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Abstract

The contribution of this paper is twofold. First a distributed
garbage collector (DGC) is presented that is optimized for
remote method invocation in reliable networks, such as cur-
rent clusters of workstations. Since the algorithm does not
require extra acknowledgement messages, even while col-
lecting, it does not increase the latency of a remote call.

Then it is discussed how several DGCs can cooperate
in networks that consist of different areas with respect to
communication, i.e., of areas with different reliability prop-
erties. Proper placement and use of bridge objects allow to
select an optimized DGC for every area.

1 Introduction

With the growth of Java, automatic garbage-collection got
into the main stream. And since Java offers library support
for distributed objects as well, it is only natural that Java
includes a distributed garbage collector (DGC).

In the past, DGCs have predominantly been developed
for experimental languages or for languages with a small
number of users. A lot of research has been done on
DGCs but most of the work targets underlying connection
networks that suffer from message loss, duplication, de-
lay, out-or-order delivery, disconnected nodes, or network
partitioning. To deal with those kinds of challenging net-
work problems, in general complicated acknowledgement
schemes have been designed that unfortunately require ad-
ditional messages on the critical path of a remote call.

Java’s RMI (remote method invocation, [12, 14]) uses
such a DGC that is suitable for wide-area TCP/IP networks.

However, the use of distributed Java is not restricted to
wide-area applications, but there is demand to use Java also
for parallel and distributed high-performance applications
that require special-purpose high-performance communica-
tion networks [4, 13]. For such applications, acknowledge-

ment schemes that slow down a remote method invocation
are no longer acceptable. Moreover, RMI programmers
tend to pass references to remote objects more frequently
than they did in other languages before, because Java’s re-
mote method invocation is very transparent and feels much
like a regular (local) method invocation. Thus, inefficien-
cies of an acknowledgement scheme can easily add up. On
the other hand, on clusters of workstations with special pur-
pose communication hardware, the network can offer cer-
tain guaranteed properties that no longer require the amount
of acknowledgement traffic needed by earlier DGCs.

Unfortunately, current RMI does neither allow to use a
special purpose DGC nor does it allow to switch to non-
TCP/IP networks.

In this paper we review the related work on distributed
garbage collectors (section 2) first. In section 3 we then
present a new distributed garbage collector that is well
suited for both clusters of workstations and fast remote
method invocations. With KaRMI [6, 7], we have re-
designed and re-implemented JavaSoft’s RMI so that both
a different distributed garbage collector can be plugged in
and non-TCP/IP networks can be used.

There is no quantitative performance analysis in the pa-
per. The absence of acknowledgementmessages of any kind
on the critical path is a significant qualitative improvement
that allows for remote method invocations in only 80�s
on a network of DEC Alpha stations connected by Myrinet
(compared to several milliseconds when standard RMI, a
standard DGC, and Ethernet are used.)

In section 4 we study how KaRMI makes different DGCs
cooperate in heterogeneous networks, for example where a
cluster with a high-performance DGC is part of a regular
TCP/IP network with a RMI-like DGC.

2 Distributed Garbage Collectors

For this paper we assume a stable communication network
where a node cannot be disconnected and where there is
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no network partitioning. Moreover, no messages are lost,
duplicated, or delayed. When two messages follow one an-
other from a single node to the same target node, their rela-
tive order remains unchanged by the network. However, no
assumption can be made about two messages that are sent
from two different nodes to a single recipient. Their relative
order of arrival is unknown.

The following discussion of known DGCs ignores net-
work problems and only deals with problems that can occur
on such a stable network. A more detailed discussion of
DGCs can be found in [9]. Unfortunately, most of the al-
gorithms that can be found in the literature cannot handle
migrating objects.

2.1 Reference Counting

All reference counting collectors associate with each remote
object – an object that can be accessed remotely from other
nodes – a count of the number of remote references to it.

Basic Reference Counting. A race condition can occur
in the following situation: When a client (a node that has
a remote reference to an object) passes this reference on
to another new client, the new client informs the referred
object of the fact that a new remote reference to it came
into existence, i.e., a so-called increment message is sent.
Assume that slightly after this message has been sent, the
local collector of the first client determines to claim the re-
mote reference. This will result in a so-called decrement
message to be sent to the referred object, but this message
originates from a different sender. See figure 2.
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Figure 1. Legend of symbols used in the following figures

Since there is no guaranteed relative order of arrival at
the referred object, assume that the decrement message ar-
rives first. The reference counter will be decremented; it
might reach zero and thus trigger the local collector to claim
the object prematurely, although a remote reference still ex-
ists and an increment message is about to arrive.

To avoid that sort of race condition, a decrement message
may only be sent after an increment message has been pro-
cessed, hence every increment message must be acknowl-
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2. increment

claimed by local collector

2b. decrement

2a. remote reference is

Figure 2. Race condition of basic reference counting col-
lectors: Client 1 passes on a reference to objects to client
2. Then the local collector of client 1 claims the stubs

0

and sends a “decrement message” to the owner ofs. The
new client 2 creates a new stubs00 and sends the “increment
message” to the owner. If the decrement message is pro-
cessed first, the owner’s local collector might claim object
s although a remote reference (stubs

00) still exists.

edged in reference counting DGCs. The acknowledgement
is on the critical path of a method invocation.

Weighted Reference Counting. The aim of weighted ref-
erence counting [1, 15] is to get rid of the increment mes-
sage and hence to avoid the acknowledgement message. To
achieve that, the object stores a so-called total weight. Each
client stores a partial weight; the invariant is that the sum
of all partial weights spread over the network is equal to the
total weight stored at the owner. When a client forwards a
reference to a new client, half the partial weight is passed
on as well. See figure 3.

It depends on the implementation what the receiving
client does in case it already has a reference to the remote
object. It can either add the receiving partial weight to the
weight that is already present or it can return the partial
weight in an asynchronous response. Often only the expo-
nentk of a partial weight2k is stored in weighted reference
counting collectors. Then in general, the receiving client
must return the partial weight.1

When collecting, clients return their partial weight to the
owner in decrement messages. The owner deducts the re-
turned weight from the total weight. When the total weight
reaches zero, the local collector takes over.

Although weighted reference counting seems to avoid
additional messages on the first glance, extra traffic is

1Note that in the meantime the first client could have passed a reference
to yet another client so that it becomes impossible to accept the returned
weight, because it cannot be stored in the2k format. In this case, the
partial weight is lost and returned to the owner.
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Figure 3. Objects starts with a total weight of 8 and a
partial weight of 8. When the first reference is passed on to
client 1, half the weight is given to client 1, a partial weight
of 4 remains at the owner. Similarly, when client 1 passes
the reference tos on to client 2, half the partial weight (2)
is given to client 2, the other half remains at client 1. The
invariant is that the sum of all partial weight in the network
is equal to the total weight stored at the owner.

needed when a client’s partial weight reaches a minimal
value that cannot be split. Several techniques have been
proposed to overcome this problem. The trivial solution is
to increase both the total weight at the owner and the partial
weight at the client by the same amount. But this requires
additional messages on the critical path. Other approaches
[11, 3, 8] add some sort of hierarchy where the client gives
out new weight without contacting the owner. But the new
client has to return the weight to the issuing client instead
of the owner. Hence, there is no additional message on the
critical path but the collection process itself is nested across
the network.

2.2 Reference Lists

Reference lists [2] are similar in spirit to reference counters.
Instead of a counter the owner stores a list of items with one
entry for every client. The owner not only knows how many
clients there are but in addition, the client knows the identity
of the clients.

Since DGCs based on reference lists suffer from the
same race conditions as reference counting collectors, the
same acknowledgements have to be used for every incre-
ment message.

Reference lists are preferred over reference counters be-
cause they have a better behavior in case of lost or dupli-
cated messages. Moreover, because of the knowledge about
client identity, the owner can easily ping the clients to learn
about network partitioning or client termination. Bundled

with a leasing-based scheme, reference lists are ideal for
instable networks.

RMI uses a DGC based on leasing and reference lists.

2.3 Tracing and hybrid DGCs

The general problem with reference counting and reference
lists is that cyclic garbage cannot be detected. This can only
be achieved by mark-and-sweep algorithms that trace every
single reference. Tracing is very costly on slow networks
and will not be discussed any further.

Hybrid DGCs employ both a DGC based on reference
counting or reference lists and a tracing based DGC to get
rid of any cyclic garbage left over. The latter is triggered
only in long intervals.

2.4 Comparison

The following table compares the properties of the well-
known categories of DGCs. It is obvious that the algorithms
either require additional messages on the critical path of a
remote method invocation or are costly because of many
messages that are sent asynchronously or while collecting.
This asynchronous or collection traffic does not slow down
individual remote method invocations directly, but if a lot
of such traffic is generated, the network’s bandwidth may
become a critical resource that prevents remote method in-
vocations from being processed at full speed.

basic weight ref. trace
ref. ref. list

count count
add. msg. on critical path yes — yes —
add. concurrent msg. — yes yes —
add. msg. while collecting — yes — many
memory consumption small small medium small
amount of computation small small small medium

3 Max Counter DGC

We now present our max counter DGC that is specifically
optimized for clusters with stable networks. It avoids all
additional messages. Moreover, it works correctly even
for migrating objects. Unfortunately, this DGC uses a lot
of memory: each stub needs an array of integers that has
a slot per node in the network. Compared to JavaSoft’s
RMI stubs, for clusters of 32 or more nodes, the extra ar-
ray needs more memory than the stub itself. Moreover, the
max counter DGC need longer messages than other DGCs
– but this is acceptable on networks where latency and not
bandwidth is the bottleneck.
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3.1 General Idea

The max counter DGC is inspired by ideas of reference
counting, weights, and reference lists but stores its infor-
mation in a decentralized way. The general idea of the max
counter DGC is that wherever an operation is executed that
is relevant for the collection, that information is kept in as
much detail as possible. Every node monitors how often a
reference to a given object is passed on to other nodes (max
counter array). Similarly, every node accepting a reference
knows how often that reference has been passed to it (sum
counter). When references are sent over the network, they
are accompanied with the max counter array and the sum
counter so that nodes can learn from their peers’ states. The
recipient knows how to combine the local counters with the
ones in the message. Upon local collection, a node sim-
ply sends all its information to the owner who knows how
to combine this array with its own and how to determine
whether a local collector can be triggered.

More formally, every nodeA stores an information tuple
(mA[1::n]; sA). The index ofA in the max counter array
mA tells us how often nodeA has passed on a reference to
other nodes. The sum countersA on the other hand tells us
how often nodeA node has received a reference from other
nodes. Two tuples are combined as follows:

(mA; sA)� (mB ; sB) =

([max(mA[1];mB [1]); : : : ;max(mA[n];mB [n])]; sA+sB)

Since� is associative and commutative, we can defineP
� to be the application of� to all tuples of nodes in a set

�. Furthermore,m
P

� denotes the max counter array of
the total,s

P
� is the sum counter of the total.

The invariant of the max counter DGC algorithm is:

s
X

� =

nX

i=1

(m
X

�)[i]

The total sum of references passed out to other nodes
is identical to the number of references received by all the
nodes. The object can be claimed by the local collector of
the ownerO if there is no local reference to it and if

sO =
nX

i=1

mO[i]

During its lifetime, the owner learns about references
passed on to other nodes (by every other node). This in-
formation is collected in its max counter array. The owner’s
local collector can claim the object if the total number of
these references, i.e., the sum of the elements of the max
counter array, is equal to the number of references returned
to the owner. As long as there are remote references to the
object,sO will be smaller than the sum of the max counter
elements. (At this point it becomes obvious that “decrement
messages” must use the same�-mechanism.)

3.2 Operations

Each of the following operations of the max counter DGC is
an atomic unit, properly kept in isolation by the implemen-
tation. In the previous section, only nodes had information
tuples. But messages need to have information tuples as
well. The invariant covers both nodes and messages.

1. Reference Creation at nodeA. NodeA is about to
send a reference to an arbitrary recipient. The node’s max
counterm is incremented at positionA, since a reference is
issued by that node. The sum counter remains unchanged
(because nodeA does not receive a new reference.)

Then a new message is created. The node’s max counter
is copied into the message to inform the recipient of all the
reference passing nodeA is aware of. The message’s sum
counter is set to 1, since the message has received a refer-
ence exactly once.

2. Receive Reference at nodeB where B is already
client. NodeB receives a message with a reference to a
remote object. NodeB already has a stub that refers to the
remote object, andB stores the necessary information tuple.

NodeB applies the�-operation to merge the informa-
tion tuple of the message to its own information tuple. Since
the sum counter of the message is 1 (see operation 1 above)
B increments its sum counter by 1 (i.e.,B got a new ref-
erence.) The max-operation ensures thatB has the most
accurate and combined information available on how often
references have been passed on by all other nodes.

Finally, the message is discarded.

3. Receive Reference at nodeB whereB is not yet client.
NodeB creates a stub that refers to the remote object ac-
cording to the addressing information in the message. The
new information tuple is initialized to ([0..0],0), then the in-
formation tuple of the message is merged by means of the
�-operation.2 The message is then discarded.

4. A stub at nodeA is claimed by the local collector.
The complete information tuple is sent to the last known
owner of the object.

5. Claim information arrives at node B. When a mes-
sage about a claimed stub arrives at nodeB, nodeB can
or cannot be the actual owner of the referred remote object
since the object might have migrated.

2Actually, the information tuple is not initialized to all zeros and hence
the�-operation is reasonable. Instead there is an additional global integer
per global object ID not mentioned before. This counter that is kept even
if the corresponding stub is claimed by a local collector contributes to the
initialization of B’s information tuple. We skip a detailed discussion of
this counter for brevity.
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However, as long as there still is a stub atB, the infor-
mation tuple of the message is simply merged to the infor-
mation tuple stored atB. The message is then discarded.

Only if B itself no longer has a stub, the message is for-
warded to the assumed new owner.

6. NodeA sends a migration message.NodeA is the
current owner of the object. No other node can send a mi-
gration message. The node’s max counterm is incremented
at positionA, since a reference is issued by that node. Its
sum counter is incremented by 1.

Then a new message is created. The node’s max counter
is copied into the message. The message’s sum counter is
set to 0.

Note that the main difference to operation 1 is the way
sum counters are handled. In contrast to operation 1, the
migration message itself appears to be the remote object
(s = 0). NodeA seems to have received a reference to
it by having its counter incremented.

In contrast to all other operations, sending of migration
messages needs an acknowledgement. Only after the recip-
ient has properly installed the object the local collector may
claim the stub at nodeA.

7. Migration message arrives at nodeB whereB is al-
ready client. NodeB becomes the new owner of the ob-
ject. The information tuple of the message is merged to the
tuple that is stored locally. Then the message is discarded
and an acknowledgement is sent to the originator of the mi-
gration message.

8. Migration message arrives at nodeB whereB is not
yet client. NodeB becomes the new owner of the object.
The new information tuple is initialized to ([0..0],0), then
the information tuple of the message is merged by means
of the�-operation. The message is then discarded and an
acknowledgement is sent to the originator of the migration
message.

4 Examples

The following examples are based on a shorthand notation.
Thecreateoperation indicates that an object (not identified
here) is created. When a reference is sent to nodey (opera-
tion 1), we writeref.s(y,idx). When the corresponding mes-
sage is received from nodex (operations 2 or 3), we write
ref.r(x,idx) . The indexidx is identical for a send-receive-
pair and unique otherwise.

Similarly, del.s(y,idx) and del.r(x,idx) represent the
sending and receiving of messages caused by local col-
lection (operations 4 and 5). Finally,mig.s(y,idx) and
mig.r(x,idx) stand for the sending and receiving of migra-
tion messages.

4.1 Basic Example

Let us first consider a network of three nodes. In the first
line of table 1 (t=1), an object is created. The active node
is node 1 (see column marked A). The corresponding infor-
mation tuple is initialized to ([0,0,0],0). Since there is no
remote reference to this object, the sum of the elements of
the max counter array is equal to the sum counter. In the
table, this fact is indicated by “=”.

A reference to this object is then passed on to the second
node (lines 2 & 8) which in turn passes on the reference
to the third node (lines 4 & 5). This scenario is similar to
the one depicted in figures 2 and 3. Afterwards both clients
have their stub collected by the local collector (lines 6–9).

Table 1 shows all the modifications of information tu-
ples. If a node does not have an information tuple, this fact
is indicated by means of “—”. Empty cells (“�”) indicate
that the information tuple has not changed from the previ-
ous line.

In line 2, the reference is sent out to node 2. Hence, the
information tuple of node 1 is changed and a new message
is created. The information tuple of the message is shown in
the last column of the table. After creation of the message,
the local collector of node 1 can no longer claim the object
– formally the sum of the elements of the max counter array
is higher than the sum counter (>).

In line 3, the message is consumed by node 2. Accord-
ingly, node 2 installs an information tuple of its own. Simi-
lar for lines 4 and 5.

The subsequent delete operations are triggered when the
local collectors on nodes 2 and 3 remove the stubs. Then
the information tuple is sent to the owner (node 1). The first
claim message that arrives at the owner informs the owner
that both node 1 and 2 have sent out references. Hence,
two claim messages with sum=1 are needed to release the
object. From the sum counter in node 1 it can be seen that
both existing references must cease to exist before a “=” is
reached again.

The invariant holds for every line in the table. To check
that, combine all information tuples of a line by means of
the�-operation. The sum of the elements of the total max
counter is always equal to the total sum counter.

Moreover, it is easy to see that the race condition that is
typical for reference counting DGCs does not occur.

4.2 Advanced Example

In this example, every operation discussed in section 3.2
actually occurs. Table 2 gives all the information tuples.

First, an object is created on node 1. References to this
object are then sent to nodes 2 and 3. In line 5, this ref-
erence is returned to node 1: One can see what happens
if a reference is sent to a node that already is a client (in
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Table 1. Information tuples for Basic Example

t A op node message
1 test 2 3 tuple

1 1 create(0) ([0,0,0],0) = — — —
2 1 ref.s(2,1) ([1,0,0],0) > — — ([1,0,0],1)
3 2 ref.r(1,1) � > ([1,0,0],1) — —
4 2 ref.s(3,2) � > ([1,1,0],1) — ([1,1,0],1)
5 3 ref.r(2,2) � > � ([1,1,0],1) —
6 2 del.s(1,3) � > — � ([1,1,0],1)
7 1 del.r(2,3) ([1,1,0],1) > — � —
8 3 del.s(1,4) � > — — ([1,1,0],1)
9 1 del.r(3,4) ([1,1,0],2) = — — —

Table 2. Information tuples for Advanced Example

t A op node message
1 2 3 4 5 tuple(s)

1 1 create(0) ([0,0,0,0,0],0) — — — — —
2 1 ref.s(2,1) ([1,0,0,0,0],0) — — — — ([1,0,0,0,0],1)
3 1 ref.s(3,2) ([2,0,0,0,0],0) — — — — ([2,0,0,0,0],1), ([1,0,0,0,0],1)
4 2 ref.r(1,1) � ([1,0,0,0,0],1) — — — ([2,0,0,0,0],1)
5 3 ref.r(1,2) � � ([2,0,0,0,0],1) — — —
6 3 ref.s(1,3) � � [(2,0,1,0,0),1] — — ([2,0,1,0,0],1)
7 1 ref.r(3,3) [(2,0,1,0,0],1) � � — — —
8 1 ref.s(4,4) [(3,0,1,0,0],1) � � — — ([3,0,1,0,0],1)
9 3 ref.s(4,5) � � ([2,0,2,0,0],1) — — ([2,0,2,0,0],1), ([3,0,1,0,0],1)
10 4 ref.r(3,5) � � � ([0,0,2,0,0],1) — ([3,0,1,0,0],1)
11 4 ref.r(1,4) � � � ([3,0,2,0,0],2) — —
12 3 del.s(1,6) � � — � — ([2,0,2,0,0],1)
13 1 del.r(3,6) ([3,0,2,0,0],2) � — � — —
14 4 ref.s(3,7) � � — ([3,0,2,1,0],2) — ([3,0,2,1,0],1)
15 4 ref.s(2,8) � � — ([3,0,2,2,0],2) — ([3,0,2,2,0],1), ([3,0,2,1,0],1)
16 2 ref.r(4,8) � ([1,0,0,2,0],2) — � — ([3,0,2,1,0],1)
17 3 ref.r(4,7) � � ([0,0,2,1,0],1) � — —
18 1 mig.s(5,9) ([4,0,2,0,0],3) � � � — ([4,0,2,0,0],0)
19 5 mig.r(1,9) � � � � ([4,0,2,0,0],0) —
20 3 del.s(1,10) � � — � � ([0,0,2,1,0],1)
21 1 del.r(3,10) ([4,0,2,1,0],4) � — � � —
22 4 ref.s(1,11) � � — ([3,0,2,3,0],2) � ([3,0,2,3,0],1)
23 1 ref.r(4,11) ([4,0,2,3,0],5) � — � � —
24 1 del.s(5,12) — � — � � ([4,0,2,3,0),5)
25 4 del.s(5,13) — � — — � ([3,0,2,3,0],2), ([4,0,2,3,0],5)
26 5 del.r(4,13) — � — — ([4,0,2,3,0],2) ([4,0,2,3,0],5)
27 5 mig.s(4,14) — � — — ([4,0,2,3,1],3) ([4,0,2,3,1],1), ([4,0,2,3,0],5)
28 5 del.r(1,12) — � — — ([4,0,2,3,1],8) ([4,0,2,3,1],0)
29 4 mig.r(5,14) — � — ([4,0,2,3,1],0) � —
30 5 del.s(4,15) — � — � — ([4,0,2,3,1],8)
31 4 del.r(5,15) — � — ([4,0,2,3,1],8) — —
32 2 del.s(4,16) — — — � — ([1,0,0,2,0],2)
33 4 del.r(2,16) — — — ([4,0,2,3,1],10) — —
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this case the owner itself). From lines 8 to 11, two nodes
send references to node 4. Node 3 deletes its stub in line 12
but later receives a new reference from node 4 in line 17.
(Please note the max counter vector of line 17 takes into ac-
count the global counter of node 3 that is not discussed in
this paper.)

In lines 18 & 19 the owner migrates from node 1 to node
5. It is shown in line 21 how messages are handled that
arrive after the owner has gone but when a stub still exists.
The stub is finally removed in line 24. Starting in line 24
all stubs are claimed by local collectors. This process is
mixed with another migration of the object in lines 27 &
29. Finally, all stubs are gone and node 4 is the owner.

Again, the last column holds the information tuple(s) of
messages that are out in the network. The invariant holds in
every line of the table.

Only in lines 1 and 33, the sum of the elements of the
max counter array is equal to the sum counter. Hence, only
in lines 1 and 33, a local collector is allowed to claim the
object.

4.3 Proof of correctness

The proof of correctness is very technical with lots of cases.
Since it does not give any new insights, we simply refer the
interested reader to [10] for the details.

The max counter DGC has been implemented in the
JavaParty environment [5, 6]. The implementation relies on
Java’s weak object references. All of the operations men-
tioned in section 3.2 are properly synchronized.

5 Bridging several DGCs

Todays hardware infrastructure does not consist of isolated
clusters of workstations alone. Instead, those clusters are
often part of TCP/IP networks, or can even be accessed
from the web.

Each node can have different transport mechanisms
available, one for each type of communication network the
node belongs to. A typical scenario might consist of nodes
that are at the interior of a cluster and can only be accessed
through the cluster’s high-performance network, i.e., they
only use a single transport technology while other nodes
link the cluster into a bigger TCP/IP-network. Those need
to be able to communicate by means of two types of tech-
nology, for example through Myrinet boards and through
Ethernet cards. External nodes can only use Ethernet.

Obviously, in different areas, such a network has differ-
ent properties so that different DGCs are best suited.

This section presents a mechanism that allows to use
specifically tuned DGCs in different areas of such a network
and make them cooperate correctly.

We first discuss bridge objects for the purpose of com-
munication without taking garbage collection into account.
A rule is derived that decides whether and where to create
a bridge object. Then (see section 5.2) we refine this rule
to ensure correct behavior if several DGCs are used concur-
rently.

5.1 Bridge objects for communication purposes

If the sender and the corresponding receiver of a message do
not have access to the same communication technology, a
so-called bridge object that can use both technologies needs
to be created transparently at one of the nodes on the path.
See figure 4.

O1 R1 R2O2

node 1 node 2 node 3

T1T1

T2 T2

O1 R1 R2O2

node 1 node 2 node 3

T1T1

T2 T2

B R3

Figure 4. In the upper situation node 3 can only com-
municate with node 2 by means of technology T2. When a
remote method invocation on node 3 returns a reference to
object O1, a new reference R3 is created. However, R3 can-
not refer to O1 directly because of the lacking technology
object T1. Therefore, a communication bridge B is created
in node 2 that forwards any access from R3 through R1 to
O1. See figure 1 for the legend.

It seems sufficient for the sender to know how to access
the bridge, since the bridge knows how to forward the mes-
sage to the final target. However, it is more efficient if the
sender stores both the address of the bridge and the address
of the original target object. The reason becomes apparent
when the sender passes on the reference to other nodes that
might have a communication technology available to access
the target directly.

For example, consider figure 4 again. Assume that node
3 passes on its reference to a new node 4 that has both tech-
nologies T1 and T2 available. If the reference R3 would
only store the address of the bridge, every message from the
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new node to O1 would need to go through the slow bridge
on node 2.

Only if R3 stores a direct address as well, the access path
can be short-cut as soon as a common communication tech-
nology becomes available. Short-cutting that avoids previ-
ously created bridges is essential for good performance.

5.2 Bridge objects for DGC purposes

The obvious rule that ensures correct cooperation of several
DGCs is that every object may only be claimed by a local
collector if none of the DGCs signals the existence of a re-
mote reference to that object.

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1 R1 R2B

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1 R1 R2B

R3

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1 R1 R2B

R3
R4

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1

R4

pass on reference

Figure 5. At first, node 3 has a reference to object O1
through bridge B. Node 3 passes on the reference to node 4.
Since node 4 has technology T1 available the new reference
R3 can reach O1 directly, but uses the bridge for collecting
purposes (2nd row). Both addresses (O1 and B) are stored
in R3. Node 4 then passes on the reference to node 1. The
new reference R4 can use O1 directly for communication
and collection. Since nodes 1 and 4 share technology T1,
no new bridge has been built. When local collectors claim
R1, R2, and R3, only R4 remains. Unfortunately, R4 still
stores an address of B that no longer exists.

When bridge objects are added for communication pur-
poses, there are two general options for the DGC. If only

one DGC is used for the whole network, the bridge object
can just be used to forward any messages to the target, i.e.,
bridge objects are more or less ignored by the DGC.

But since we would like to use different DGCs for dif-
ferent areas of the network, the DGCs need to cooperate
at the boundaries of the technologies. Bridge objects seem
ideal to implement that sort of cooperation, since they can
be used as interfaces between different DGCs. The DGC of
one technology area treats the bridge object as a new owner
object to which remote references exist. To the other side
and the other technology’s DGC, the bridge object acts as a
regular remote reference to the original owner object.

Unfortunately, short-cutting of communication paths is
not a blessing for cooperating DGCs, as shown in figure 5.
Short-cutting requires that both the address of the bridge
and the direct address need to be stored in a reference. But
this is insufficient from the DGC point of view. In addition,
bridges must not be claimed by local collectors as long as
references exist that store their addresses.

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1 R2B

R3
R4

R1

B2

T1

T2

T1

T2

node 1 node 2 node 3

T1

T2

node 4

O1 B

R3
R4

R1

B2

Figure 6. This replaces the last two rows of figure 5. R4
uses the new bridge B2 for collecting purposes. The local
collectors can only claim R2. The remaining objects R1, B,
and R3 will be kept as long as R4 might need them.

In the example, R4’s DGC-reference needs to reference
B, at least indirectly. Therefore, node 4 has to create a new
bridge B2 when passing on a reference to node 1. This is
shown in figure 6.

Thus, a new bridge is not only needed when there is
no common communication technology for sender and re-
ceiver, but also when the latest bridge (on the path to the
owner) is accessed by means of a technology that is differ-
ent from the technology needed for direct access.

6 Conclusion

The max counter DGC presented in section 3 has been de-
signed for reliable networks. It does not need any extra ac-
knowledgement messages, even during collection. By stor-
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ing the management information in a decentralized way, ev-
ery node can pass on references to remote objects without
consulting other nodes first. Hence, the max counter DGC
does not add to the latency of a remote method invocation
(at least if the network provides enough bandwidth for the
enlarged message sizes.)

To use the max counter DGC in situations where a highly
reliable area of the network is located within regular wide-
area networks, we have shown how several DGCs can be
made to cooperate. A rule has been derived for proper
placement of bridge objects that allows short-cutting of
communication paths and avoids the erroneous collection
of previously created bridges.
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