
CONCURRENCY|PRACTICE AND EXPERIENCE

Concurrency: Pract. Exper. 2001; 00:1{6 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

Java for High-Performance

Network-Based Computing:

A Survey

M. Lobosco1,�,y,C. Amorim1,y, and O. Loques2,z

1 COPPE - Engenharia de Sistemas, Universidade Federal do Rio de Janeiro
2 Instituto de Computa�c~ao - Universidade Federal Fluminense

SUMMARY

There has been an increasing research interest in extending the use of Java towards
high-performance demanding applications such as scalable web servers, distributed
multimedia applications, and large-scale scienti�c applications. However, extending Java
to a multicomputer environment and improving the low performance of current Java
implementations pose great challenges to both the systems developer and application
designer. In this survey, we describe and classify fourteen relevant proposals and
environments that tackle Java's performance bottlenecks in order to make the language
an e�ective option for high-performance network-based computing. We further survey
signi�cant performance issues while exposing the potential bene�ts and limitations
of current solutions in such a way that a framework for future research e�orts
can be established. Most of the proposed solutions can be classi�ed according to
some combination of three basic parameters: the model adopted for inter-process
communication, language extensions, and the implementation strategy. In addition,
where appropriate to each individual proposal, we examine other relevant issues, such
as interoperability, portability, and garbage collection.

key words: Java, parallel JVM implementation, high-performance computing, network-based

computing

1. INTRODUCTION

Java [4] is an object-oriented programming language, developed by Sun Microsystems, which

incorporates features such as multithreading and primitives for concurrent programming. One

�Correspondence to: PESC/COPPE/UFRJ - P. O. Box 68.511 - CEP 21.945-970 - Rio de Janeiro - Brazil
yE-mail: flobosco, amorimg@cos.ufrj.br
zE-mail: loques@ic.u�.br
Contract/grant sponsor: CAPES, CNPq, FAPERJ and FINEP

Copyright c
 2001 John Wiley & Sons, Ltd.



2 M. LOBOSCO, C. AMORIM AND O. LOQUES

of its main objectives is to allow the portability of programs among di�erent hardware and

operating system platforms. This objective is portrayed by the well-known slogan \Write once,

run everywhere". The approach taken to reach this goal was the adoption of a standardized

supporting platform called the Java Virtual Machine (JVM). The Java compiler generates

a platform independent pseudo-code, called bytecode, which can then be executed in any

computational environment (hardware & operating system) that supports the Java bytecode

interpreter included in the standard JVM. The price paid for the portability, achieved through

interpretation, as one might expect, is performance. Several attempts intending to improve

Java execution performance have been made, such as the addition of just-in-time compilation

support and other optimizations techniques to Java execution environments [43]. Recent results

showed that optimized Java code performed comparably to Fortran for some numerically-

intensive regular computations [38]. However, these improvements were not enough to ensure

that Java performed as well as C. Nevertheless, numerous systems for high-performance

network computing developed to support Java applications have been proposed in recent years.

The applications of these systems tend to be those of a large-scale computational nature,

potentially requiring any combination of computers, networks, I/O, and memory, as de�ned

by the Java Grande Forum [27]. Examples of such applications include data mining, satellite

image processing, scalable web servers, and fundamental physics. At �rst glance, the choice of

Java seems paradoxical, since it is an interpreted language. This single feature, however, has

not been enough to dampen the great interest in its use in the development of high-performance

computing environments.

Then, why should we use Java for High-Performance Computing? Besides the portability and

interoperability achieved by a standard supporting environment, other features of the language

such as its object-oriented programming model, simplicity, robustness, multithreading support,

and automatic memory management have proved attractive enough for the development of

software projects, especially those intended for large and complex systems. Also, the language

portability has been decisive for its choice in projects that consider the use of idle computers,

connected to the Internet, to solve large computational problems [7, 10, 21]. In addition, the

growing popularity of the language helps to explain its use in the high-performance computing

area.

In this survey we describe and classify some Java-based projects aimed directly or indirectly

at supporting the development of high-performance networked computing applications. For

classi�cation purposes, some parameters, including the inter-process communication model

adopted, changes introduced to the language, and how the environment was implemented, are

taken into account. Other relevant issues, such as the interoperability with other Java virtual

machines, portability and garbage collection (GC) algorithms will also be discussed when

appropriate. The remainder of this paper is organized as follows. In Section 2, we describe

the basic support for concurrent computing/programming provided by Java, as well as some

other features that are relevant to understand the proposals described here. Readers that are

familiar with Java's concurrency features can skip this section. In Section 3, we describe the

parameters chosen to classify each of the selected projects. In Section 4, we describe the Java

environments and mechanisms for supporting high-performance network-based computing that

were included in this survey. Section 5 presents a classi�cation of these systems, based on the

parameters described in Section 3. Section 6 concludes this work.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 3

2. THE JAVA LANGUAGE

Although Java is a relatively recent language, introduced in 1992, several ideas underlying

the language are not original [46]: Its object model has borrowed the interface concept

from Objective-C, single inheritance from Smalltalk, and some other features from Self and

C++. Multithreading support can be found in some C and C++ libraries, and the Java

synchronization model was created in the early 70s. The portability, obtained from the

code interpretation, is not new; Basic, Smalltalk and other languages had already used this

approach.

Why Java did become so popular, if it did not bring anything substantially original? Two

reasons seem to have contributed to its success. First, Java's syntax is similar to that of an

already known and widespread language, C++, incorporating multithreading, synchronization,

and network communication, without relying on external libraries. Moreover, the design of the

Java language is much cleaner than that of C++. The second, and perhaps the main reason,

is the provision of features designed to help the development of Internet applications - the

language's integration into browsers, and its portability are very convenient for applications

that should run on an inherently heterogeneous network.

Since the proposals described in this survey make many references to Java's memory model,

as well as to its support for concurrent programming and communication, we describe these

features in the following sections.

2.1. Multithreading and synchronization

Programming with threads in Java is more immediate than with languages as C and

C++, since Java provides a native concurrent programming model that includes support

for multithreading. The package java.lang provides a Thread class that supports methods

to initiate, assign priority, and verify the state of a thread. To declare a thread, for instance,

the programmer just inherits the Thread class using the clause extends, as shown in line 1

of Code 1, and supplies a run method to be invoked when the thread's execution starts. The

examples in this section are related to a matrix multiplication algorithm.

01 class mmultThread extends Thread implements GlobalVariables f
02 private parameter t p;

03

04 mmultThread (parameter t arg) f
05 p = arg;

06 g
07

08 void mult(int size, int row, int column, matrix t MA, matrix t MB,

09 matrix t MC) f
10 int position;

11 MC.matrix[row][column] = 0;

12 for(position = 0; position < size; position++)

13 MC.matrix[row][column] = MC.matrix[row][column] +

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



4 M. LOBOSCO, C. AMORIM AND O. LOQUES

14 (MA.matrix[row][position]* MB.matrix[position][column]);

15 g

16

17 public void run() f

18 mult(p.size, p.Arow, p.Bcol, p.MA, p.MB, p.MC);

19 /* we use a barrier here just to illustrate the use of synchronization

20 primitives, but it is not necessary. A call to join() is more

21 eÆcient - see subsection 2.2 */

22 try f bar.barrier(); g

23 catch (InterruptedException e) fg

24 g

25 g

Code 1 - A fragment of a matrix multiplication code. Each thread multiplies a row by a

column. To declare a thread, the class must inherit the Thread class and supply a run

method (line 17) that will be invoked when the threads start executing.

The creation of a thread follows the same process as creating an object in Java, using the

new operator. To start the execution of a thread, the start method of the Thread class must

be invoked. The example in Code 2 shows how to create and to start a thread. Methods for

assigning priorities to threads are also available.

01 public class Mmult f

02

03 public static void main(String args[]) f

04 /* declare variables, initialize or read matrix values */ ...

05 /* Process matrix, by row and column. Create a thread to process

06 each element in the resulting matrix */

07 num threads = 0;

08 for(row = 0; row < size; row++) f

09 for (column = 0; column < size; column++) f

10 /* set parameter p */

11 threads[num threads] = new mmultThread(p);

12 threads[num threads].start();

13 num threads++;

14 g

15 g

16 /* Print results */

17 g

18 g

Code 2 - Another example of matrix multiplication in which a thread is created (line 11),

which multiplies each row by a column of the matrix. The thread is then started (line 12).

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 5

Besides multithreading, the language also includes a set of synchronization primitives. These

primitives are based on an adaptation of the classic monitor paradigm proposed in [26]. The

standard semantics of Java allow the methods of a class to execute concurrently. However,

the reserved word synchronized can be associated to given methods in order to specify that

they can only execute in a mutual-exclusive fashion. The example (see Code 3), taken from

[31], shows a barrier class which uses a barrier method that is synchronized, indicating that

it cannot be executed concurrently. It would also be possible to declare a synchronized block

inside the barrier method. Note that the barrier mechanism is used here just to illustrate the

use of the synchronization primitive; in fact Java supports a join primitive that would provide

a more eÆcient implementation.

01 class Barrier f
02

03 protected �nal int parties;

04 protected int count; // parties currently being waited for

05 protected int resets = 0; // times barrier has been tripped

06

07 Barrier(int c) f count = parties = c; g
08

09 synchronized int barrier() throws InterruptedException f
10 int index = �� count;

11 if (index > 0) f // not yet tripped

12 int r = resets; // wait until next reset

13 do f wait(); g while (resets == r);

14 g
15 else f // trip

16 count = parties; // reset count for next time

17 ++resets;

18 notifyAll(); // cause all other parties to resume

19 g
20 return index;

21 g
22 g

Code 3 - The Barrier class code. The method barrier cannot execute concurrently: this is

guaranteed with the use of the reserved word synchronized (line 09).

As identi�ed by the Application and Concurrency Work Group of the Java Grande Forum

[28], thread synchronization introduces a potential performance bottleneck (see also next sub-

section), which ultimately hinders Java applications with large numbers of threads to scale.

2.2. The JVM memory model

The JVM speci�es the interaction model between threads and the main memory, by de�ning

an abstract memory system (AMS), a set of memory operations, and a set of rules for these

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



6 M. LOBOSCO, C. AMORIM AND O. LOQUES

operations. The main memory stores all program variables and is shared by the JVM threads

(refer to Figure 1). Each thread operates strictly on its local memory, so that variables have to

be copied �rst from main memory to the thread's local memory before any computation can

be carried out. Similarly, local results become accessible to other threads only after they are

copied back to main memory. Variables are referred to as master or working copy depending

on whether they are located in main or local memory, respectively. The copying between main

and local memory, and vice-versa, adds a performance overhead to thread operation.

The replication of variables in local memories introduces a potential memory coherence

hazard since di�erent threads can observe di�erent values for the same variable. The JVM

o�ers two synchronization primitives, called monitorenter and monitorexit to enforce memory

consistency. The primitives support blocks of code declared as synchronized. In brief, the

model requires that upon a monitorexit operation, the running thread updates the master

copies with corresponding working copy values that the thread has modi�ed. After executing

a monitorenter operation a thread should either initialize its work copies or assign the master

values to them. The only exceptions are variables declared as volatile, to which JVM imposes

the sequential consistency model. The memory management model is transparent to the

programmer and is implemented by the compiler, which automatically generates the code

that transfers data values between main memory and thread local memory.

2.3. Communication

Java, as other popular languages, o�ers a set of tools and APIs (Application Programming

Interface) for communication. Sockets, Remote Method Invocation (RMI), and an Object

Request Broker (ORB) are available. In this section, we will describe RMI in detail, looking

at the main aspects related to its use in high-performance applications.

2.3.1. RMI and serialization

Java's distributed object model de�nes a remote object as an object that allows its methods to

be invoked from other JVMs running on di�erent machines interconnected by a communication

network. A remote object is fully described using Java's object interface which de�nes the

methods that the remote object supports. The Remote Method Invocation (RMI) is the

mechanism that allows a method to be invoked in a remote object interface (see Figure 2).

This technique allows local and remote methods to be invoked using the same syntax.

In order to use RMI, the programmer must structure his/her application to obey the

client/server paradigm, where a remote object represents the server and the client corresponds

to the object that invokes the method. In addition, a simple programming recipe must be

followed that includes inheriting a special Remote class and using some standard methods

in the application code. A standard Java tool, rmic, is used to automatically generate a

stub (auxiliary code), which acts as a local representative or proxy of the remote object

to the client. The Java 2 SDK implementation of RMI uses re
ection to implement the

connection between RMI and the remote service object. In classic Remote Procedure Call

(RPC) implementations, the skeleton �gure performs this role. For a method invocation, the

stub establishes a connection with the remote JVM, marshals the invocation parameters, waits

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 7

Local Memory

pcJava
stacks register

Local Memory

pcJava
stacks register

Local Memory

pcJava
stacks register

Heap

Main Memory

Method Area

Thread A Thread B Thread C

Figure 1. The internal architecture of the Java Virtual Machine's Memory

for the method invocation to complete, unmarshals all results or exceptions, and returns the

outcome to the invoker.

In RMI, parameters are always passed by reference if they refer to remote objects; otherwise

they are passed by copy. In the case of objects passed by copy, it is necessary to execute a

serialization operation that transforms objects into arrays of bytes. Special marshaling routines

will be invoked to perform the serialization operation. These routines can be written by

programmers or automatically generated by the compiler. The latter option, usually preferred

by the programmer, uses a structural re
ectionxmechanism that provides the appropriate

byte array representation and dynamically �nds the type of each object. RMI also supports

polymorphism{, so the byte array representation must also incorporate information about

the serialized types. Note that both the support for polymorphism and the use of structural

re
ection introduce a large performance overhead due to the large number of operations that

have to be executed dynamically, which can limit its use in high-performance applications.

The Java memory model also includes an automatic garbage collection capability. The

programmer does not need to worry about de-allocating objects that stop being referenced

in a system. Similarly, in case of remote objects, the RMI mechanism also implements garbage

collection in order to de-allocate remote objects that are no longer referenced.

2.3.2. Other aspects

RMI imposes the use of standard socket-based communication protocols, thus preventing

the choice of new high-performance network protocols, such as VIA [16] and Fast Messages

xStructural Re
ection can be de�ned as the \ability of a language to provide a complete rei�cation of the
program currently being executed as well as a complete rei�cation of its abstract data types".
{The use of any superclass of the subclass to refer to the instance of the subtype.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



8 M. LOBOSCO, C. AMORIM AND O. LOQUES

Client

Network

Host AHost A

JVM JVM

Host B

ServerStub

Figure 2. The RMI protocol

[40]. The inclusion of an open communication facility to the JVM, e.g., using computational

re
ection techniques, would add 
exibility to RMI communication. In this way, a programmer

would be able to employ the communication protocol most suitable for a given application

[32]. The addition of a collective communication library to the language, which could

provide primitives such as scatter and gather, all gather, and all-to-all, would also be useful.

Although Java implements multicast collective communication via sockets, high-performance

communication support would bene�t from a more eÆcient implementation.

3. CLASSIFICATION PARAMETERS

Our classi�cation scheme distinguishes three basic parameters relevant to the design and

implementation of Java environments for high-performance network computing: (1) the model

adopted for inter-process communication, (2) the modi�cations introduced to the language's

semantics and syntax, and (3) the implementation strategy. Although there is a strong

interdependence among them, explicitly or implicitly, they appear as distinguishing features

in the surveyed proposals. The consideration of such aspects has allowed us to isolate

important related issues and to consistently classify the projects we surveyed, producing a

useful description of the alternative environments that have been proposed so far.

The way in which processes communicate constitutes an important issue in the

implementation of an e�ective environment for high-performance network computing. Three

basic approaches can be used for inter-process communication, namely distributed shared

memory, message passing, or a combination of both. Parallel programs have evolved using

message passing libraries, such as the Parallel Virtual Machine (PVM) [23] and the Message

Passing Interface (MPI) [37], as their main method of communication. In this case, the

programmer is responsible for data communication among the nodes running an application.

In distributed shared memory (DSM) systems, processes share data transparently across

node boundaries; data faulting, location, and movement is handled by the underlying system.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 9

Treadmarks [30] and HLRC [51] are examples of state-of-the-art software DSM systems. Other

aspects such as communication-transparency to the programmer, conformity with the language

syntax, as well as the overall performance achieved, are determined by the mechanism adopted

for inter-process communication.

The second aspect refers to how modifying the language impacts the overall environment,

from the programmer's point of view. If the system does not introduce any modi�cations to

both the original semantics and syntax of the language, or if only a few small changes are made,

the programmer's adaptation to the new system is easier, and code reuse is also improved. We

assume that a change becomes visible to the programmer if the modi�ed environment supports

a feature in a di�erent way from Java's original speci�cation. Features such as automatic

memory management, the de�nition of new reserved words, and whether access to remote

objects is transparent or not are related to this issue.

The third parameter is related to the strategy adopted to implement the environment, which

a�ects code portability and performance. This survey has identi�ed �ve main approaches: (1)

the use of a pre-compiler, (2) modi�cation of the Java compiler, (3) modi�cation of the JVM,

(4) extensions based on libraries written in Java, and (5) the use of native functions of a

particular environment.

Further aspects, including garbage collection, and interoperability with other Java virtual

machines, are also relevant. Garbage collection is particularly important, since the language

speci�cation assumes the existence of an automatic storage management system; the garbage

collection mechanism has to work transparently for local and remote objects. For example, the

RMI mechanism has to garbage collect remote objects that are no loger referenced. If garbage

collection is ignored, the system can potentially run out of memory, since there is no statement

in the language for de-allocating memory explicitly. Interoperability is a desirable feature not

directly dependent on the basic language design. However, these two issues are directly related

to engineering options taken in the implementation of the classi�cation parameters considered

in this survey. Although they are not included as the main classi�cation parameters of this

paper, we show how the surveyed proposals tackle these issues.

4. ENVIRONMENTS

In this section we describe several proposals which attempt to transform Java into an eÆcient

environment for high-performance computing. Some of them tackle speci�c performance

bottlenecks, such as the high costs associated with the standard Java communication

mechanism. Other proposals are more comprehensive, trying to o�er an integrated solution for

application support. Whenever possible, the described proposals are grouped according to the

parameters introduced in the last section. If a proposal uses more than one technique in their

implementation, we consider the most signi�cant one for classi�cation purposes. Nevertheless,

in Section 5 we make a crossover comparison taking into account all of the techniques used in

each of the proposals discussed.

This section has two parts. Section 4.1 presents projects that use the Distributed Shared

Memory (DSM) model for inter-process communication, whereas Section 4.2 describes projects

that use the message passing model. In each section, we divide the projects according to

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



10 M. LOBOSCO, C. AMORIM AND O. LOQUES

their implementation strategy and, within each strategy, we categorize projects based on the

modi�cations they introduce to the language's semantics and syntax. At the end of each

section, we summarize the reported projects.

4.1. Inter-process communication using the Distributed Shared-Memory model

4.1.1. Java's semantics/syntax unmodi�ed

Changes to the JVM

This section presents systems that provide a shared-memory abstraction, through

transparent changes made to the internals of the basic JVM, i.e., without modifying either

the semantics or the syntax of Java. Two systems fall into this class: MultiJav [14], and

cJVM [1, 2, 3]. Basically, these systems di�er in the way that DSM is implemented. cJVM

prefers the proxy design pattern (PDP) [22] to implement the Single System Image (SSI)

abstraction, whereas MultiJav implements the DSM model itself. While cJVM is an ongoing

project, MultiJav has been discontinued.

MultiJav

One of the main objectives of MultiJav [14] is to maintain the portability of the Java

language, allowing its use on heterogeneous hardware platforms. The MultiJav's approach is

to implement the DSM model within Java, by modifying the JVM, and using Java constructs

to support concurrency, thus avoiding any change to the language de�nition. An apparent

shortcoming of MultiJav is that all of the objects are potentially shared, since the programmer

cannot declare explicitly which objects are to be shared. However, the MultiJav runtime system

can detect automatically which objects should be shared, catering for their consistent usage.

Shared object identi�cation is achieved through an analysis of the load/store instructions of

the bytecode being executed. This technique seems to be the main contribution of the project.

Di�erent threads are permitted to access variables of the same object, thus a signi�cant amount

of false sharing may occur. MultiJav uses a multiple-read/multiple-write protocol to alleviate

the potential false sharing issue.

A MultiJav program begins execution in one virtual machine, named root, but spawned

threads can migrate to another machine, afterwards. In order to conform to the standard Java

semantics, monitors are global to all the sites that participate in a computation. Thus, at

each participating site, a monitor queue can contain local threads and remote threads; only

the higher priority remote thread has to be queued. The changes in objects are detected at

execution time through the use of a di�-like mechanism [30], and updates are recorded and

disseminated at synchronization points.

Some implementation issues in MultiJav are still open. For instance, the use of MultiJav

in heterogeneous systems requires a full implementation of the support mechanisms on each

target platform in order to allow heterogeneity, but the authors do not estimate the e�ort

required for such a task. Also, the overheads that the adopted synchronization management

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 11

cJVM cJVM cJVM

Copy
Master

C’

Proxy
C’C’

Proxy A B

Host 3Host 2Host 1

Figure 3. The master copy (MC) of object C was created at host 1. Objects A and B access object C
through C's proxy. The �gure shows one B's access.

mechanism introduces are unclear. Unfortunately, a performance analysis is not available for

MultiJav since it has not been implemented yet.

cJVM

cJVM [1, 2, 3] has been developed at IBM Haifa Research Laboratory. cJVM supports the

idea of SSI view of a cluster. In other words, the Java application will have the illusion that

the cluster is a single computing resource. In cJVM (see Figure 3) a new object is always

created in the node where the request was executed �rst. Every object has one master copy

that is located in the node where the object is created; objects from other nodes that access

this object use a proxy.

Aiming at performance optimization, during class loading, class methods are classi�ed

according to the way they access the object �elds. Thereafter, the classi�cation helps to choose

the most eÆcient proxy implementation for each method. Three proxy types are supported:

(1) a standard proxy which transfers all of the operations to the master copy; (2) a read-only

proxy which applies the operations locally (since it is guaranteed that only the �elds that never

change will be accessed, the proxy can replicate and maintain these �elds); and (3) a proxy

that locally invokes methods without state, since these methods do not access object �elds.

The introduction of proxies causes the stack of a Java thread to be distributed across multiple

system threads on di�erent machines. Thus, to ensure that programs execute correctly, cJVM

treats Java calls that access the heap in a special manner. The bytecode that accesses the

heap is modi�ed so that cJVM can determine whether accesses to the data are local or remote

to the node where the bytecode is executed. If data is remote, the necessary remote accesses

are carried out. In order to support both remote accesses and redirection of methods, each

cJVM process contains a group of threads that are responsible for receiving and serving such

requests.

cJVM also modi�ed the implementation of the new opcode, allowing the creation of threads

in remote nodes. If the parameter for this opcode is a class that implements Runnable, then the

new bytecode is rewritten, as the pseudo bytecode remote new. This pseudo bytecode, when

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



12 M. LOBOSCO, C. AMORIM AND O. LOQUES

executed, determines the node best suited to create a new Runnable object. A pluggable load

balancing function makes the choice of the best node. Notice that the thread creation approach

di�ers from the one used for object creation, which creates the object in the node where the

request was executed �rst.

The Portable Business Object Benchmark (pBOB) was used to evaluate performance of

cJVM against that of Sun JDK1.2. pBOB was in
uenced by the TPC-C benchmarks [45]

and consists of N warehouse composite objects that represent customers, stock items, orders,

etc., which concurrently execute transactions against their warehouses. The results showed

speed-up of 3.2 for four nodes, but considering that the application is highly parallel a near

linear speed-up should be expected. The hardware platform used in the experiments was not

described. Further performance studies are needed, especially for other classes of application,

such as those described in [27].

4.1.2. Modi�cation of Java's semantics/syntax

Changes to the JVM

Java/DSM

Java/DSM [50] under development at Rice University was the �rst proposal to support

a shared-memory abstraction on top of a heterogeneous network of workstations. The main

idea behind Java/DSM is to execute an instance of JVM in each machine that participates

in the computation by using a system that combines Java portability with TreadMarks [30],

a popular software DSM library. Except for the changes to Java's semantics, Java/DSM is

similar to the systems presented in the last subsection (e.g., MultiJav). In contrast to those

systems, however, the heap is allocated to the shared memory area, as shown in Figure 4,

by using TreadMarks. Thus, the classes read by the JVM are allocated automatically to the

shared memory. Two restrictions are imposed on the programmer: (1) a thread cannot migrate

between machines, and (2) a thread's location is not transparent. The �rst restriction hinders

dynamic load balancing activities, preventing thread migration from overloaded processors to

idle ones, whereas the second restriction requires the programmer to be aware of each thread's

location.

Java/DSM extends the Boehm andWeiser collector [9], which is a distinguishing contribution

of the project. The garbage collector of each machine maintains two lists; one containing remote

references for objects created locally (export list), and other keeps references to remote objects

(import list). The lists contain an estimate of the actual cross-machine reference set which is

used only for garbage collection purposes. Before a message is sent to another machine, the

runtime DSM support invokes the garbage collector to verify if it contains valid references to

local objects; these references are inserted in the export list. Likewise, incoming messages are

inspected and references to remote objects are inserted in the import list. Garbage collection

is performed using a weighted reference counting algorithm to decide when a reference can be

discarded from the export list. For most of the time, each machine independently executes the

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 13

Host BHost A Host C

Java/DSMJava/DSM Java/DSM

Heap

Figure 4. The heap in Java/DSM is shared among all Java/DSM nodes.

garbage collection, although some synchronization operations are required once in a while in

order to take care of cyclic structures.

Since Java/DSM is intended to work on a heterogeneous hardware platform, data conversion

is required. For data conversion, the data type is �rst identi�ed, which in turn determines

the form in which the conversion should be done. In order to perform object identi�cation

eÆciently, Java/DSM requires that only objects of the same size be allocated in a given page.

In addition, an extra �eld, which contains a pointer to the handle, is added to the object's

body. Note that object representation in the Java standard includes only two components: the

handle and the body. The handle contains a pointer to a structure that stores type information

about all of the �elds, and also a pointer to the body. Java/DSM adds a back pointer from the

body to the handle. These modi�cations simplify the task of locating the descriptor of each

object's type. More speci�cally, given any address, Java/DSM can promptly identify the page

number and the size of the objects that the page contains. Once the beginning of the object

to which the address belongs to is found, the back pointer can be followed to determine the

object's type, which in turn allows the conversion to proceed quickly.

So far, Java/DSM's attempt to provide a heterogeneous software DSM has not been fully

achieved. Although a preliminary comparison between Java/DSM and standard Java RMI was

reported in [50] using an experimental distributed spreadsheet with support for collaborative

work, the results were super�cially described without presenting any performance �gures.

Changes to the compiler

Jackal

Jackal [48], from Vrije University in The Netherlands, implements a software DSM

abstraction on a cluster through special run-time support and an associated compiler. The

compiler, which generates native code, is also used to make optimizations, such as data

prefetching. Jackal requires some semantic changes to be made to Java, however.

The Jackal run-time system implements a cache coherence protocol for the memory units,

called regions, where are de�ned as either objects or �xed-size array partitions. The coherence

protocol is based on self-invalidation, in which every time a thread reaches a synchronization

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



14 M. LOBOSCO, C. AMORIM AND O. LOQUES

point it invalidates its own data, ensuring the coherence of subsequent accesses. Although such

a protocol is simple, it can invalidate data that will not be touched by any other node and

thus add unnecessary overhead to the coherence mechanism. To implement the self-invalidation

protocol, each thread maintains a control list of the regions accessed for reading and writing

since the last synchronization point. At synchronization points, cached copies in the list are

invalidated and modi�ed regions are sent to their original locations. Jackal uses a home-based

coherence protocol in which the home nodes allocate regions and requests for regions are sent

to their corresponding homes. To avoid unnecessary address translation, each region refers to

the same virtual address across the machines. The compiler generates an access validation

every time a �eld of either an object or an element of an array is accessed. This veri�cation

determines whether or not the region referenced by a pointer contains a valid local copy. In the

case of detecting an invalid access, the runtime system contacts the home node and requests a

copy of the region; the received copy is then stored at the same address location as the original

in its home node. Jackal provides a memory model that di�ers from the Java standard. In

Jackal, it is taken for granted that programs: (a) are race-condition free, (b) have suÆcient

synchronization declarations for concurrent read/write accesses to objects or arrays, and (c)

apply such synchronization declarations to the whole object or array.

Jackal implements both local and global garbage collection based on the mark-and-sweep

protocol. When a node is out-of-memory, it executes a local garbage collection. As long as the

collection is made locally, no synchronization is necessary. However, the local garbage collector

cannot discard objects that are referenced by other objects in remote nodes. When the number

of nonlocally referenced objects becomes suÆciently large, the local GC algorithm may not be

able to release enough memory, and the global GC phase is started. The main cost of global

GC is due to the amount of communication and synchronization among the involved nodes.

A micro benchmark was executed to measure the overhead of garbage collection, including

access validation plus latency and the throughput of object transfers. All tests were run on a

cluster of 200MHz Pentium-Pros, running Linux, and connected by a Myrinet network using

LFC [8] as the communication layer. The results showed that the local GC performance was

worse than that of JDK whereas the relative overhead for the global GC was less than 5%.

The access veri�cation code added an overhead of 14% approximately. For transferring small

objects, the average latency was 35.2 �s and throughput varied from 3.9 Mbytes/s to 24

Mbytes/s, depending on whether the compiler activates prefetching or not. Other benchmarks

were also executed: SOR, Ray-tracing, and a Web server. The results showed that prefetching

as generated by the compiler contributes signi�cantly to the reduction of SOR execution time.

For the Ray-tracing benchmark, both the runtime system and garbage collection generated a

large overhead. The results from the Web server were not made available.

Using a Java library

This section presents systems that provide the shared-memory abstraction through the

implementation of a Java library that modi�es either the semantics or/and the syntax of

the language. Two systems fall into this category: Charlotte [6, 29] and Aleph [25], from

Brown University. Charlotte was designed to use idle computers connected to the Internet

to solve large computational parallel problems. Charlotte allows any machine with a Java-

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 15

capable browser to participate in any ongoing computation on the Web; the participating

machines can join or leave a computation at any moment. The Aleph Toolkit is a collection

of Java packages designed to support distributed computations that run across networks of

heterogeneous workstations. Aleph provides the ability to start threads on remote processors.

Communication is implemented using message-passing, including an ordered multicast facility,

and by shared objects.

Charlotte

Programs in Charlotte [6] consist of alternate sequential and parallel steps. The application

has a manager that executes the sequential steps and controls execution of the parallel steps

(de�ned with parBegin() and parEnd() constructs). In the parallel steps, routines are de�ned

and distributed to the workers, which are applets executing in browsers. At the end of each

parallel step, a barrier synchronizes all the running routines. The memory in Charlotte is

logically partitioned into private and shared segments. The shared memory has concurrent-

read, exclusive-write semantics and is implemented at the data type level, with Charlotte

classes corresponding to the primitive types. Sharing is object-based, with access to the shared

data being made through special methods: get() and set(). In a read access, if an item is

identi�ed as invalid then a new copy is requested from the object manager. In a write access,

the object is marked as updated so that all modi�ed objects can be sent back to the manager

at the end of the routine execution.

Read accesses can take a long time to request data to the manager, especially in environments

with high communication latency. In order to reduce the read overhead, every read operation

prefetches a group of objects from the manager instead of only one. It is up to the programmer,

with the use of appropriate annotations [29], to give Charlotte in advance some information

of which data will be probably used by a routine; the annotation technique is also used

for write operations. The annotations resemble read/write operations used in the message-

passing approach; the di�erence here is that the data does not need to be explicitly addressed

using primitives like send/receive. Charlotte allows for the veri�cation of annotations at

runtime. However, the overhead of this veri�cation can be transferred to the compiler. The

use of annotations, the main contribution of this proposal, may be e�ective for improving

the performance of an application. However, to take advantage of annotations, a good

understanding of the application is required by the programmer. Moreover, it is unclear if

irregular applications would bene�t signi�cantly from such an approach.

Additional optimizations were proposed[29] to improve Charlotte's performance: since the

manager knows which data is currently valid for each worker, it can allocate to a given work

routines that operate on the data already owned by that worker, thus minimizing the amount

of extra data that has to be moved around. Another possible optimization is to keep intact

all local data stored in a worker at the end of a parallel step (instead of invalidating the

data, as Charlotte does), and overwrite this data with new values only when necessary. The

programmer can declare shared variables as not modi�able in order to help the implementation

of this cache-like optimization. Charlotte also provides fault-tolerance and a mechanism for

adaptive parallelism.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



16 M. LOBOSCO, C. AMORIM AND O. LOQUES

PEPE

PEPE

PE PE

PE

PE

PE

PE

PE

PE

Figure 5. The Arrow Protocol. Each processor element (PE) uses a pointer to indicate the path that
must be followed to reach a given object. If a PE points to itself, either the object is located within
the PE or it will be shortly moved to it (represented by the square in the picture). If the link points

to another PE, then the object belongs to a tree's component (adapted from [25]).

Amatrix multiplication application was used as a benchmark [29] to compare several versions

of Charlotte with a version of the same application based on message passing. For the version

that does not verify annotations during execution time, assuming that the compiler can do

this, the results indicate that Charlotte yields execution times that are competitive with those

of message passing implementation.

Aleph

A distributed Aleph program executes on a number of logical processors, called Processing

Elements (PE). Each PE is a JVM with its own address space. Aleph allows threads to start in

remote processors, and to communicate with shared objects (with transparent synchronization

and caching) or using message passing, including also an option for reliable orderly multicast.

To share objects, Aleph provides the class GlobalObject, which allows PEs to share any

serializable object. In order to use a global object, the programmer should explicitly invoke

open() which also sets the object's access mode. A release() method is available to explicitly

release global objects. The methods of GlobalObject class invoke the directory manager, which

is a system object in charge of maintaining the replicated copies of distributed shared objects.

Aleph implements three di�erent directory protocols: home-based, the arrow protocol, and a

hybrid protocol, which is a combination of both. In the case of the home-based protocol, an

object can have both a single read/write copy and multiple read-only copies. Aleph introduces

the arrow protocol (see Figure 5), which works on a spanning tree covering all the PEs. Each

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 17

PE keeps a pointer, called arrow, which points either to itself or to one of its neighbors on the

PE's tree. If a PE points to itself, then either the object is located in or it will be shortly moved

to that PE. Otherwise, the link points to another PE, and the object belongs to a component

of the tree. Informally, it can be stated that, if a PE is not the owner of an object, then it

knows in which direction the object can be found. The hybrid protocol assumes that each

object has a home that only knows the last PE that requested the object. Aleph also permits

the program to use the message-passing approach. Messages in Aleph are loosely modeled on

active messages [19] where each message encompasses a method and its arguments, which is

invoked on message arrivals. New classes of messages are de�ned by extending the abstract

class aleph.Message. The programmer must then provide a run() method, which will be called

at the receiver upon message arrival.

Results are presented for the three directory-based protocols executing an application

that evaluates the time needed for a group of machines to increment a shared counter. An

equivalent comparison is also made for other applications including Cholesky, Ray-tracing,

and TSP (Traveling Salesman Problem). The results are presented qualitatively using bar

graphs, without showing performance �gures or performance comparison against sequential

algorithms, which limits the analysis.

4.1.3. Summary

MultiJav, cJVM, Java/DSM, Jackal, Charlotte, and Aleph chose the distributed-shared

memory (DSM) model as their main approach for inter-process communication. However,

Charlotte and Aleph have some particularities: Charlotte o�ers to the programmer the option

of using annotations that resemble read/write operations of the message-passing model. Aleph

also permits message passing, although the DSM model is the main focus of the project.

MultiJav keeps Java's semantics and syntax unchanged, despite introducing the distributed

shared memory model by modifying the JVM. Such an approach o�ers two advantages:

(1) the potential of reusing standard JVM code; and (2) application performance tends to

be better than using a Java-based library. MultiJav o�ers also an automatic mechanism

for detecting shared data. The potential disadvantages of MultiJav are (a) a lack of

interoperability with others implementations, and (b) less portability when compared to

Java-based library implementations. In comparison with MultiJav, Java/DSM has two

disadvantages: (1) Thread's location is not transparent; and (2) threads cannot migrate,

which prevents dynamic load balancing. Unfortunately, both Java/DSM and MultiJav have

not presented any performance �gures. cJVM is similar to MultiJav since both maintain the

Java semantics/syntax and extend the JVM to support DSM. However, they di�er in the

way that DSM is implemented. cJVM uses the proxy design pattern to implement the Single

System Image abstraction. In this model, there is just one instance of an object (called the

master) for all of the hosts that participate in the computation. All the other hosts access the

master copy through proxies. Note that a shortcoming of cJVM is that object master copies

may become potential JVM bottlenecks. On the other hand, MultiJav allows multiple copies

of object instances to coexist, and uses a diÆng mechanism to detect changes made to the

objects at execution time and disseminating updates at synchronization points. Java/DSM

uses the TreadMarks software DSM library that also implements a similar diÆng mechanism.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



18 M. LOBOSCO, C. AMORIM AND O. LOQUES

An interesting feature of cJVM is that it enables the programmer to control system load by

o�ering an attachable load balancing function.

Jackal combines an extended Java compiler and run-time support to implement the DSM

abstraction. The Jackal compiler inserts code for access validation every time an object or

array is accessed. Performance results were reported and showed that access validation is an

expensive operation, with overheads around 14%. Another potential source of overhead in

Jackal is the use of a self-invalidation protocol, in which data are invalidated even if they have

not been modi�ed by any other node. Also, Jackal's adopted memory model can be a source of

overhead, since it forbids concurrent read or write access to di�erent �elds of a single object.

By implementing DSM using Java libraries, as in the case of Charlotte and Aleph, has some

pros and cons. For instance, both favor program portability over performance gains when

compared with MultiJav, cJVM, or Java/DSM. In addition, Charlotte o�ers the programmer

the option of using annotations in the code to improve performance, which may be e�ective

depending on the programmer's knowledge of the application, whereas Aleph introduces the

arrow directory-based protocol. Unfortunately, both works reported few performance results,

thus it is important that more experiments be carried out before any conclusion can be

made regarding these proposed environments. Indeed, Charlotte designers might investigate

whether regular applications can bene�t or not from annotations, while Aleph's authors might

investigate how well the arrow protocol and its hybrid version perform across several classes

of applications.

4.2. Inter-process communication using the Message Passing model

4.2.1. Java's semantics/syntax unmodi�ed

Using a native library

mpiJava

The mpiJava [5], from NPAC at Syracuse University, is a Java interface for existing MPI

[37] implementations. mpiJava is made relatively simple by using Java wrappers from the Java

Native Interfacek (JNI) to make MPI calls. However, Java requires modi�cations to both the

syntax and semantics of several MPI functions. For instance, send and receive functions can

only transfer single-dimension arrays of primitive data types. Similarly, the argument list of

some functions requires some changes to accommodate the fact that in Java arguments cannot

be passed by reference.

Some MPI functions omit the argument that identi�es the array size, since this can be

obtained through Java's length property. The MPI destructor function is called by Java's

�nalize method, except for Comm and Request, which have explicit Free members. The

kJNI is a programming interface for writing Java native methods (methods used by a Java program but written
in a di�erent language) and embedding the Java Virtual Machine into native applications.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 19

introduction of explicit calls to a method that releases memory breaks up Java's memory

management semantics, since the programmer must explicitly free the allocated memory.

Some experimental results, using both models of shared memory and distributed memory,

show that mpiJava adds a fairly low overhead when compared with native implementations.

This result is partly due to the fact that the performance comparisons measured execution time

of native code against that of interpreted code. The results were obtained using two platforms:

(1) WMPI, a Windows-based implementation of MPI, running on two dual processor (P6

200MHz) Windows NT 4 workstations with 128 Mbytes of DRAM; and (2) a Solaris version

of MPICH, running on two dual processor (200MHz Ultrasparc) Solaris workstations with 256

Mbytes of DRAM. The mpiJava overhead under WMPI was about 100 ms whereas the MPICH

overhead was between 250 and 300 �s, which is signi�cantly lower.

Java-to-C Interface Generator (JCI) plus MPI

The Java-to-C Interface Generator (JCI) [24] has been developed at IBM T. J. Watson

Research Center. JCI is a Java to C interface generator similar to Java Native Interface.

Although JCI is not intended to be an environment for high-performance computing, Java

programmers can use JCI to bene�t from native libraries such as MPI, to improve performance

in high-performance applications. The input to JCI is a header �le that contains prototypes of

C functions provided by the native library. JCI then generates �les with stubs for C functions,

declarations of Java native methods, and scripts for compilation. JCI allows Java programmers

to use native library packages, such as MPI and the ScaLAPACK linear algebra package.

Some of the mpiJava restrictions are not found in JCI, or they can be eliminated using

methods and functions that are available in the JCI tool kit. For example, JCI can create

a mapping between absolute and relative C's addresses; JCI.ptr is a method similar to the

C operator & which is generated by JCI. Derived types, like MPI TYPE STRUCT, can also

be used provided that they follow the data layout as described in the language speci�cation.

In case of multidimensional arrays, the programmer needs to adapt such structures to one-

dimensional arrays.

Java's array of arrays is de�ned as an array of pointers to array objects instead

of a contiguous two-dimensional array. Actually, an array in Java is described using

MPI TYPE INDEXED rather than MPI TYPE contiguous, as it would be in C. However,

the programmer has to reallocate arrays in memory in order to make them contiguous, before

they can be passed to native functions. The reallocation overhead can be high for large arrays,

so JCI designers represent matrices as one-dimensional arrays. In Java, it is not possible to

pass array blocks only entire arrays as parameters in function calls. In order to overcome such

a limitation, JCI implemented the method JCI.section (array, index).

A performance comparison has been carried out [24] between C, Fortran-77 and Java linked

with native libraries using two benchmarks: IS, from the NAS suite, and MATMUL, from the

PARKBENCH suite. The IS benchmark runs on two di�erent platforms: (1) a Fujitsu AP3000

(Ultrasparc 167 MHz nodes); and (2) an IBM SP2 system (120 MHz P2SC processors) using a

IBM's port of JDK 1.0.2D, the IBM Java compiler hpcj, which generates native RS/6000 code,

and Toba 1.0.b6, which translates Java bytecode into C. The MATMUL benchmark runs on

a Sparc workstation cluster and on an IBM SP2 system (66 MHz Power2 \thin1" nodes). The

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



20 M. LOBOSCO, C. AMORIM AND O. LOQUES

results showed that Fortran-based MATMUL outperforms Java by 5% to 10% whereas Java-

based IS programs were twice as slow as the C versions. One explanation is that in MATMUL

most of the performance-sensitive calculations were performed by the native code.

Other

Several other projects describe Java binds either to MPI or to PVM. Two distinct Java

binds to PVM [20, 44] share the same name: JPVM. JPVM [20] developed at University of

Virginia presents a simple front-end to PVM. JPVM [44] developed at Georgia Institute of

Technology is an interface that was developed using features of native methods and allows

Java applications to use PVM. MPIJ [18] is a Java-based implementation of MPI integrated

with DOGMA (Distributed Object Group Metacomputing Architecture). JMPI [17] is an MPI

environment built on top of JPVM [44]. JavaWMPI [35] is a MPI version built on MPI for

Windows. Although these projects present some contributions, we do not classify then mainly

because they are conceptually similar to mpiJava.

4.2.2. Changes to Java's semantics/syntax

Modi�cation of the Java compiler

Manta

Manta [47, 33, 39, 34] is a Java system for high-performance computing that uses a native

compiler to translate from Java directly to executable code. A disadvantage of Manta is that

some changes were introduced to the semantics and syntax of Java. Besides compilation, Manta

tackles the three main sources overheads in Java: serialization, RMI streams and dispatch,

and the network protocol. For serialization, Java uses a structural re
ection mechanism to

determine at run time the type of each parameter passed within remote calls. The idea behind

Manta is that most of the serialization/un-serialization codes can be generated at compile

time, thus reducing the overheads of dynamic inspection. Manta's protocol for serialization

also provides some optimizations. For example, in case of an array of primitive types, a direct

copy frommemory to a message bu�er is made, avoiding the traversal of the whole array. A hash

table is also used to keep serialized objects. Manta attempts to improve program performance

by decreasing the number of layers used originally in the RMI protocol, so that fewer operations

are required for parameter copy and method calls. As an example, the parameters of a remote

invocation are directly copied to a bu�er, while in the RMI protocol several copies need to

be made. Another important factor that contributes to Manta's performance is the fact that

Manta's runtime system is written in C, while all the Java RMI layers are mostly interpreted.

Figure 6 compares the layer's organization of the protocols. Finally, RMI uses the TCP/IP

protocol while Manta relies on a more eÆcient protocol. Manta's choice was Panda[8], a user

level communication library that has independent interfaces to both the hardware and network

protocol.

Manta uses a modi�ed RMI protocol that might cause interoperability problems with other

JVMs. Manta's solution is to let the compiler generate both bytecodes and native code. The

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 21

Network

File Stream

Object Stream

Data Stream

Socket Stream

Native Socket Layer

TCP/IP

Java Application

Java Application

Serialization and
Dispatch

TCP/IP Panda

Network

Figure 6. The structures of Sun (leftmost) and Manta RMI protocol. Layers in dark denote compiled
code (adapted from [33]).

former is placed in a HTTP server, allowing remote JVMs to access them. When treating

standard RMI calls, a Manta machine access the required bytecode, and dynamically compiles

and links it to the application.

In Manta, the RMI protocol and the garbage collector work together by maintaining the

reference paths made by the computation nodes. Manta uses a local garbage collector based

on the mark-and-sweep algorithm [36]. Each computation node executes its local garbage

collector, using a dedicated thread that is activated by either the runtime system or the user.

A distributed garbage collection is implemented across the local garbage collectors, using the

mechanism of reference counting [15] for remote objects.

The performance impact of all the above described optimizations appears when Manta is

compared with JDK. Experiments were run on a homogeneous cluster of 200 MHz Pentium Pro

processors, each with 128 Mb of memory and running linux (kernel 2.0.36). The cluster nodes

were connected by two networks: Myrinet (1.2 Gbit/sec) and Fast-Ethernet (100 Mbit/s).

For Myrinet, using the simplest remote call with no input or output parameters, the Manta

latency is 37 �s against 1316�s for Sun JIT (Blackdown) 1.2 and 550 �s for IBM JIT 1.1.8,

respectively. For Fast-Ethernet, the Manta latency is 207 �s against 1500�s and 720 �s for Sun

JIT (Blackdown) 1.2 and IBM JIT 1.1.8, respectively. Manta also performed better than the

Sun RMI protocol for other benchmarks [34]. Manta has also been used in a metacomputing

environment [39] based on homogeneous cluster.

Manta modi�ed the syntax of Java by introducing the reserved word remote,

which permits the programmer to indicate which classes can be remotely invoked,

replacing the language standard mechanism that requires the inheritance of the class

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



22 M. LOBOSCO, C. AMORIM AND O. LOQUES

java.rmi.server.Unicast.RemoteObject. This new operator provides support for the creation of

objects in remote machines. However, these syntax modi�cations prevent Manta from reusing

code written for other Java machines. Other Manta's characteristics can limit its utilization,

too. For instance, some of Java's characteristics were omitted to optimize the RMI protocol,

by arguing that they could reduce performance and were not necessary for high-performance

computing. The shortcomings of such an argument are twofold: the programmer cannot reuse

old code, and he/she has to adapt to the Manta programming style. Another restriction is that

all processes that participate in the computation should start at the same time. Furthermore,

Manta does not support the heterogeneity and safety of the Java model.

Using a pre-compiler

HPJava [49, 12] and JavaParty [41] propose changes to Java' semantics and syntax and

developed pre-compilers to support the changes they introduced. Although providing a versatile

message passing facility, HPJava's main objective is to support the SPMD programming model.

JavaParty takes advantage of object locality and provides a modi�ed RMI facility.

HPJava

HPJava focuses on the potential bene�ts of including some characteristics of High-

Performance Fortran, such as the distributed array model, array intrinsic functions, and

libraries, all of which could make Java an attractive language for programming under the

SPMD model. In particular, HPJava supports distributed arrays as a language primitive and

distributed control constructs to facilitate access to the elements of a local array. Under this

model, programmers do not need to know the physical location of any particular array element.

To achieve this, HPJava introduces three new classes:Group, which de�nes a group of processes

to which the elements of an array are distributed; Range, which describes the extent and

mapping of an array dimension to the dimension of processes; in other words, Range maps an

interval of integers to the dimension of processes according to a given distribution function;

and Location, which is an abstract element of Range, hence Range can be considered as a

group of Locations. In addition, two further classes are de�ned: Subrange and Subgroup, which

de�ne sub-ranges in the Range and Group objects, respectively. A distributed array is declared

using the symbols \[[" and \]]" and by passing objects of the class Group and Range, or their

subclasses, as parameters.

Three control operators, namely at, on, and over, enable distributed execution where each

process executes correctly on a particular subset of a distributed array. The control operator

on de�nes group of processes that share an active thread of control. For example, on (p) f...g
de�nes all the operations on the distributed array that are executed by the p group. The at

operator is similar to on, except that its body is only executed on the processor that owns a

speci�c location. As an illustration, consider the following piece of code: Location i = x[13];

at (i) f...g, the commands within the body of at are executed on the processor that owns

location 13 of the array x. The over operator implements a distributed parallel loop.

Collective communication libraries are supplied to ease the HPJava programmer's task of

controlling the movement of data in a distributed environment. Some basic library commands

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 23

are described, as follows. The copy command allows elements of a distributed array to be

copied to another array, independently of the distribution format. The remap command copies

a group of elements and redistributes them to another distributed array. The elements can

be distributed to the same group of processes or distributed to a di�erent group. The shift

command moves a certain number of elements of a given dimension either in a cyclic or o�-

edge way. The writeHalo command supports ghost regions in the communication, allowing

a reduction in the amount of memory copies required and the communication traÆc during

collective communication. Communication is deadlock free and new communication libraries

can be integrated into the supplied library. The HPJava environment comprises a pre-compiler

and runtime libraries. For performance evaluation purposes, Cholesky and Jacobi applications

were used, but the performance results that were reported are unclear.

JavaParty

JavaParty [41] supports distributed parallel programming in heterogeneous clusters by

extending Java with a pre-processor and a run-time system. JavaParty implements a shared

address space in such way that local and remote accesses to both methods and variables are

identical. The main change to the language was the introduction of a new reserved word, called

remote. The Remote operator allows programmers to indicate which classes and threads should

be distributed across machines within a cluster. It is not necessary, however, to indicate in

which machine an object will reside, nor the communication mechanism to be used between

objects. The run time system and compiler are responsible for these tasks, as well as for dealing

with network exceptions caused by the communication system. The distribution of objects and

threads is implemented by the run time system using the strategy design patterny, which can

also be modi�ed at run time. Another alteration introduced to the language is the permission

for static methods and static variables to be remotely accessed, which is not allowed with

standard RMI. JavaParty's pre-compiler generates two classes for each remote object that

declares static items: one that maps instance variables and instance methods, and another for

class variables and class methods (static). A third class is generated to give the programmers

transparent access to the two generated classes; this class has the same name and interface as

the class originally declared by the programmer.

The run time system implements load balancing, and monitors the interactions between

objects. This allows the run-time system, or the programmer, to migrate objects to increase

their locality. In contrast, the locality of objects is completely ignored by the standard Java

execution environment. For instance, when using RMI, if one of two objects invokes a method

at the other, Java activates the RMI mechanism even if they are in the same machine. In the

same situation, JavaParty will check the object location and a local method invocation will

be made. The local method invocation takes 0.7�s against 2.8ms for a RMI invocation, thus

the penalty for using RMI unnecessarily can be very high, up to 4000 times slower. However,

JavaParty does not report any performance results for applications benchmarks.

yThe Strategy design pattern is a behavioral pattern that provides a way to select from multiple, related
algorithms to accomplish a task.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



24 M. LOBOSCO, C. AMORIM AND O. LOQUES

Using a Java library

Java//

Java// [11], developed at the INRIA in France, is a Java library for sequential, distributed,

and multithread programming, which requires no modi�cations to the Java execution

environment. Java// resorts to concepts such as rei�cation from Computational Re
ectionz

and Proxy Design Patterns [22] in order to ease its implementation. To implement active

objects, the designers of Java// introduced a new mechanism based on two components:

(1) a request queue for each object, where pending invocations can be stored; and (2) a

thread for managing the queue. The object, which is the owner of a request queue, is called

Body. Thus, Java// changes the semantics of the standard Java object. Pending requests are

executed asynchronously, and the execution order depends on the selected synchronization

policy. The body object follows a FIFO behavior if the programmer provides no policy. Java//

o�ers three mechanisms to declare active objects: (1) calls to the Java//.newActive method,

which extended the new functionality to allow the declaration of active objects; (2) calls to

Java//.turnActive which transforms a passive object already declared into an active object.

Note that both Java//.newActive and Java//.turnActive o�er the programmer the option of

creating the object in a remote node. The third mechanism implements the Active interface.

The concept of future objects is applied for inter-object synchronization. A future object

is simply \a placeholder for the not-yet-performed method invocation" [11]. In this way, the

thread that made the invocation can continue its execution as long as it does not need to invoke

methods in the returned object, in which case the invoking thread blocks automatically. This

concept is transparent to the programmer, so no change to the invoking thread is required. A

future object is created whenever a method is invoked in an active object. This principle is

known as wait-by-necessity, and synchronization is data-driven. In some situations, however,

this synchronization type is not used, for example, when the return type is either primitive or

�nal. There are situations in which the synchronization is not directly tied up to the invocation

of a method within an object. In such cases, two other methods are available: Javall.wait(obj),

which explicitly waits for the object obj, and javall.isAwaited(obj), which returns a boolean

value to indicate whether the object obj has reached its synchronization point. The latter

method allows a thread to carry out other useful tasks while waiting for the object obj.

For each class, Java// centralizes intra-object synchronization within a special method

called live. If the class does not provide this method, the Body queue manager uses its

own standard live method, which obeys the FIFO policy. If a class implements Active (to

turn an object active), the programmer can overwrite the standard policy by managing

the request queue explicitly through the methods serveOldest(), serveOldest(method met),

serveOldestBut(method met), and waitARequest() implemented by the Body. For implicit

synchronization the method forbid (method, condition) is used, which works as a logical guard

impeding the access to the method method when the condition condition is true.

zBehavioral (or Computational) Re
ection can be de�ned as \the ability of the language to provide a complete
rei�cation of its own semantics (processor) as well as a complete rei�cation of the data it uses to execute the
current program".

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 25

For illustration purpose, two applications, namely matrix multiplication and a collaborative

application that uses a Ray-trace algorithm, were described in the Java// paper [11] though

performance results were not presented.

UKA-Serialization and KaRMIx

Serialization and Java RMI are two main sources of overheads that the UKA-Serialization

[42] and KaRMI [42] approaches attempt to reduce, respectively. Although similar to Manta

objectives, these approaches are radically new in the sense that no compiler support is required

and the resulting code is portable since UKA and KaRMI are written entirely in Java. The

central idea is that programmers replace both the serialization mechanism and the remote

invocation of the language by library calls that implement several optimizations to improve

performance. UKA-Serialization tackles the serialization problem on four di�erent fronts: type

coding, internal bu�ering, bu�er accessibility, and maintaining type information upon hash

table reset. The type-coding problem happens because Java has to keep enough information

on persistent objects stored on disks so that the objects can be retrieved later, even if the

bytecode used originally to instantiate objects has been discarded. In general, parallel programs

executing on clusters do not require high degree of persistence, because objects' lifetimes are

often shorter or equal to the task execution time and that all nodes in a cluster have access

to the same bytecode, through the common �le system. Given that the UKA-Serialization

uses a textual form to represent classes and packages, the type coding is simpli�ed and the

serialization performance is improved signi�cantly. Each remote method invocation should

begin with a clean hash table so that objects which are re-transmitted will hold their new

states. To implement this property, one of two alternatives can be used. Either create a new

serialization object for each method invocation or call the reset method in the serialization

object. The e�ect of both is to clean the information, including type information, of all objects

that were previously transmitted. Therefore UKA-Serialization creates a new reset method

which cleans only the hash table, maintaining the type information intact.

The implementation of serialization in JDK presents some problems related to the use of

bu�ers. First, JDK implements bu�ered streams on top of TCP-IP sockets and the receiver

does not implement any bu�ering strategy, thus it ignores the number of bytes required to

perform marshaling operations to objects. The authors of UKA-Serialization argue that this

approach is too general since it does not explore any knowledge about the number of bytes of

the object representation. In contrast, the UKA-Serialization handles the bu�er internally so

as to take advantage of the object representation. Moreover, the optimized bu�ering strategy

reads all the bytes of an object at once. Second, bu�er access is ineÆcient in that JDK bu�ers

are external, thus if a programmer wants to write directly into a bu�er he/she must use

special writing functions, which incur overheads. The UKA-Serialization itself implements the

required bu�ering, thus avoiding additional method invocation. By making the bu�er public,

UKA-Serialization enables marshaling routines to write data straight to the bu�er.

xAlthough KaRMI and JavaParty were developed by the same research group, they can be used as distinct
tools.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



26 M. LOBOSCO, C. AMORIM AND O. LOQUES

KaRMI tries to improve performance of the Java RMI through several optimizations. For

instance, its interface between RMI layers o�ers two improvements: (1) the RMI invocation

requires just two additional invocations, and (2) a more eÆcient implementation of the

transport layer. As a result, each KaRMI remote call creates just one object against 26 objects

in the RMI. Similarly, KaRMI executes native code when interacting with device-drivers,

whereas RMI makes two calls to native methods for each argument or return values di�erent

from void, and �ve more native calls for each remote invocation.

Experimental results show that UKA-Serialization reduces object serialization time by 76%

as much as 96% in some cases, when compared with JDK serialization. For KaRMI, three

classes of benchmarks were used: (1) kernels that test RMI calls between two nodes; (2)

kernels that test the overload of the server from calls issued by several clients; and (3)

speci�c applications, such as the Hamming problem, ParaÆn Generation, and SOR. The

benchmarks were executed on two di�erent hardware platforms: (1) two PC Pentium II 350Mz,

running Windows NT 4.0 Workstation with JDK1.2 (JIT enabled), isolated from the LAN,

and connected to each other by Ethernet; and (2) a cluster of 8 DECs Alpha 500MHz, running

Digital UNIX and with JDK1.1.6 (regular JIT), connected by Fast Ethernet. For small size

arrays, the results show that KaRMI outperforms RMI by between 41% up to 84%. However,

for large size arrays (e.g., 5000 elements), their performances are equivalent. Unfortunately,

the authors do not compare their results with similar projects that have been described in the

literature.

Some restrictions apply to both UKA-Serialization and KaRMI. If the computation needs

persistent objects, the serialization optimization cannot be applied. Programs that use socket

factory or port numbers are not supported due to the restructuring of interfaces promoted by

KaRMI. Other minor restrictions are imposed too.

Using native libraries

Javia

VIA (Virtual Interface Architecture) is an emerging industry standard developed at Cornell

University for user-level network interface and Javia [13] is a VIA interface for Java. VIA allows

programmers to explicitly manage resources (e.g., bu�ers and DMA) of the network interface

to directly transfer data to/from bu�ers located in the user's address space. Although Javia

is not a complete proposal, it can be integrated into an environment for high-performance

computing.

Javia consists of a group of Java classes that implement an interface to a native library. The

Java classes o�er interfaces to commercial VIA implementations and are accessed through the

native library. Javia proposes two levels of interfaces for VIA. The �rst level, called Javia-

I, manages the bu�ers used by VIA using native code, therefore hiding them from Java.

Javia-I adds a copy operation on data transmission and reception, since the data should

be moved from Java arrays to the bu�ers executing native code and vice-versa. On data

transmission the copy operation can be optimized through array declaration made on the 
y.

Two types of calls are available: synchronous and asynchronous. An advantage of Javia-I is

portability, as it can be implemented in any JVM that supports the JNI native interface.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 27

Experimental results show that Javia-I is only 10% to 15% slower than the equivalent C code,

when running on two-450MHz Pentium-II Windows 2000 beta3, using two Giganet 1.25Gbps

GNN1000 interfaces cards connected through a Giganet GNX5000 switch. The second level,

Javia-II, permits the programmer to manage directly the communication bu�ers, so that an

application's speci�c information can be exploited to implement a better bu�ering policy.

Bu�er management is carried out using the viBu�er class and its methods, which only provide

asynchronous primitives. This class is allocated out of the Java heap and is not a�ected by the

garbage collector. Such bu�ers are accessed in a similar fashion to the Java primitive arrays,

allowing Java applications to directly transmit and receive arrays and eliminating the need for

additional bu�ers within native code. However, the programmer must explicitly de-allocate

the bu�ers after using them. It could be argued that such bu�ers violate Java safety, because

a programmer can waste all the memory space by simply forgetting to de-allocate the bu�ers.

The Javia authors assume that this is not a new problem since the language does not provide

any mechanism to prevent that from occurring. A shortcoming of such an argument is that a

faulty Javia program, that does not de-allocate bu�ers, could work correctly if Java's memory

management semantics were followed, allowing the garbage collection of unused bu�ers. In spite

of this, Javia-II can be a valuable resource for communication-critical applications. Benchmarks

results showed that Javia-II performance is on average 1% slower than C for message sizes

larger than 8k bytes when running on the platform described above.

4.2.3. Summary

mpiJava, JCI plus MPI, Manta, HPJava, JavaParty, Java//, UKA-Serialization, KaRMI, and

Javia have chosen message-passing as the model for inter-process communication. mpiJava is a

Java interface for existing MPI implementations, which requires several modi�cations to both

the syntax and semantics of several MPI functions. JCI, which has fewer restrictions than

mpiJava, is a Java to C interface generator that allows programmers to bene�t from existing

native libraries such as MPI.

HPJava introduced the SPMD model to Java. HPJava provides classes to work with

distributed arrays and distributed control constructs that enable each process to execute a

particular array subset. HPJava also provides collective communication libraries to control the

data movements. Some of the collective communication libraries are attractive and could be

integrated to Java.

JavaParty introduces a new reserved word, remote, that indicates which classes and threads

should be distributed across machines within a cluster. JavaParty run-time system implements

load balancing and monitors the interactions between objects. In this aspect, JavaParty

is similar to cJVM since both o�er the programmer the option to control load balancing

within the system. Another interesting characteristic of JavaParty is the ability to remotely

access methods and static variables, which is not permitted in traditional RMI. Unfortunately,

JavaParty does not present any performance �gures. Java// also introduces new concepts to

the language: (a) active objects, (b) future objects, and (c) new methods for intra-object and

inter-object synchronization. The concepts behind future objects and proposed synchronization

methods are powerful enough to be considered as a desirable extension to the language.

Unfortunately, no performance evaluation of Java// has been presented.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



28 M. LOBOSCO, C. AMORIM AND O. LOQUES

Manta translates Java programs directly to executable code and tackles three main sources of

overheads in Java: (1) serialization, (2) RMI streams and dispatch, and (3) network protocol.

The performance comparison between Manta and the original JDK mostly favors Manta.

Moreover, Manta should also outperform all the other systems presented in this survey. Despite

modifying the RMI protocol, Manta can interoperate with other Java Virtual Machines.

However, Manta has some disadvantages: (a) some of the Java characteristics are omitted

in order to optimize Manta's implementation, (b) all of the processes that participate in

computations must start at the same time, and (c) some Java features such as portability and

built-in veri�cation checks that make the language attractive for developing large and complex

systems are not available in Manta. UKA-Serialization and KaRMI cope with serialization and

RMI, using a di�erent implementation approach. No compiler support is required since both

KaRMI and UKA-Serialization codes are written in Java, making them portable and platform-

independent. Javia is another attempt to tackle the poor communication performance of Java.

Javia performance is excellent - just 1% slower than C for the benchmarks tested. However,

the programmer must manage the memory allocated for communication, thus violating Java's

automatic memory management.

5. CLASSIFICATION

Table 1 summarizes all of the proposals and environments described so far, using the

classi�cation parameters established in Section 3.

The semantics/syntactic changes column refers to whether the changes to the language made

by the project are perceived or not by the programmers. In regard to cJVM our classi�cation

assumes that the change in the new opcode is transparent to the programmer. As this paper has

made clear, the majority of the proposals modify the semantics and/or the syntax of Java. This

happens because: (a) some proposals add new capabilities to Java, such as Aleph's declaration

of global objects; (b) some proposals try to ease the programmer's task, such as Manta's and

JavaParty's remote keyword; or (c) some project decisions forced the semantics/syntax to

change, such as Javia's need of explicit bu�er de-allocation by the programmer. Only four of

the surveyed systems do not change Java's semantics and syntax. Two of them, cJVM and

MultiJav, transparently modify the JVM; the mpiJava library uses JNI in its implementation,

so that JNI is not exposed to the user; and JCI, which is a JNI-like mechanism usually familiar

to skilled programmers.

Most of the systems use the message-passing model for inter-process communication, since

this model is more widespread than the shared-memory one in high-performance network

computing. However, in a Java context, it can be argued that the latter is more natural

because the adopted thread model assumes that memory is shared among all the threads.

Besides, existing multithreaded programs can potentially run without modi�cations on a

distributed shared-memory environment. Nevertheless, a potential disadvantage of DSM is that

this model often performs worse than the message-passing model. Some of the systems we have

described, namely Aleph and Charlotte, adopt multiple approaches in their implementation for

inter-process communication. Aleph's inter-process communication o�ers both shared-memory

and message passing options. Although Charlotte is focused on shared-memory, the optional

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 29

annotations that can be made in the code resemble the message-passing approach. Moreover,

in the majority of the systems described in this paper, the programmer can use message

passing within a shared-memory environment, since libraries and communication mechanisms,

like sockets and RMI, are also available. However, in our classi�cation we restrict ourselves to

the main inter-process communication the author focused on.

Interoperability with other virtual machines is intimately related to the approach that is

chosen for environment implementation. If the proposal is implemented through a library,

the interoperability with other JVM implementations is possible. On the other hand, if the

proposal is implemented through the modi�cation of the JVM or the creation of a new compiler,

interoperability is potentially unfeasible. Indeed, the Manta implementation uses a modi�ed

compiler that can generate either optimized native code or standard Java bytecode, the latter

capability caters for interoperability with standard machines. Thus, excluding Manta, UKA-

Serialization and KaRMI, Table 1 shows that the systems that do not provide interoperability

either modify the JVM or the compiler.

As stated in Section 3, automatic storage management is also an important issue for

supporting a distributed Java execution environment. Similar to the interoperability issue,

garbage collection is also related to the approach chosen for the environment implementation.

Again, if the proposal is implemented through a Java-based library, the garbage collection is

automatically done by the JVM. On the other hand, if the proposal is implemented through

the modi�cation of the JVM, it is probable that the original garbage collection must be

modi�ed too. Some of the environments do not mention how they treat the garbage collection

issue. In the table, such systems are indicated by a question mark. Usually, systems that are

implemented as libraries do not modify the JVM's algorithm. The only exception is Javia,

which implements its own garbage collection algorithm.

6. CONCLUDING REMARKS

In this paper we have described and classi�ed fourteen Java-based proposals for high-

performance network computing. Our classi�cation scheme has focused on three relevant

aspects, namely: the adopted model for inter-process communication, changes introduced to the

semantics and syntax of Java, and how each speci�c implementation has been carried out. We

assert that a change becomes visible to the programmer if the proposed environment introduces

a new feature or modi�es a feature that the Java framework already provides. Further related

issues, such as the interoperability with other Java virtual machines, and garbage collection

algorithms have been also addressed.

The majority of the proposed systems described in this work have chosen to modify

the semantics and/or the syntax of the language using the message-passing model for

inter-process communication. Nevertheless, there is no clear trend about how proposals are

implemented. In principle, the development of a Java-based system for high-performance

network computing should not modify the characteristics of the language that have made

Java popular and widely used. The use of a compiler that translates Java code into native

code is an interesting solution to improve performance, although this impairs portability. Just-

in time compilation or approaches like that used by Manta can improve performance while

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



30 M. LOBOSCO, C. AMORIM AND O. LOQUES

maintaining the code portability. In addition, modi�cations in the language may be acceptable

if the performance improvement is notable. For example, Manta tackles Java's serialization

problem in an interesting way, passing all the overhead of dynamic inspection to the compiler.

The introduction of new features in the Java Environment could also be advantageous, such

as the addition of a message passing library following MPI or PVM styles. Finally, we suggest

that future projects can take advantage of the extra information that is available in the JVM's

bytecode and state, in order to optimize the execution of parallel applications.

We have also highlighted some potential Java related issues that can a�ect the performance

of network-based applications. More speci�cally, (a) the performance of thread synchronization

primitives; (b) the data serialization operation for communication, which determines the type

of the parameters to be transmitted at run-time and therefore incurs a considerable but

unnecessary communication overhead; (c) the use of standard socket-based communication

protocols, thus preventing the choice of new high-performance network protocols; (d) run-

time checks for null-pointers and array bounds performed by the JVM; (e) the dynamic

nature of execution, which prevents optimizations; and (f) the way multidimensional arrays

are implemented in Java, as n-dimensional rectangular collections of elements, which makes

alias disambiguation diÆcult and prevents other optimizations [38].

A general concern is the lack of performance measures related to the great majority of the

proposals. This may be explained by the fact that some of the systems are (a) basic proposals,

or (b) in an initial implementation stage. Unfortunately, even systems which are in an advanced

implementation stage, and have reported some interesting experimental results, tend to use

their own benchmarks in an ad-hoc fashion. This fact makes more meaningful comparison

between their �ndings diÆcult. Therefore, we expect that future works in this research area will

promote the use of a common benchmark suite, particularly the one that has been developed

by the Java Grande Forum Application and Concurrency Working Group [27]. This benchmark

is divided in three sections: (1) low-level operations; (2) kernels of application, such as FFT

and SOR; and (3) large scale-applications, such as Ray-tracer and Monte Carlo simulation.

Additional benchmarks to measure the associated costs of thread synchronization and remote

communication should also be developed. For example, it would be useful to measure the costs

of write and read operations between thread local memory and main memory, as well as, the

contention during accesses to the main memory. Furthermore, the addition of Internet related

kernels and applications to the benchmark would be valuable, since Java has been increasingly

used in Internet Applications.

ACKNOWLEDGEMENTS

We are thankful to Inês de Castro Dutra, Vitor Santos Costa and Vinod Rebello for their helpful
comments on previous versions of this paper. The comments and questions of the anonymous referees
have greatly contributed to improving the quality of this survey. This research was partially sponsored
by the Brazilian funding agencies: Capes, CNPq, FAPERJ and Finep.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 31

Table I. Classi�cation

Environment Seman./Syntactic Implementation Inter-process Other Issues
/ Proposal Changes Communication Interop. Garbage

Collect

MultiJav No JVM
Modi�cation

Shared Memory No ?

cJVM No (Internally: modi�-
cation of new opcode
semantic; a new object
and memory model)

JVM
Modi�cation

Shared Memory No ?

Java/DSM Yes (threads location) JVM
Modi�cation

Shared Memory No New

Jackal Yes (new memory
model)

New Compiler Shared Memory No New

Charlotte Yes (use of parBe-
gin() and parEnd()
constructs)

Java Library Hybrid Yes JVM-
based

Aleph Yes (object de�nition
and access, active
messages)

Java Library Shared Memory
or Message Pass-
ing

Yes JVM-
based

mpiJava No Native Library Message Passing Yes JVM-
based

JCI No Native Library Message Passing Yes JVM-
based

Manta Yes (new reserved
word remote, Java
security model
unsupported)

New Compiler Message Passing Yes ?

HPJava Yes (distributed array,
new reserved words:
on, at and over)

Pre-compiler and
Java Library

Message Passing Yes JVM-
based

JavaParty Yes (new reserved
word, remote)

Pre-compiler and
JVM
Modi�cation

Message Passing No ?

Java// Yes (di�erent object
view, synchronization,
asynchronous call)

Java Library Message Passing Yes JVM-
based

UKA-
Serialization
and KaRMI

Yes (persistent objec-
t unsupported, socket
factory or port num-
bers)

Java Library Message Passing No JVM-
based

Javia Yes (bu�er de-
allocation)

Native and Java
Library

Message Passing Yes New

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



32 M. LOBOSCO, C. AMORIM AND O. LOQUES

REFERENCES

1. Aridor Y, Factor M, Teperman A. 1999. cJVM: A Single System Image of a JVM on a Cluster. In
Proceedings of the International Conference on Parallel Processing 99 ; Wakamatsu, Japan, September
1999.

2. Aridor Y, Factor M, Teperman A. 1999. cJVM: A Cluster Aware JVM. In Proceedings of the First Annual
Workshop on Java for High-Performance Computing in conjunction with the 1999 ACM International
Conference on Supercomputing; Rhodes, Greece, June 1999.

3. Aridor Y, Factor M, Teperman A, Eilam T, Schuster A. 2000. A High Performance Cluster JVM Presenting
a Pure Single System Image. In Proceedings of the ACM 2000 JavaGrande Conference; San Francisco,
USA, June 2000.

4. Arnold K, Gosling J. The Java Programming Language, First Edition. Addison-Wesley, 1996.
5. Baker M, Carpenter D, Fox G, Ko S, Lim S. 1999. mpiJava: An Object-Oriented Java Interface to MPI.

In Proceedings of the 1st Java Workshop at the 13th IPPS & 10th SPDP Conference, Puerto Rico, April
1999. LNCS, Springer Verlag: Heidelberg, 1999.

6. Baratloo A, Karaul M, Kedem Z, Wycko� P. Charlotte: Metacomputing on the Web. In Proceedings of
the 9th Int. Conf. on Parallel and Distributed Computing Systems; Dijon, France, September 1996.

7. Baratloo A, Karaul M, Karl H, Kedem Z. An Infrastructure for Network Computing with Java Applets.
1998. In Proceedings of the ACM 1998 Workshop on Java for High Performance Network Computing;
Palo Alto, USA, February 1998.

8. Bhoedjang R, Rhl T and Bal H. 1998. EÆcient Multicast on Myrinet Using Link-Level Flow Control. In
Proceedings of the Int. Conf. on Parallel Processing; Minneapolis, August 1998, pp. 381-390.

9. Boehm H, Weiser M. 1988. Garbage Collection in an Uncooperative Environment. Software: Practice and
Experience 1988; 18(9):807-820.

10. Cappello P, Christiansen B, Ionescu M, Neary M, Schauser K, Wu D. 1997. Javelin: Internet-Based Parallel
Computing Using Java. Concurrency: Practice and Experience 1997; 9(11):1139-1160.

11. Caromel D, Klauser W, Vayssi�ere J. 1998. Towards Seamless Computing and Metacomputing in Java.
Concurrency: Practice and Experience 1998; 10(11-13):1043-1061.

12. Carpenter B, Zhang G, Fox G, Li X, Wen Y. 1998. HPJava: Data Parallel Extensions to Java. Concurrency:
Practice and Experience 1998, 10(11-13):873-877.

13. Chang C, von Eicken T. 1999. Interfacing Java to the Virtual Inteface Architecture. In Proceedings of the
ACM 1999 Java Grande Conference; Palo Alto, USA, June 1999.

14. Chen X, Allan V. 1998. MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual
Machines. In Proceedings of the 1998 International Conference on Parallel and Distributed Processing
Technique and Applications; Las Vegas, USA, July 1998.

15. Collins G. 1960. A Method for Overlapping and Erasure of Lists. Communications of the ACM 1960,
3(12):655-657.

16. Compaq Corporation, Intel Corporation, Microsoft Corporation. 1997. Virtual Interface Architecture
Speci�cation. Version 1.0. http://www.viarch.org. Accessed on June 07, 2001.

17. Dincer K, Ozbas K. 1998. jmpi and a Performance Instrumentation Analysis and Visualization Tool for
jmpi. In Proceedings of the First UK Workshop on Java for High Performance Network Computing ;
Southampton, UK, September 1998.

18. DOGMA. http://dogma.byu.edu/. Accessed on June 07, 2001.
19. Eicken T, Culler D, Goldstein S, Schauser K. 1992. Active Messages: A Mechanism for Integrated

Communication and Computation. In Proceedings of the 19 thAnnual Int'l Symp. On Computer
Architecture; May 1992.

20. Ferrari J. 1998. JPVM: Network Parallel Computing in Java. In Proceedings of the ACM 1998 Workshop
on Java for High-Performance Network Computing; Palo Alto, California, February 1998.

21. Fox G, Furmanski W. 1996. Towards Web/Java Based High Performance Distributed Computing - an
Evolving Virtual Machine. In Proceedings of the 5 th. IEEE Symposium on High Performance Distributed
Computing; 1996.

22. Gamma E, Helm R, Johnson R, Vlissides J, Booch G. Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

23. Geist G, Sunderam V. 1992. Network-Based Concurrent Computing on the PVM System. Concurrency:
Practice and Experience 1992; 4(4):293-311.

24. Getov V, Flynn-Hummel S, Mintchev S. 1998. High-Performance Parallel Programming in Java: Exploiting
Native Libraries. In Proceedings of the ACM 1998 Workshop on Java for High Performance Network
Computing; Palo Alto, USA, February 1998.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls



JAVA FOR HIGH-PERFORMANCE NETWORK-BASED COMPUTING: A SURVEY 33

25. Herlihy M, Warres M. 1999. A Tale of Two Directories: Implementing Distributed Shared Objects in Java.
In Proceedings of the ACM 1999 Java Grande Conference; Palo Alto, USA, June 1999.

26. Hoare C. 1974. Monitors: An Operating System Structuring Concept. Communications of the ACM 1974;
17(10):549-557.

27. Java Grande Forum. http://www.javagrande.org. Accessed on June 07, 2001.
28. Java Grande Forum. The Java Grande Forum Charter. http://www.javagrande.org/jgcharter.html.

Accessed on June 07, 2001.
29. Karl H. 1998. Bridging the Gap Between Distributed Shared Memory and Message Passing. In Proceedings

of the ACM 1998 Workshop on Java for High Performance Network Computing; Palo Alto, USA, February
1998.

30. Keleher P, Dwarkadas A, Cox A, Zwaenepoel W. 1994. TreadMarks: Distributed Shared Memory on
Standard Workstations and Operating Systems. In Proceedings of the 1994 Winter Usenix Conference;
January 1994, pp.115-131.

31. Lea D. Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley, 1999.
32. Loques O, Szatajnberg A, Leite J, Lobosco M. On the Integration of Con�guration and Meta-Level

Programming Approaches. In Re
ection and Software Engineering. Editors: Cazzola W, Stroud R, Tisato
F. Lecture Notes in Computer Science. Springer-Verlag: Heidelberg, Germany, June 2000; V. 1826, pp.
189-208.

33. Maassen J, van Nieuwpoort R, Veldema R, Bal H, Plaat A. 1999. An EÆcient Implementation of Java's
Remote Method Invocation. In ACM Symposium on Principles and Practice of Parallel Programming ;
Atlanta, USA, May 1999, pp. 173-182

34. Maassen J, van Nieuwpoort R, Veldema R, Bal H, Kielmann T, Jacobs C, Hofman R. 2000. EÆcient
Java RMI for Parallel Programming. Technical Report, Vrije Universiteit Amsterdam, Faculty of Sciences,
March 2000. Available at http://www.cs.vu.nl/manta/. Accessed on June 07, 2001.

35. Martin P, Silva L, Silva J. 1998. A Java Interface to MPI. In Proceeding of the 5 th:European PVM/MPI
Users Group Meeting; Liverpool, UK, September 1998.

36. McCarthy J. 1960. Recursive Functions of Symbolic Expressions and Their Computation by Machine.
Communications of the ACM 1960; 3:184-195.

37. Message Passing Interface Forum. http://www.mpi-forum.org. Accessed on June 07, 2001.
38. Moreira J, Midki� S, Gupta M, Artigas P, Snir M, Lawrence R. 2000. Java Programming for High-

Performance Numerical Computing. In IBM Systems Journal, Vol. 39, No. 1, 2000.
39. van Nieuwpoort R, Maassen J, Bal H, Kielmann T, Veldema R. 1999. Wide-Area Parallel Computing in

Java. In Proceedings of the ACM 1999 Java Grande Conference; Palo Alto, USA, June 1999.
40. Pakin S, Karamcheti V, Chien A. 1997. Fast Messages (FM): EÆcient, Portable Communication for

Workstation Clusters and Massively-Parallel Processors. IEEE Concurrency 1997; 5:60-73.
41. Philippsen M, Zenger M. 1997. JavaParty - Transparent Remote Objects in Java. In Concurrency: Practice

and Experience 1997; 9(11): 1225-1242.
42. Philippsen M, Haumacher M, Nester C. 2000. More EÆcient Serialization and RMI for Java. Concurrency:

Practice and Experience 2000; 12(7):495-518.
43. Sun Microsystems. 1999. The Java HotspotTM Performance Engine Architecture.

http://java.sun.com/products/hotspot/whitepaper.html. Accessed on December 25, 2000.
44. Thurman D. jPVM: A Native Methods Interface to PVM for the JavaTM Platform.

http://www.chmsr.gatech.edu/jPVM/. Accessed on June 07, 2001.
45. Transaction Processing Performance Council. http://www.tpc.org. Accessed on June 07, 2001.
46. Tyma P. 1998. Why are we using Java again? Communications of the ACM 1998;41(6): 38-41.
47. Veldema R, van Nieuwpoort R, Maassen J, Bal H, Plaat A. 1998. EÆcient Remote Method Invocation. In

Proceedings of the ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), July
1999.

48. Veldema R, Bhoedjang R, Bal H. 1999. Distributed Shared Memory Management for Java. Technical
Report, Faculty of Sciences, Vrije Universiteit, Amsterdam, the Netherlands, November 1999.

49. Wen Y, Carpenter B, Fox G, Zhang G. 1998. Java Data Parallel Extensions with Runtime System Support.
In Proceedings of the Fifth International Conference on High Performance Computing; Madras, India,
December 1998.

50. Yu W, Cox A. 1997. Java/DSM: A Platform for Heterogeneous Computing. In Proceedings of the ACM
1997 Workshop on Java for Science and Engineering Computation; June 1997.

51. Zhou Y, Iftode L, Li K. 1996. Performance Evaluation of Two Home-Based Lazy Release Consistency
Protocols for Shared Virtual Memory Systems. In Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, October 1996.

Copyright c
 2001 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2001; 00:1{6

Prepared using cpeauth.cls


