4 Instrumentation

4.1 Performance metrics

We present performance metrics for the benchmarks in three
forms: execution time, temporal performance and rela-
tive performance. The execution time is simply the wall
clock time required to execute the portion of the bench-
mark code that comprises the `interesting' computation|



initialisation, validation and I/O are excluded from the time
measured. For portability reasons, we chose to use the
System.currentTimeMillis method from the java.lang
package. Millisecond resolution is less than ideal for mea-
suring benchmark performance, so care must be taken that
the run-time of all benchmarks is su�ciently long that clock
resolution is not signi�cant.

Temporal performance (see [6]) is de�ned in units of op-
erations per second, where the operation is chosen to be
the most appropriate for each individual benchmark. For
example, we might choose 
oating point operations for a
linear algebra benchmark, but this would be inappropriate
for, say, a Fourier analysis benchmark that relies heavily
on transcendental functions. For some benchmarks, where
the choice of most appropriate unit is not obvious, we allow
more than one operation unit to be de�ned.

Relative performance is the ratio of temporal perfor-
mance to that obtained for a reference system, that is, a
chosen JVM/operating system/hardware combination. The
merit of this metric is that it can be used to compute the
average performance over a groups of benchmark. Note that
the most appropriate average is the geometric mean of the
relative performances on each benchmark. Note that for
both temporal and relative performance, higher numbers in-
dicate better performance.

For the low-level benchmarks (Section I) we do not report
execution times. This allows us to adjust the number of op-
erations performed at run-time to give a suitable execution
time, that is guaranteed to be much larger than the clock
resolution. This overcomes the di�culty that there can be
one or two orders of magnitude di�erence in performance on
these benchmarks between di�erent Java environments.

4.2 Design of instrumentation classes

Creating an instrumentation class raises some interesting
issues in object-oriented design. Our objective is to be able
to take an existing code and to both instrument it, and force
it to conform with a common benchmark structure, with as
few changes as possible.

A natural approach would be to create an abstract
benchmark class that would be sub-classed by an existing
class in the benchmark's hierarchy: access to instrumenta-
tion would be via the benchmark class. However, since Java
does not support multiple inheritance, this is not possible.
Other options include:

� Inserting the benchmark class at some point in the ex-
isting hierarchy.

� Creating an instance of the benchmark class at some
point in the existing hierarchy.

� Accessing benchmark methods as static methods.

The last option was chosen because minimal changes are
required to existing code: the benchmark methods can be
referred to from anywhere within existing code by a global
name. However, we would like, for instance, to be able to ac-
cess multiple instances of a timer object. This can achieved
by �lling a hash-table with timer objects. Each timer object
can be given a global name through a unique string.

We can force compliance to a common structure to some
extent by sub-classing the lowest level of the main hierarchy
in the benchmark, and implementing a de�ned interface,
that includes a `run' method. We can then create a separate

main class that creates an instance of this sub-class and calls
its `run' method. It is then straightforward to create a main
that, for example, runs all the benchmarks of a given size in
a given Section.

4.3 The JGF Benchmark API

Figure 1 describes the API for the benchmark class.
addTimer creates a new timer and assigns a name to it.
The optional second argument assigns a name to the per-
formance units to be counted by the timer. startTimer
and stopTimer turn the named timer on and o�. The ef-
fect of repeating this process is to accumulate the total time
for which the timer was switched on. addOpsToTimer adds
a number of operations to the timer: multiple calls are
cumulative. readTimer returns the currently stored time.
resetTimer resets both the time and operation count to
zero. printTimer prints both time and performance for the
named timer; printperfTimer prints just the performance.
storeData and retrieveData allow storage and retrieval of
arbitrary objects without, for example, the need for them to
be passed through argument lists. This may be useful, for
example, for passing iteration count data between methods
without altering existing code. printHeader prints a stan-
dard header line, depending on the benchmark Section and
data size passed to it.

Figure 2 illustrates the use of an interface to standardise
the form of the benchmark. The interface for Section II is
shown here; that for Section III is similar, while that for
Section I is somewhat simpler.

To produce a conforming benchmark, a new class is cre-
ated that extends the lowest class of the main hierarchy
in the existing code and implements this interface. The
JGFrun method should call JGFsetsize to set the data size,
JGFinitialise to perform any initialisation, JGFkernel to
run the main (timed) part of the benchmark, JGFvalidate
to test the results for correctness, and �nally JGFtidyup
to permit garbage collection of any large objects or arrays.
Calls to JGFInstrumentor class methods can be made ei-
ther from any of these methods, or from any methods in the
existing code, as appropriate.

5 Current Status

Currently the parallel codes are under development. The
following serial codes are available in the Version 2.0
release, that together with the instrumentation classes,
and a more comprehensive set of results, are available
at http://www.epcc.ed.ac.uk/javagrande/. We would
strongly welcome use of, and comments on, this material
from developers both of Grande applications and of Grande
environments.

5.1 Section I: Low Level Operations

Arith Measures the performance of arithmetic operations
(add, multiply and divide) on the primitive data types
int, long, 
oat and double. Performance units are ad-
ditions, multiplications or divisions per second.

Assign Measures the cost of assigning to di�erent types
of variables. The variables may be scalars or array
elements, and may be local variables, instance variables
or class variables. In the cases of instance and class
variables, they may belong to the same class or to a



public class JGFInstrumentorf
// No constructor
// Class methods

public static synchronized void addTimer(String name);
public static synchronized void addTimer(String name, String opname);
public static synchronized void startTimer(String name);
public static synchronized void stopTimer(String name);
public static synchronized void addOpsToTimer(String name, double count);
public static synchronized double readTimer(String name);
public static synchronized void resetTimer(String name);
public static synchronized void printTimer(String name);
public static synchronized void printperfTimer(String name);
public static synchronized void storeData(String name, Object obj);
public static synchronized void retrieveData(String name, Object obj);
public static synchronized void printHeader(int section, int size);

g

Figure 1: API for the JGFInstrumentor class

public interface JGFSection2 f
public void JGFsetsize(int size);
public void JGFinitialise();
public void JGFkernel();
public void JGFvalidate();
public void JGFtidyup();
public void JGFrun(int size);

g

Figure 2: Interface de�nition for Section II

di�erent one. Performance units are assignments per
second.

Cast Measures the performance of casting between di�er-
ent primitive types. The types tested are int to 
oat
and back, int to double and back, long to 
oat and
back, long to double and back. Performance units are
casts per second. Note that other pairs of types could
also be tested (e.g. byte to int and back), but these are
too amenable to compiler optimisation to give mean-
ingful results.

Create Measures the performance of creating objects and
arrays. Arrays are created for ints, longs, 
oats and
objects, and of di�erent sizes. Complex and simple ob-
jects are created, with and without constructors. Per-
formance units are arrays or objects per second.

Exception Measures the cost of creating, throwing and
catching exceptions, both in the current method and
further down the call tree. Performance units are ex-
ceptions per second.

Loop Measures loop overheads, for a simple for loop, a re-
verse for loop and a while loop. Performance units are
iterations per second.

Serial Measures the performance of serialization, both
writing and reading of objects to and from a �le. The
types of objects tested are arrays, vectors, linked lists

and binary trees. Performance units are bytes per sec-
ond.

Math Measures the performance of all the methods in the
java.lang.Math class. Performance units are opera-
tions per second. Note that for a few of the methods
(e.g. exp, log, inverse trig functions) the cost also in-
cludes the cost of an arithmetic operation (add or mul-
tiply). This was necessary to produce a stable iteration
that will not over
ow and cannot be optimised away.
However, it is likely the the cost of these additional op-
erations is insigni�cant: if necessary the performance
can be corrected by using the relevant result from the
Arith benchmark.

Method Measures the performance of method calls. The
methods can be instance, �nal instance or class meth-
ods, and may be called from an instance of the same
class, or a di�erent one. Performance units are calls per
second. Note that �nal instance and class methods can
be statically linked and are thus amenable to inlining.
An infeasible high performance �gure for these tests
generally indicates that the compiler has successfully
inlined these methods.

5.2 Section II: Kernels

Series Computes the �rstN Fourier coe�cients of the func-
tion f(x) = (x+ 1)x on the interval 0,2. Performance



units are coe�cients per second. Heavily exercises tran-
scendental and trigonometric functions.

LUFact Solves an N � N linear system using LU factori-
sation followed by a triangular solve. This is a Java
version of the well known Linpack benchmark [4]. Per-
formance units are M
ops per second. Memory and

oating point intensive.

HeapSort Sorts an array of N integers using a heap sort
algorithm. Performance units are items per second.
Memory and integer intensive.

SOR Computes 100 iterations of successive over-relaxation
on an N�N grid. Performance units are iterations per
second. Array access intensive.

Crypt Performs IDEA (International Data Encryption Al-
gorithm [11]) encryption and decryption on an array
of N bytes. Performance units are bytes per second.
Bit/byte operation intensive.

FFT Computes a one-dimensional Fourier transform of N
complex numbers. Performance units are samples per
second. Exercises complex arithmetic, shu�ing, non-
constant memory references and trigonometric func-
tions.

Sparse Multiplies an N � N sparse matrix stored in
compressed-row format by a dense vector 200 times.
Performance units are iterations per second. Exercises
indirect addressing and non-regular memory references.

5.3 Section III: Applications

Euler Solves the time-dependent Euler equations for 
ow
in a channel with a \bump" on one of the walls. A
structured, irregular, N � 4N mesh is employed, and
the solution method is a �nite volume scheme using
a fourth order Runge-Kutta method with both second
and fourth order damping. The solution is iterated for
200 timesteps. Performance units are timesteps per
second.

MonteCarlo A �nancial simulation, using Monte Carlo
techniques to price products derived from the price of
an underlying asset. The code generates N sample time
series with the same mean and 
uctuation as a series
of historical data. Performance units are samples per
second.

MolDyn A simple N-body code modelling the behaviour of
N argon atoms interacting under a Lennard-Jones po-
tential in a cubic spatial volume with periodic bound-
ary conditions. The solution is advanced for 100
timesteps. Performance units are timesteps per second.

Search Solves a game of connect-4 on a 6 x 7 board using
an alpha-beta pruned search technique. The problem
size is determined by the initial position from which the
game in analysed. The number of positions evaluated,
N , is recorded. Performance units are positions per
second.

RayTracer This benchmark measures the performance of a
3D ray tracer. The scene rendered contains 64 spheres,
and is rendered at a resolution of N � N pixels. Per-
formance units are pixels per second.

6 Results

The benchmark suite has been run on a number of di�er-
ent execution environments on two di�erent hardware plat-
forms. The following JVMs have been tested on a 200MHz
Pentium Pro with 256 Mb of RAM running Windows NT:

� Sun JDK Version 1.2.1 02 (production version)

� Sun JDK Version 1.2.1 (reference version) + Hotspot
version 1.0

� IBM Win32 JDK Version 1.1.7

� Microsoft SDK Version 3.2

The following JVMs have also been tested on a 250MHz
Sun Ultra Enterprise 3000 with 1Gb of RAM running Solaris
2.6:

� Sun JDK Version 1.2.1 02 (production version)

� Sun JDK Version (reference version) + Hotspot version
1.0

6.1 Programming language comparison

The benchmark suite has been developed to allow the perfor-
mance of various execution environments on di�erent hard-
ware platforms to be tested. Also of interest are language
comparisons, that is, comparing the performance of Java
versus other programming languages such as Fortran, C and
C++. Currently, the LUFact and MolDyn benchmarks al-
low programming language comparisons with Fortran77 and
C. However, we intend the parallel part of the suite to con-
tain versions of well-known Fortran and C parallel bench-
marks, thus facilitating further inter-language comparisons.
It is worth noting that the Fortran and C versions of these
benchmarks do not attempt to implement any of the addi-
tional run-time checking operations (such as array bounds
checking) implicit in the Java version.

Measurements have been taken for the LUFact Bench-
mark (on a 1000 � 1000 problem size) and the MolDyn
benchmark (2048 particles) using Java (Sun JDK 1.2.1 02
production version, and Sun JDK 1.2.1 reference version +
Hotspot 1.0), Fortran and C on a 250MHz Sun Ultra En-
terprise 3000 with 1Gb of RAM. The results are shown in
Figure 3. For the LUFact code, both JVMs give perfor-
mance that is approximately half that of C and one third
that of Fortran. It should be noted that the LU factorisa-
tion code used in all cases was not optimised for cache reuse,
hence the percentage of peak performance obtained by these
codes is lower than would be expected for a well-tuned LU
factorisation.

For the MolDyn code, the Hotspot JVM is about twice
as fast as the production version, giving approximately two-
thirds of the performance of C and nearly 90% the perfor-
mance of Fortran. The relatively poor performance of For-
tran on this code may be attributable to the data layout|
both the C and Java implementations store all the �elds for
one particle in one data structure, whereas the Fortran im-
plementation uses a separate array for storing each �eld for
all the particles.
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Figure 3: Language comparisons for (a) the LUFact (Linpack) benchmark and (b) the MolDyn benchmark.
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