
Annotating Java Class Files with Virtual
Registers for Performance

Joel Jones (jjones@uiuc.edu)
Samuel Kamin

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

The Java .class file is a compact encoding of programs for a stack-based
virtual machine. It is intended for use in a networked environment, which re-
quires machine independence and minimized consumption of network bandwidth.
However, as in all interpreted virtual machines, performance does not match that of
code generated for the target machine. We propose verifiable, machine-independent
annotations to the Java class file to bring the quality of the code generated by
a “just-in-time” compiler closer to that of an optimizing compiler without a sig-
nificant increase in code generation time. This division of labor has expensive
machine-independentanalysis performed off-line and inexpensive machine-dependent
code-generation performed on the client. We call this phenomenon “super-linear
analysis and linear exploitation.” These annotations were designed mindful of the
concurrency features of the Java language. In this paper we report results from
our machine-independent, prioritized register assignment. We also discuss other
possible annotations.

1 Introduction

The Java .class file is a compact encoding of programs for a stack-based virtual
machine. It is intended for use in a networked environment, which requires machine
independence and minimized consumption of network bandwidth. However, as in all
interpreted virtual machines, performance does not match that of code generated for
the target machine. To ameliorate this problem, many implementations of the Java
Virtual Machine (JVM) use “just-in-time” (JIT) compilers, in which Java bytecodes
are translated into machine code.

We propose machine independent annotations to the Java class file [3] to bring the
quality of the code generated by a “just-in-time” compiler closer to that of an optimiz-
ing compiler without a significant increase in code generation time. The annotations
proposed are a specification of a prioritized register assignment (virtual registers, VRs),
load-store elimination (remove if physical, RIPs), and register spilling (swaps). Our no-
tion is to provide a division of labor between the class file annotator on the server and
the code generator on the client.

1

This environment differs from both conventional batch compilation and compila-
tion for interactive languages.[1] [2] In conventional compilation, to a first order of
approximation, compilation costs are ignored, and the target machine is known; no
holds are barred in terms of aggressive analyses and machine-dependent trickery. In
the interactive environment, the target machine is known, but the cost of compilation
is constrained by the need to maintain interactive responsiveness. By contrast, in the
network client/server model, compilation to bytecode is done off-line and is, to a first-
order of approximation, unconstrained. However, it must generate portable code and
therefore cannot perform machine dependent optimizations. Compilation of bytecode
to target machine code is performed on the client and may therefore be very machine-
specific. However, since this compilation time is added to the overall response time
seen by the user, it must be minimized. As a result, the quality of the code generated
by “just-in-time” compilers does not match that of an optimizing compiler for the same
machine.

The key idea is that the machine-independent analysis phase performed by the Java
compiler may be expensive, but the results of that analysis may be expressed compactly
and used inexpensively. We call this phenomenon “super-linear analysis and linear
exploitation.”

One guiding feature of our annotations, and indeed of any annotations of the Java
class file, is that the annotations can be safely ignored by those implementations of the
Java VM that do not recognize them. This precludes any transformation on the byte-
code that results in a .class file which is unverifiable or incorrect when considered
without the annotations.

The following sections describe in more detail the environment we are trying to pro-
duce code for followed by a concrete example showing Java source, Java bytecodes,
and SPARC machine code. Then, the properties of the machine code generated by our
“just-in-time” compiler, the semantics of our register assignment annotation, and anno-
tation generation are discussed. Following this are more examples of Java source code,
the corresponding Java byte code, and the machine code generated with our register
assignment annotation, including timing information. We then cover related work in
solving this sort of problem and then conclude with a summary of our contributions.

2 The Overall Environment

In Figure 1 we see the environment in which our annotated .class file must operate.
A client makes a request for some Java code, packaged either as a .class file, or as
a .jar file containing a .class file. The server sends the file to the client. This
annotated code is used by our modified JVM to produce machine code, as in any Just-
in-time (JIT) compilation system. In the figure, t1 represents the time from when the
client requests a Java .class file to the time that the client first sees results, while t2
represents the time from the .class file request to when the computation completes.
We are interested in minimizing both t1 and t2. If we were interested in minimizing just
t1, then we could use an interpreter over the bytecodes and see our first results quickly.
If we were interested in minimizing just t2, then for a program which was compute
intensive, we could tolerate a large amount of traditional optimizing compiler analysis

2

Server Client

modified JVM
produces native
code

execution begins

first result

final result

t1
t2

.class request

annotated .class

Figure 1: Java Virtual Machine Execution

being done by the JVM.
Obviously, the client-side code generator could perform the same control and data

flow analysis that the server-side annotator does. But our approach is to do as much
work up front as possible. There are two advantages to having the analysis done by the
server. First, time is saved by having the analysis done once, not every time a class file
is compiled to machine code. More importantly, many optimizations can be divided
into a super-linear analysis phase and a linear exploitation phase. By performing the
expensive analysis phase and recording the results as annotations, we can then very
quickly produce high-quality code in the code generator.

Note that adding annotations does not preclude the VM from doing additional op-
timizing transformations on the bytecodes. It merely changes the intermediate repre-
sentation from bytecodes for a stack-based virtual machine to bytecodes for an infinite
register virtual machine.

The first part of our system, the annotator, takes as input .class files and pro-
duces as output annotated .class files. These annotations are produced by using
the Java bytecodes as an intermediate representation and applying modifications of
traditional optimizing compiler algorithms to them. We then add the results of these
algorithms as annotations to the output .class file. The size of these annotations
must not be overly large, as this would increase the amount of time needed to transfer
the annotated .class file across a network.

3

3 Simple Example

Before going into detail about how annotaions are generated and the exact nature of the
mechanisms in the code generator to exploit them, let’s examine a very simple example
first.

In Figure 2, we have an example of the Java source for a “for” loop. This loop
has three values, sum, i, and the constant 3. Below it, we have the Java bytecodes
corresponding to the source. The Java bytecode is formatted with the first column the
bytecode location, the second column the Java bytecode and any arguments, and the
third column the “VR” annotation. The rightmost column of the Java bytecodes block
is a register assignment for the bytecode to its left. We call this register assignment
“virtual registers” or VRs. On the right-hand side, we have the SPARC machine code
generated from the bytecodes. For the SPARC machine code, instructions for a single
Java bytecode are separated by single gray horizontal lines. For both Java bytecodes
and SPARC machine code, basic blocks are separated by double horizontal lines.

The assignment for sum is ; i, ; and 3, . Also, the assignment of phys-
ical registers for virtual registers starts at %l0. The SPARC architecture divides the
general-purpose register set into four parts, the global registers, labeled %g0-%g7, the
input registers, labeled %i0-%i7, the output registers, labeled %o0-%o7, and the lo-
cal registers, labeled %l0-%l7. The first piece of machine code starts with a SPARC
machine idiom of using global register %g0, which is always zero, to initialize a reg-
ister with an integer value. Note that on the SPARC, the destination of an instruction
is the rightmost argument. Next, we see an empty slot in our machine code diagram,
indicating that no machine code was generated for the istore 0 bytecode. The next
interesting set of instructions occurs in the code for the iinc bytecodes. The numbers
after the iinc bytecodes indicate which local slot is being incremented, and what it is
being incremented by, respectively. This is part of the normal encoding for the iinc
bytecodes. Each iinc bytecode is translated into a single SPARC add instruction,
since the values referenced by both bytecodes are being stored in physical registers.

In this example, each VR corresponds directly to a physical register. The advantage
of the VR annotation is that they provide a register assignment at no cost. Of course
if there were always a sufficient number of physical registers, the register assignment
problem would be completely conventional. In fact, the number of VRs is usually
greater than the number of physical registers. VR annotations also provide a fast way
to determine where register spill code is needed.

4 The Code Generation Environment

To make things more concrete, we will use the SPARC as our example machine in
the following sections. With the exception of its register windows, the SPARC is like
most modern RISC architectures. Furthermore, since all architectures perform better
when registers are used as much as possible, most of the principles guiding the SPARC
implementation hold everywhere. 1

1Including the popular Intel x86 and embedded versions of the Motorola 68K.

4

int sum = 0;
for (int i = 0; i < 3; i++) {

sum += 1;
}

0 iconst 0 1
1 istore 0 1
2 iconst 0 0
3 istore 1 0
4 goto 13 –

7 iinc 0,1 1
10 iinc 1,1 0

13 iload 1 0
14 iconst 3 2
15 if icmplt 7 0,2

mov %g0, %l1

mov %g0, %l0

b
nop

addcc %l1,1,%l1
addcc %l0,1,%l0

mov 3, %l2
cmp %l0, %l2
bl
nop

Figure 2: For Loop with Accumulator

Figure 3 gives the overall structure of the machine environment for which we are
generating code. The bounds of the current activation record (stored on the stack) is
maintained by two registers, the stack pointer (SP) and the frame pointer (FP). Tem-
poraries used by the code generator are also set aside in the registers (TEMP0 and
TEMP1). Values kept primarily in registers are shown in the table labeled “Registers.”
Values which primarily reside in memory are shown only in the table labeled “Stack.”
Objects and arrays are kept in the heap and references to them are kept in registers or
on the stack. The following sections give details related to the environment sketched in
Figure 3.

4.1 Simple Properties

Our central annotation is the virtual register (VR) annotation. The basic notion is that
there is a set of virtual register numbers for each Java bytecode which correspond to
the operands of the bytecode. The code generator uses the VR annotation to generate
a register assignment for the machine instructions. These VRs are arranged in priority
order, meaning that the lower the VR is, the more likely it is to be assigned to a physical
register in the code generator. We will deal with the details of the VR annotation in
more detail in Section 5.1.

Below are some simple properties that guide our code generation process. We use
the term “physical register(s)” to refer to the machine registers and “physical location”
to refer to some location on the machine, either in a physical register or in memory.

5

Registers Stack

Heap

FP
SP

TEMP0
TEMP1

VR0
VR1

...
VR0
VR1
VR2
VR3
VR4

...

...

...

...

Figure 3: Run-time Environment. The stack location of is reserved for spilling
register ; it may or may not contain the same value at other times.

The memory that is used for virtual registers is contained in a run-time stack, which
also contains the stack and frame pointer. We will also use the term “primarily stored”
to indicate the physical location where a VR’s value can be found most of the time.

All virtual registers have at least one physical location. Virtual registers which
primarily reside in physical registers have two physical locations, their physical
register and their stack location. Other virtual registers will reside only in one
physical location, on the stack. We will see the need for all values having a place
on the stack when we deal with spilling.

Constants are either folded into the machine instructions or are statically allo-
cated alongside the code for each method. The memory for the code and con-
stants is allocated in the heap, but is otherwise treated statically by our code
generation system.

The operand stack is not mimicked. All VRs not assigned to physical registers
are loaded into physical registers if necessary, then written out, using physical
registers dedicated to such temporary use. A more detailed description of this
process is given in the next section.

A simple data structure, the VR location table, provides the mapping from VRs to
physical locations. Conceptually, the code generator keeps two sets of mapping,
one for virtual registers residing only in memory, and one for virtual registers
additionally residing in a physical register. This is table is mostly static, and
is built before code generation begins. Imagine we have a machine where only
two physical registers remain after setting aside registers for use as temporaries.
Further, assume that the method we are compiling has five VRs, numbered 0 –
4, specified in all its bytecodes. An example of this data structure can be seen in

6

Figure 4. This indicates that virtual registers 0 and 1 will be primarily stored in

virtual register physical register memory
0 %l0 [%fp - 12]
1 %l1 [%fp - 16]
2 – [%fp - 0]
3 – [%fp - 4]
4 – [%fp - 8]

Figure 4: VR Location Table; MAXREGS = 2

physical registers %l0 and %l1 respectively and that virtual registers 2, 3, and 4
will be primarily stored in memory at 0, 4, and 8 off the frame pointer.

4.2 Non-register Resident Values

To manage situations where the number of physical registers is insufficient to contain
all the virtual registers, a scheme to place the excess virtual registers into memory has
been devised. There are several things to note.

Several physical registers are reserved for temporary use. The lifetime of the
values placed into these registers typically does not extend beyond the span of
the machine code generated for one Java bytecode.

For a given virtual register, its location on the stack is at a fixed offset from the
frame pointer.

On machines which allow reading and writing of a single physical register in
an instruction (e.g. add %l0,%l1,%l0), only two temporary registers are
needed (actually, two temporary registers for integral values and another two for
floating-point values.)

4.3 Code Generation

The general scheme for generating machine code is as follows, doing the steps below
for each bytecode:

1. For all input VRs to the bytecode which are not assigned a physical register,
according to the current state of the VR location table, generate a load from their
stack location into a temporary physical register.

2. If the output VR from the bytecode is not assigned a physical register, set aside
a temporary physical register.

3. Generate the appropriate machine instruction using temporary and/or permanent
registers

4. If the output VR from the bytecode is not assigned a permanent physical register,
generate a store from the temporary physical register to its location on the stack.

7

The VR location table is determined by the code generator by using information
gathered during the bytecode and VR annotation verification process. The verification
step is used by the JVM to insure that the bytecodes of a downloaded program do not
corrupt the virtual machine. We have modified this step to additionally verify the VR
annotation associated with each method. As a side effect of this process, the type of
each virtual register is determined. For machines with a split general purpose register
set and floating point register set, object references and integral types are assigned to
the general purpose register set, and floating point types are assigned to the floating
point register set. There may be some VRs which will not be assigned to physical
registers. Any virtual registers not assigned to physical registers are are only assigned
locations on the stack. This process is also responsible for generating procedure entry
prologues.

The verification process allows us to make an important optimization. Since the
verification process ensures that every use of a local JVM frame slot (or equivalently
a local variable) is preceded along all paths by a definition of that slot, we can log-
ically eliminate most load/store bytecodes that reference locals. As an example of
the machine code generated using this scheme, consider this bytecode and annotation:

“iadd 2,3 4”. This signifies that the iadd bytecode is annotated with three vir-
tual registers, 2, 3, and 4. The iadd bytecode, in the semantics of the stack-oriented
JVM, removes the top two integer operands off the bytecode operand stack, adds them,
and pushes the resulting integer result onto the stack. Our VR annotation has the se-
mantics: take the values contained in virtual registers 2 and 3, add them, and place the
result in virtual register 4. If we have a SPARC-like machine with only two allocatable
physical registers for holding integers, then we generate the following, assuming the
mapping from Figure 4:

! virtual registers > vr1 live in the activation record
ld [%fp - 0], %g1 ! copy vr2 -> g1
ld [%fp - 4], %g2 ! copy vr3 -> g2
add %g1,%g2,%g1 ! compute result
st %g1, [%fp - 8] ! copy result to vr4

(We are using %g1 and %g2 as temporary registers.) If we can allocate four physical
registers to virtual registers, then the mapping would become that shown in Figure 5.
We would generate:

virtual register physical register memory
0 %l0 [%fp - 4]
1 %l1 [%fp - 8]
2 %l2 [%fp - 12]
3 %l3 [%fp - 16]
4 – [%fp - 0]

Figure 5: Mapping from VRs to Physical Registers; MAXREGS = 4

! virtual registers > vr3 live in the activation record

8

add %l2,%l3,%g1 ! compute result
st %g1, [%fp + 36] ! copy result to vr4

5 Annotations

We have four sets of annotations: register assignment (VRs), redundant load/store elim-
ination (“remove if physical,” RIPs), register spills (swaps), and copies. Below is a
description of the VR annotation. Currently, the VR annotation is implemented in both
the annotator and in the code-generator. The RIP and swap annotations, which have not
been implemented yet, are described in Section 7. We have a “copy” annotation which
indicates where a load from one local followed by a store to another local corresponds
to a copy assignment from one local to another. This annotation deals with the situa-
tion where the value of a local variable is placed on the stack and stored into another
local. As noted in the previous section, we do not generate code for most bytecodes
which do loads/stores of local variables. We do, however, if a particular load/store
bytecode is annotated with a copy annotation. The generatation and use of the copy
annotation is very straightforward. The copy annotation is generated by simply noting
where such a pattern exists. It is used in the code generater to generate an appropriate
register-register or register-memory move instruction. We will not deal with the copy
annotation any further in this presentation.

5.1 VRs

The VR annotation is an assignment for each Java bytecode of a set of virtual register
numbers which correspond to the operands of the bytecode. The number of virtual
registers per bytecode varies. For example, as we have seen above, a binary arithmetic
operator will have three virtual registers—two for the input and one for the result. A
method call bytecode will have a variable number of virtual registers—one for the
object, one for each argument to the method, and one for the return value.

The salient characteristics of this annotation are that VRs are assigned their priority
based upon their importance and that the number of distinct virtual registers is mini-
mized. The priority is equivalent to the inverse of the virtual register number. Disjoint
live ranges of the same type may be assigned to the same virtual register. This makes
each VR monotyped, i.e. a VR can only “carry” one type of value throughout the en-
tire method. This includes reference types, taking into account the least-upper bound
along the inheritance and interface hierarchies induced by the data-flow algorithm of
the bytecode verification procedure[3]. For example, if is used as a reference to an
object of class A at one point in a program, it may not later be used as an integer or even
as a reference to an object of class B, unless class A and class B have a type-compatible
superclass.

This annotation uses an unsigned one byte quantity for each virtual register. The
values 0–254 indicate a valid virtual register number and the value 255 indicates no
virtual register assignment. More information on the VR usage for every bytecode can
be found in [4].

9

5.2 Generating VRs

The process of generating our VR annotation is similar to that of other register allo-
cators. Once we have discovered the values that are actually used by a method, we
proceed using standard graph-coloring techniques, with an important distinction — we
don’t know the number of physical registers. Therefore, our algorithm for finding a
register assignment consists of the standard algorithm modified to operate without this
vital piece of information. We will begin by describing the Chaitin graph coloring
register allocator, which forms the basis for our allocator.[5] We will then proceed by
giving our modifications to the Chaitin algorithm.

Finding a register allocation can be viewed as a graph coloring problem. An in-
terference graph is constructed where each node represents a value (live range) from
the program and the edges are between values which are simultaneously “live.” The
goal is to find a k-coloring of the interference graph, where k is the number of physical
registers. We can view this process as involving an oracle that tells us whether or not
a k-coloring is possible (using a particular heuristic). If it is, then the coloring of the
interference graph indicates which values should be assigned to which physical regis-
ters. If a k-coloring isn’t possible, then a value is chosen to be spilled (i. e. to reside
in memory), effectively removing its node from the graph, and another attempt to k-
color the graph is made. This process continues until the graph is colored and thereby
a register assignment obtained.

In our allocator, we also view the register assignment problem as graph coloring of
the interference graph. However, we have to change our abstract notion of the prob-
lem to deal with the fact that we don’t know the value of k, the number of physical
registers. Therefore, instead of attempting to find a k-coloring, we are actually trying
to find the minimum k, such that a k-coloring of the graph exists. This gives us a col-
oring that tends to reduce the number of registers; although this number may well be
larger than the actual number of registers of a particular machine, it is still a logical
place to start. Another aspect of our environment that we must deal with is the need
for verification. We do this by introducing edges into the interference graph between
nodes that have differing types. This insures that every VR is monotyped, as discussed
above. A final concern that arises in our environment is that we must prioritize our
colors — in a very abstract sense, turning our colors into a gray-scale. In the normal
Chaitin allocator, which physical register holds which live ranges doesn’t matter. In
our prioritized VR scheme, on the other hand, we need to decide beforehand which
registers should be spilled first, and it is simplest to use the register number to indicate
its priority. Thus there may be no difference between using register 1 and using register
10 (if the machine has ten registers), but there is a difference if the machine has fewer
registers and we are forced to spill one; register 10 has the lower priority, so it will
be the one spilled. Therefore, we use the so-called “Haifa heuristics” [7] to order our
colors so that the colors that hold the most important live ranges are numbered lower.
These heuristics take into account the number of uses of the live range, and how many
other live ranges are simultaneously live with this live range. Once this prioritization
has been calculated, the VR annotation is added to the .class file.

10

int test(boolean mode, int U[], int V[]) {
int SUM;
if (mode) {

A1 = U[0]; A2 = U[1];
} else {

B1 = V[0]; B2 = V[1];
}
if (mode) {

SUM = A1 + A2;
} else {

SUM = B1 + B2;
}
return SUM;

}

Figure 6: Example from Chaitin (size = 2, SPARCstation 20)

6 Examples

In the following pages are two examples of code generation for the SPARC using the
annotation scheme described above. The annotations were produced by our compiler,
which accepts .class files as input and produces annotated .class files as out-
put. The SPARC machine code shown was produced by our code generator embedded
within the kaffe JVM [8]. The general format of these examples follows that first shown
in Figure 2.

In Figure 11 we have the code for a complete method, which therefore includes
machine code for setting up the activation record on the stack — the save instruction
in the SPARC machine code on the right. We will return to this example again in
Section 7.2

In Figure 6 we have the equivalent Java source code for the example from the
Chaitin et. al. 1981 paper [5]. What makes this example interesting is that the sep-
aration into two if-then-else statements makes local register allocation ineffective. To
wit, local register allocation forces the store of sum at the end of both branches of the
second if statement and the subsequent load of sum at the beginning of the “return”
basic block.

In Figure 7, we have the bytecodes and the SPARC machine code generated by a
code generator for a portion of the source code of Figure 6. On the bottom left, we have
the code generated by the kaffe code generator, which doesn’t use our VR annotation.
On the bottom right, we have the code generated by our code generator, using our VR
annotations. The code shown is that for the very end of the then-branch of the second if
statement and for the return statement. Note that the code for line 614 of the “Without
VRs” SPARC code is preceded along both of its predecessors, lines 5e0 and 610, with
stores. The stores in lines 5dc and 610 and the following load in line 614 are necessary
because the kaffe code generator is only doing a local register allocation. In the “With
VRs” SPARC code, the predecessors to the basic block containing the return do not

11

Without VRs

 ...
 5dc: st %l5, [%fp + -92]
 5e0: b 614
 5e4: nop

 ...

 610: st %i5, [%fp + -92]
 614: ld [%fp + -92], %l7
 618: mov %l7, %i4
 61c: mov %i4, %i0
 620: ret
 624: restore

With VRs
 ...

 88: addcc %l0, %o4, %l0

 8c: b b4
 90: nop

 ...
 b0: addcc %l0, %o4, %l0

 b4: ret
 b8: restore %g0, %l0, %o0

Java bytecode
 ...

 42 istore_3
 43 goto 54

 ...
 53 istore_3
 54 iload_3
 55 ireturn

Figure 7: Bytecodes and SPARC Machine Code Generated from Chaitin (size = 2)

12

.class code
problem file gen execution verification
size size time time time
2 w/o VRs 1252 1ms 3ms 1ms

w VRs 1645 2ms 3ms 1ms
10 w/o VRs 1800 6ms 6ms 1ms

w VRs 2354 5ms 5ms 1ms

Figure 8: Results of VR annotation for chaitin (SPARCstation 20)

contain unnecessary stores, and the return block itself does not contain unnecessary
loads.

In Figure 8 we see performance numbers based upon the example in Chaitin et
al’s 1981 work [5]. The lines for size = 2 corresponds exactly to the source code in
Figure 6. The lines for size = 10 correspond to the example as given in Chaitin et al[5].
We see that for larger problem sizes, i.e. 10 vs. 2, that the VR annotation provides a
speedup, while not increasing code generation time, or the part of code generation time
spent on verification. These numbers were obtained on a SPARCstation 20. The lines
marked “w/o” is for code generated by the standard kaffe code generator, which uses a
local register allocator, run at code generation time. The lines marked “w” is for code
generated by our code generator, using the VR annotations. Similarly, we see in Figure
9, similar results for an integer quicksort routine.

Overall, we see an 8% speedup, without an increase in code generation or verifi-
cation time. We calculate the speedup using the normalized geometric mean equation
from [9]:

n
n

i 1
Execution time ratioi

Since the total execution time includes all methods, not just those annotated, this rep-
resents a very conservative estimate of the potential speedups.

7 Other Annotations

As noted earlier, we have defined two annotations other than the VR annotation. The
first of these, the “RIP” annotation, is used for redundant load-store elimination. The

.class code execution
file gen + compilation verification
size time time time

w/o VRs 619 5ms 132,405ms 1ms
w VRs 855 5ms 124,856ms 1ms

Figure 9: Results for quicksort (SPARCstation 20)

13

AClass anObj;
anObj.aField = 3;
for (i = 0; i < a.length; i++) {

a[i] = a[i] + anObj.aField;
}

Figure 10: Example of Utility of RIP Annotation

second of these, the “swap” annotation is used to indicate where register spills should
be performed if needed.

7.1 Semantics of “RIP” Annotation

The VR annotation removes most of the redundant loads and stores that would result
from a naive JIT implementation for Java bytecodes. However, VRs do not address
redundant load/store elimination for heap resident values. In situations dealing with
class and instance variables, machine code for multiple loads (i.e. getfield and
getstatic bytecodes) not reached by another definition after the first load, can be
eliminated by marking all subsequent loads as “remove if physical” if the virtual reg-
ister is being stored in a physical register. A similar situation holds for stores. The
analysis must take note of possible changes to an object that may take place via func-
tion calls. A conservative approach is to define any live range as ending when it reaches
a function call. An example will help to clarify. Suppose we have the Java source code
in Figure 10. The resulting annotated bytecode would have a putfield bytecode,
for the assignment to anObj.aField. As long as we arrange for the VR used by the
getfield bytecode for anObj.aField inside the loop to be the same as the VR
used by the putfield bytecode, we can mark the getfield bytecode as a RIP.

Due to the “precise exception” semantics of Java, it is anticipated that a few store
instructions will not be marked “remove if physical” using the above guidelines. For
example, suppose we have the following Java code as the entire body of a method:

int b = 0;
obj.a = 0;
try { obj.a = 3; b = 4; obj.a = 5; }
finally { obj.f(b); }

It might seem that the first putfield bytecode in the try block for obj.a could be
marked “remove if physical”. However, assume that some asynchronous exception is
thrown before the assignment of b, in the try clause. Since obj.f() may contain a
getfield bytecode, the putfield may not be marked “remove if physical”.

It is this sort of issue that makes optimizing for Java and C++, languages with
exceptions, different from optimizing for languages like C and FORTRAN, which do
not. There has been little published work in the area of optimizing for languages with
exceptions. One important work however, is Hennessy’s[10] 1981 paper. Other im-
portant work in the area of implementing exceptions has been done by Tiemann[11]

14

for C++, by Chase[12][13] for Ada, Modula2+, C++, Module-3 and Eiffel, and by
Goodenough[14] for general exception mechanisms.

Threading also must be examined carefully when generating “remove if physical”
annotations. Java has a shared-memory model for the sharing of information between
threads of execution. Access to this shared-memory area may or may not be synchro-
nized, with synchronization obtained either through explicit monitor enter and
monitor exit bytecodes, or through methods marked as synchronized.

From a safety viewpoint, RIPs do not pose a threat. It may appear that the elim-
ination of a store can lead to a violation of the requirement for definite assignment
before use, which is normally guaranteed by the bytecode verification process. Since
RIPs only apply to loads and stores of heap allocated values, the requirement is met
by the class, array, and object creation semantics. When a class or instance is cre-
ated, any variables associated with it are assigned an appropriate default value. 2 For
numeric types, this default value is zero. More importantly, for reference types, the
default value is null. Therefore, so long as the bytecode and VR are type-compatible,
“RIPs” cannot be used to grab a rogue pointer and break the sanity of the JVM.

7.2 Semantics of “swap” Annotation

When every variable is used with about the same frequency throughout a program,
deciding which are most important to keep in physical registers (or equivalently in our
case, to assign to lower numbered virtual registers) doesn’t matter much. Similarly, if
there are enough physical registers, then the priority doesn’t matter. The reason is that
no matter what the assignment, an equal number of operations will result in accesses
to memory. The point is that the non-uniform use of a variable through out a method
opens up opportunities for that variable to be spilled and allow a more important value
to have a chance at a physical register.

Using the swap annotation to guide changes in physical register assignment is cru-
cial in achieving our goal of having machine-independent annotations. There is a great
disparity in the number of registers available in popular microprocessors. Those in the
RISC family, such as the SPARC, have a large number of registers, typically 32 or
greater. In the CISC family, there is a great deal of variance. The embedded version of
the Motorola 68000 has only 16 registers, and the most popular non-embedded proces-
sor, the Intel x86 family, has even fewer. Given this disparity in the number of registers,
swap annotations provide a means for improving the quality of the register assignment
by allowing spill code to be generated more optimally, but in a machine-independent
fashion.

To do this, we mark regions of the program with “swaps” between two virtual
registers. This indicates that until otherwise indicated, the roles of the two registers
are swapped. This is accomplished in the code generator by changing the VR location
table. In a traditional global register allocator, if the number of registers is insufficient
to contain all live ranges, then code is inserted to “spill” values from registers into
memory and load values from memory into registers. The swap annotation has the
effect that spill code generation has in a traditional allocator. As covered in more detail

2Assuming that an initializer is called after object creation.[15]

15

below, the presence of a swap annotation may or may not result in spill code being
generated by the code generator.

One can see a simple example of the utility of swaps in Figure 11. On the top
left is the body of a Java function. On the bottom left is the corresponding annotated
Java bytecode. The value corresponding to sum1 is assigned to , and the value
for sum2 is assigned to . Although is not used in the first for loop and isn’t
used in the second, we cannot assign either to the same virtual register since they are
simultaneously live or interfere. If we were generating code for a machine with two
allocatable registers, and used only our VR annotation, then would not be assigned
to a physical register. NB. the machine code here is generated assuming the normal
number of registers for the SPARC. However, we can improve the performance of this
code by annotating the goto bytecode at PC 30 by saying that the relative priority of

and are swapped when doing code generation. We annotate at this location since
this is a natural loop header. This is done by modifying the VR location table discussed
in Section 4.1.

The “swap” annotation consists of information indicating the PC where the swap is
located, and which virtual registers are having their priorities swapped. What the code
generator does with the swap annotation is dependent upon the number of registers
available to be allocated. The “swap” annotation has the form A B, where A and B
are the VR’s that are to have their priorities swapped. In this annotation, we always
have A B, so that B is the VR whose priority is being increased. The rule is simple: if
A is in a physical register and B is not, then insert spill code and modify the VR location
table accordingly; otherwise do nothing — that is, neither generate any machine code
nor change the VR location table.

To devise an algorithm for determining where swaps should be inserted, we will
use the intuition provided by the aggressive live range splitting algorithm of Briggs[6].
There, live ranges are aggressively split before coloring by inserting spill code based
upon the single assignment (SSA) form of the method. Extraneous copies are elimi-
nated before coloring is attempted. We will simplify the Brigg’s algorithm by simply
generating the SSA form and then inserting the appropriate swap annotations to corre-
spond to the location and values of the -functions of the SSA form.

It may prove necessary to have two kinds of swaps—before and after. An after
swap placed on a bytecode indicates that the swap should logically take place after
the effect of the instruction has taken place. For conditional branches, this will have
the additional semantics that the swap takes place when the branch is not taken. This
is necessary to insure that there is always a place to put the swap — which logically
appears on a control-flow edge, not an instruction.

Swaps present no integrity problem, as long as the two values being swapped are
type-compatible.

8 Related Work

Many current implementations of the JVM use JIT technology. We discuss a few of
these below.

The open source virtual machine which we use to implement our work is kaffe,

16

int sum1 = 0, sum2 = 0;
for (int i = 0; i < 3; i++) {

sum1 += i;
}
System.out.println(sum1);
for (int i = 1; i < 4; i++) {

sum2 += 1;
}
return sum2;

0 iconst 0 0
1 istore 0 0
2 iconst 0 3
3 istore 1 3
4 iconst 0 1
5 istore 2 1
6 goto 16

9 iload 0 0
10 iload 2 1
11 iadd 0,1 0
12 istore 0 0
13 iinc 1

16 iload 2 1
17 iconst 3 2
18 if icmplt 9 1,2

21 getstatic 4
24 iload 0 0
25 invoke virtual 4,0
28 iconst 1 1
29 istore 3 1
30 goto 39

33 iinc 3
36 iinc 1

39 iload 3 1
40 iconst 4 2
41 if icmplt 33 1,2

44 iload 1 3
45 ireturn 3

save %sp, -200, %sp
mov %g0, %l0

mov %g0, %l3

mov %g0, %l1

b xxx
nop

add %l0, %l1, %l0

addcc %l1,1,%l1

mov 3, %l2
cmp %l1, %l2
bl 0x10aea8
nop

sethi %hi(xxx), %g4
or %g4, 0x324, %g4
ld [%g4], %l4

mov %l4, %o0
ld [%o0], %g2
ld [%g2 + 0x8c], %g2
mov %l0, %o1
call %g2
nop
mov 1, %l1

b xxx
nop

addcc %l1,1,%l1
addcc %l3,1,%l3

mov 4, %l2
cmp %l1, %l2
bl xxx
nop

ret
restore %g0, %l3, %o0

Figure 11: Utility of Swaps

17

from Transvirtual[8]. This VM can be deployed either as an all-interpreted system or
an all-JIT system. Their JIT system does a very weak local register allocation, and no
other optimizations.

Sun’s “Java HotSpotTM performance engine”[16] employs an optimizing compiler
on code that has been determined to be performance critical. The optimizing compiler
in their VM includes implementations of dead-code elimination, loop invariant hoist-
ing, common subexpression elimination, constant propagation and a graph coloring
global register allocator.

Another JVM developed in a commercial environment is one at IBM Tokyo Re-
search Laboratory[17]. It applies a similar set of optimizations as HotSpot does in its
JIT. However, it does not use a global register allocator, but use a region-based local
one instead. They claim “Since the JIT compiler requires fast compilation, expensive
register allocation algorithms, such as graph coloring, cannot be used.” We prove this
assertion is limited to non-annotation-aware JITS by doing the graph coloring when
making the .class file, not when executing it.

Most closely related to our work is the AJIT system[18] [19]. They also add an-
notations to the .class file, and then use an “annotation-aware” JVM to generate
machine code. They break up some of the more complicated Java bytecodes into sub-
operations (e.g. iaload, load an element from an array of integers) and produce an-
notations specific to the suboperations. By in effect transforming their bytecodes into
a sort of microcode, it seems likely that the verification process is made more difficult.
Furthermore, they do not have the swap annotation, which we argued is important for
increasing the portability of any annotated code.

9 Open Questions

While we have shown the potential for a useful technique in the implementation of
portable virtual machines, there are important questions still open.

1. Are the virtual register assignments worth the transmission cost versus doing
global register allocation in the JVM?

2. How much does monotyping a virtual register cost in terms of lost opportunities
to allocate the register for typical Java functions?

3. How effective are these techniques on machines with fewer and more restricted
registers than the SPARC?

We intend to aggressively address these issues as our implementation matures. It is our
intention to answer these questions in an environment where the benefits of portability
and security of the JVM architecture are not compromised.

10 Conclusions

We have defined and implemented a register allocation annotation for Java .class
files which is both machine-independent and safe. In addition, we have defined two

18

other annotations which are machine-independent and safe, “remove if physical” and
swaps which should also prove to be performance enhancing.

Acknowledgments

We would like to thank Mike Lake for coining the phrase and clarifying the concept of
“superlinear analysis and linear exploitation” and for providing a version of Figure 1
suitable for LATEX.

References

[1] Ralph Johnson, Justin O. Graver, and Lawrence W. Zurawski. TS: An optimizing
compiler for smalltalk. In Proceedings OOPSLA ’88, ACM SIGPLAN Notices,
pages 18–26, November 1988. Published as Proceedings OOPSLA ’88, ACM
SIGPLAN Notices, volume 23, number 11.

[2] Urs Holzle. Adaptive optimization for SELF: Reconciling high performance with
exploratory programming. Technical Report STAN//CS-TR-94-1520, Stanford
University, Department of Computer Science, August 1994.

[3] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, 1997.

[4] Joel Jones. Annotating Java class files for performance.
http://mtdoom.cs.uiuc.edu/AnnotationSemantics.ps, November 1997.

[5] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.
Markstein. Register allocation via coloring. Journal of Computer Languages,
6:45–57, 1981.

[6] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Uni-
versity, April 1992.

[7] David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay
Mansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimization techniques for
optimizing compilers. SIGPLAN Notices, 24(7):258–263, July 1989. Proceedings
of the ACM SIGPLAN ’89 Conference on Programming Language Design and
Implementation.

[8] Transvirtual Technologies. Kaffe OpenVMT M .

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[10] John Hennessy. Program optimization and exception handling. In Conference
Record of the Eighth Annual ACM Symposium on Principles of Programming
Languages, pages 200–206, Williamsburg, Virginia, January 26–28, 1981. ACM
SIGACT-SIGPLAN, ACM Press.

19

[11] M. D. Tiemann. An exception handling implementation for C++. In Anonymous,
editor, USENIX C++ Conference, pages 215–232, Berkeley, CA, USA, 1990.
USENIX Association.

[12] David Chase. Implementation of exception handling, Part I. The Journal of C
Language Translation, 5(4):229–240, June 1994.

[13] David Chase. Implementation of exception handling, Part II: Calling conventions,
asynchrony, optimizers, and debuggers. The Journal of C Language Translation,
6(1):20–32, September 1994.

[14] John B. Goodenough. Exception handling: Issues and a proposed notation. Com-
munications of the ACM, 18(12):683–696, December 1975.

[15] Stephen N. Freund and John C. Mitchell. A type system for object initialization
in the JavaT M bytecode language. Technical Report CS-TN-98-62, Department
of Computer Science, Stanford University, April 1998.

[16] Sun Microsystems Incorporated. The Java HotSpotTM performance engine archi-
tecture: A white paper about Sun’s second generation performance technology,
April 1999.

[17] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Mikio Takeuchi, Toshio
Suganuma, Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani. Design,
implementation, and evaluation of optimizations in a just-in-time compiler. In
ACM 1999 Java Grande Conference, 1999.

[18] Joe Hummel, Ana Azevedo, David Kolson, and Alex Nicolau. Annotating the
java bytecodes in support of optimization. Concurrency: Practice and Experi-
ence, 9(11):1003–1016, November 1997.

[19] Ana Azevedo, Alex Nicolau, and Joe Hummel. Java annotation-aware just-in-
time (AJIT) compilation system. In ACM 1999 Java Grande Conference, 1999.

20

