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Abstract

The purpose of this paper is to propose a method for the numerical simulation
of thermally driven convection in a rotating spherical shell modeled on the
Earth’s outer core using the GeoFEM Thermal-Hydraulic subsystem, which
provides a parallel FEM platform. This simulation is designed to assist in
the understanding of the origin of the geomagnetic field and the dynamics
of the fluid in the Earth’s outer core. A three-dimensional and time depen-
dent process of a Boussinesq fluid in a rotating spherical shell is solved under
the effects of self gravity and the Coriolis force. A tri-linear hexahedral el-
ement is used for the spatial distribution. A total of 1.26 x 10° nodes were
used on the spherical shell, and the finite element mesh divided into 32 do-
mains for parallel computation. The 2nd-order Adams-Bashforth scheme was
used for the time integration of temperature and velocity. To satisfy mass
conservation, a parallel iterative solver given by GeoFEM was used to solve
for the pressure and correction of the velocity fields, and the simulation was
performed over 10° steps using 4 nodes of a Hitachi SR8000. To verify the
proposed simulation code, results of the simulation are compared with anal-
ysis by the spectral method. The results show that the outline of convection
is approximately equal; that is, three pairs of convection columns are formed,
and these columns propagate westward in a quasi-steady state. However, the
magnitude of kinetic energy averaged over the shell is approximately 93% of
that by the spectral method, and the drift frequency of the columns in the
GeoFEM simulation is larger than that by the spectral method.

1. Introduction

It has been widely accepted that the geomagnetic field is generated by motion of an electri-
cally conductive fluid in the Earth’s outer core. This process is referred to as a geodynamo
process. The motion of fluid is strongly influenced by the Lorentz force and the Coriolis force
which, in a co-rotating frame, is given by, —2p€2 x v, where p, €, and v are the density
of the fluid, angular velocity of the Earth’s rotation, and velocity of the fluid, respectively.
Furthermore, the dynamo process is not only a complicated nonlinear system, but also re-
quires three-dimensional and time dependent treatment for direct simulation. In the last
five years, investigation of the generation processes of the Earth and planetary magnetic
fields has entered into a new stage; several magnetohydrodynamic (MHD) simulations in a
rotating spherical shell have been used to represent some of the basic characteristics of the



field (Glatzmaier and Roberts, 1995a[9], 19995b[10] and Kageyama et.al., 1995[13]). Follow-
ing these studies, many studies of the geodynamo simulation represent strong and dipole
like magnetic fields by which the geomagnetic field is characterized (Kuang and Bloxham,
1997[14], 1999[15]; Christensen, 1999[5], Sakuraba (1999)[19] ). However, most of these sim-
ulations applied a spherical harmonics expansion in the azimuthal and elevation directions,
because high spectral accuracy is obtained in this method, singularity of physical values is
maintained at the poles, and magnetic fields are easily connected to the potential field on
the boundaries. Kageyama et. al. (1995)[13] applied the finite difference method (FDM).
However, they considered a compressible gas for a model of the fluid and applied a different
magnetic boundary condition at the outer boundary of the shell to the condition estimated at
the Earth’s Core-Mantle boundary. Fornberg and Merill (1997) [6] carried out a simulation
of fluid motion on a sphere by FDM and pseudospectral method and compared the results,
and concluded that the pseudospectral methods are more cost-effective than the FDM.

These previous studies successfully modeled the basic processes of the geodynamo, but
dimensionless numbers in these simulations were significantly different to those estimated
in the outer core; for example, the Taylor number and the Rayleigh number are estimated
to be 10%° using molecular diffusivity. To carry out simulations with such large Taylor and
Rayleigh numbers, a high spatial resolution is required. Thus, large scale simulations of
the motion in a rotating spherical shell on massively parallel computers are required. The
spectral harmonics expansion, which is the general scheme for the geodynamo simulation
is, however, not suitable for massively parallel computation because a significant number of
global calculations are required in the process; that is, a spectral harmonics transform is
required to solve nonlinear terms. Lesur and Gubbins(1999)[17] showed a fast algorithm for
the spherical transformation, but a global operation is also required in this method. Kuang
and Bloxham (1997[14], 1999[15]) divided the spherical shell in the radial direction for parallel
computation, but the number of processes depends on the number of radial grid points in this
method. There are many other schemes for the simulation of fluid motion such as the finite
volume method(FVM), and finite element method(FEM). These schemes are more suitable
for parallel computation because they consist of local operations. Comparing with FDM,
FVM and FEM are more suitable for the simulation of a fluid in a spherical shell because
singularity of physical values at poles is satisfied. Schmalzl and Hansen (2000) [20] used FVM
to carry out a dynamo simulation in a cartesian domain because it requires less memory and
computational power than FEM. However, it is possible to set any unstructured mesh and
domain decomposition pattern in FEM. The present authors are developing a simulation
code for a MHD simulation in a rotating spherical shell to assist in the understanding of the
geodynamo process and dynamics of a fluid in the shell using GeoFEM [8], which gives a
parallel FEM platform for solid Earth simulation. GeoFEM is being developed as a part of
a five-year project called the Earth Simulator project, that was initiated by the Science and
Technology Agency of Japan (STA) in 1997. The aim of this project is the development of
hardware and softwares for earth science simulations. We have developed a simulation code
for thermal convection in a rotating flame without a magnetic field and carried out numerical
simulations of the thermal convection in a rotating spherical shell. The results are compared
with simulation results by spectral harmonics expansion. In this study, we compare the two
sets of results to verify the proposal approach. The paper consists of the following sections:
In section 2, we describe the simulation model and methods. Results of the simulations are
given in Section 3. In Section 4, a discussion of the results is presented and conclusions are
made in Section 5.



2. Simulation Model and Methods

Proposed Model

Consider a rotating spherical shell modeled on the Earth’s outer core as given in Fig.1. The
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fluid

Figure 1: Rotating spherical shell modeled on the Earth’s outer core. A sketch of the interior
of the Earth is given in the left panel, and the rotating spherical shell model is given in the
right panel.

ratio of the inner boundary to the outer boundary of the spherical shell is set to 0.4 while
the ratio of the radius of the inner core boundary (ICB) to that of the outer core boundary
(CMB) is approximately 0.35. The shell is filled with a Boussinesq fluid and rotates with a
uniform angular velocity €2. The fluid has a constant thermal diffusivity &, kinetic viscosity
v, and thermal expansion coefficient a. We assume that the inner core co-rotates with the
mantle to simplify the model. The motion of a fluid in a rotating flame is described by the
mass conservation, the momentum equation (Navier-Stokes equation) with the Boussinesq
approximation and the Coriolis term, and the thermal diffusion equations; that is,

dive = 0, (1)
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where, v, P, Q, r, ©, Ty, r,, and r; are the velocity, modified pressure, vector of the Earth’s
rotation, position vector, perturbation of temperature, reference temperature, radius of the
outer boundary of the shell, and radius of the inner boundary of the shell, respectively. To
obtain above normalized equations, a shell width L = r, —r; and thermal diffusion time L?/k
were selected as the length scale and time scale, respectively. There are three dimensionless
numbers in the above equations; that is, the Prandtl number P,, the Rayleigh number R,,
and the Taylor number 7,. These numbers are given by,

P = - (6)
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where v, k, a, AT, and g are the kinetic viscosity, thermal diffusivity, thermal expansion
ratio, and difference of temperature between the inner and outer boundaries of the shell,
respectively. The Taylor number and Rayleigh number in the Earth’s outer core are estimated
to be T, = 10% and R, = 6 x 103 with the molecular viscosities (Gubbins, 1987[11]).
Even if we consider turbulent viscosities, these dimensionless numbers remain greater than
101, However, these estimated values can not be used directly because of limitation of
computational power. Therefore, let the Prandtl number be 1, the Taylor number be 2.5x 10,
and the Rayleigh number be 1.5 x 10* = 1.8R,., where R, is the critical Rayleigh number.

The boundary conditions exert a significant influence on the motion of the fluid. Rigid
boundary conditions were selected for the velocity and a fixed temperature for the tempera-
ture boundary condition at both boundaries; that is,
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Simulation by the GeoFEM methods

The simulation code is based on the GeoFEM Thermal-Hydraulic subsystem, which was
designed for numerical simulation of thermally driven convection by parallel FEM. In this
subsystem, the basic equations egs. (1) - (3) for the fluid are solved three dimensionally and
time dependently. The spherical shell is divided into tri-linear hexahedron elements, and the
temperature, velocity, and pressure are defined at each node and interpolated by tri-linear
function in each hexahedron element. For the time integration, the fractional step scheme
and Adams-Bashforth scheme are applied to obtain an accurate estimation of the Coriolis
term. The simulation process is given by the following equations;

Mg+ = M,50% + At @F; _ %F}H> , (12)

Mogtis = Magvly + At (gF" — %Fg—l) , (13)
Ait(_Laﬁ‘f‘Saﬁ) b5 = Hglip, (14)
Pl = Aitq)o“ and (15)

Mogvly™ = Maslis + H.3®g, (16)

where the diffusion, inertia, buoyancy, and Coriolis terms are given by,

Fp = {(~Lap + Sap) O — Hizv% (03 +Tos) }, and (17)
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In above equations, e;j; is the permutation symbol, and v,; is velocity averaged over each
element where,
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Each component of matrices Mog, Mag, L\, H. g, Sis in eqgs.(12)-(17) are described by the
following integrations:
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where, N, is a tri-linear shape function and the upwinded shape function N, is defined as,
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First, the temperature is solved using eq.(12) with eq.(18). Then, to obtain a predictor
of the velocity 9; eq.(13) with eq.(17) are solved. To satisfy the mass conservation low,
divergence of the predictor is calculated and Poisson equation eq.(14) is solved by the parallel
iterative solver of GeoFEM. Then pressure p"*! and velocity v are solved by eqgs.(15) and
(16).

The advantage of FEM is that the operations given in eqs(12), (13), (15), and (16) are
local operations; that is, the values at each node are solved by neighboring nodes. The finite
element mesh is divided into local domains in GeoFEM, and each local data structure is node
based with overlapping elements (Nakajima, 1999[18]). Thus, eqs(12), (13), (15), and (16) are
solved in separate processor. A global operation is only required to solve the Poisson equation
Eq.(14). The iteration solver in GeoFEM is used for this operation, because an iterative solver
with preconditioning is one of the most powerful methods for parallel computing (Nakajima,
1999[18]). Because the grid data have communication tables and routines for communication
are concentrated in the solver subroutine, it is possible to develop a code with few special
treatments for parallel computation.

Grid Pattern

The spherical shell is divided into tri-linear hexahedral finite elements. A grid pattern is set
on a sphere to be based on an icosahedron following Baumgardner and Frederickson (1984[1])
and Stuhne and Peltier (1996[21], 1999[22]); the grid pattern is obtained by three levels of
refinement from an icosahedron. To obtain a hexahedral element, each triangle is divided
into three quadrilaterals. Finally, this mesh is stacked in the radial direction. The spherical
shell is divided into 33 layers including both boundaries in the radial direction and 3842
nodes are set on each sphere surface. Distances between nodes are approximately 70 km in
the radial direction and 3 degrees in the longitudinal direction at the equator. The domain

5



decomposition method has been applied in GeoFEM for parallel computation, and single
program mutiple data The finite element mesh is divided into 32 domains by Recursive
Coordinate Bisection(RCB); that is, the mesh is divided by planes that are parallel with
respect to the x, y, and z planes and to balance the number of nodes in each domain. The
grid pattern of the spherical shell is given in Fig.2. This partitioning is carried out by the

partitioner in GeoFEM that generates a communication table for iterative solver at the same
time.
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Figure 2: Grid pattern for the rotating spherical shell. The grid pattern for entire spherical

shell is given in the left panel, and distributed grid pattern for parallel computation is given
in the right panel.

Simulation by the spectral method

To verify the results of the simulation by GeoFEM, the same simulation was carried out
by the spectral method. In this case, the simulation scheme is based after Frazer (1974[7]),
Honkura et. al. (1992[12]), and Matsui (1999[16]). It is well established that arbitrary
solenoidal vector fields can be separated into poloidal and toroidal components (Bullard,
1954[2]; Chandrasekhar, 1961[4]). The velocity field is solenoidal because the Boussinesq
approximation is applied in the present study. Scalar functions of the poloidal velocity Vs

and toroidal velocity Vr and temperature perturbation © are expanded into the spherical
harmonics; that is,

v = rotrot (Vrr)+rot (Vrr) (26)
Valrt) = 3 3 Vel (00, 0) e
V(1) = X X V0700 29
O(r,t) = ; ;l@zm(ﬁt)Yzm(@,@ (29)



where, Y™ (6, ¢) and L are the spherical harmonics and truncation level, respectively. The
coefficients of the harmonics Vg, V7", and ©;™ are solved. To find a solution in the radial
direction, the 2nd order finite difference method is applied. In this case, The heat conduction
equation and vorticity equation for the poloidal and toroidal component of the vorticity are
solved. The poloidal velocity is obtained by the toroidal vorticity using the Poisson equation.
To solve the time evolution, the Crank-Nicolson scheme is adopted for the diffusion terms
and 2nd-order Adams-Bashforth scheme for solving the other terms. It is noted that the
inertia terms and the Coriolis term are solved by the coefficients of the spherical harmonics.
Because the amount of computation increases O(L®) order in this scheme, it is difficult to
set the truncation level to be significantly large. In this study, the truncation level of the
spherical harmonics is set to be 18 degrees with 64 equally spaced grid points in the radial
direction.

The simulations were performed on the following computers; the simulation by GeoFEM
was performed on 4 nodes of a Hitachi SR8000 and the spectral method was performed on
16 processors of an NEC SX-4.

3. Simulation Results

Three sections of the results of the simulation by GeoFEM were compared with that by
the spectral method; that is, i) characteristics of the convection pattern, ii) kinetic energy
and z-component of the angular momentum averaged over the spherical shell, and iii) time
variation of the convection pattern.

Convection pattern

After Busse (1970[3]), many analytical studies and numerical simulations have demonstrated
that columnar convection that is parallel with respect to the rotation axis is formed outside of
the tangential cylinder, which is an imaginary cylinder attached to the inner boundary of the
shell at the equator, in the case of thermally driven convection in a rotating spherical shell.
To show the characteristics of the convection pattern in a quasi-steady state, an isosurface
of P =1000 and P = —1000 and a contour map of the z-component of vorticity w, = rot wz
in a cross section at z = 0.35 are shown in Fig.3. In the simulation, three pairs of convection
columns that are parallel with respect to the rotation axis are formed. As shown in Fig.3,
low pressure convection columns have a positive z-component of vorticity and vice versa. In
the upper panels of Fig.4, the intensities of the z-component of vorticity and of the velocity
at the cross section z = 0.35 are given. In the convection columns, the z-component of
the velocity and vorticity are in opposite directions; i.e., the clockwise vortices demonstrate
poleward flow, while the counterclockwise vortices demonstrate equatorward flow. These
structures of the convection are characterized as helical flows. To verify that the simulation
works correctly, the convection pattern is compared with that for the case by the spherical
harmonics expansion. The z-component of vorticity and velocity at the same cross section are
shown in the lower panels of Fig.4. As can be seen, the convection patterns are approximately
equal except for position of each convection column. The intensity of the velocity in the case
of GeoFEM is, however, smaller than that by the spectral method. This difference is also
seen in the magnitude of the kinetic energy averaged over the spherical shell.
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Figure 3: Convection pattern at t = 12.96 for the simulation by GeoFEM. Pressure is shown
as isosurfaces of P = —1000 (dark surface) and P = 1000 (bright surface). Intensity of the
z-component of vorticity at cross section z = 0.35 is given by the contour map. Regions with
a negative vorticity are filled dark gray in the contour map.

Averaged kinetic energy and angular momentum

The time evolution of kinetic energy averaged over the spherical shell, which is defined by
% J %deV, is given in Fig.5. Comparing between the two simulations, differences are observed
when ¢t < 7. After t = 11, however, the behaviors become quite similar. The difference in
the initial stages is caused by the difference in the initial temperature in the two cases; that
is, in the case of GeoFEM, the initial temperature was set to 7= 1 on the inner boundary
and to 7' = 0 on the other region, while a small temperature perturbation was given in the
all mode of the spherical harmonics as the initial temperature for the case by the spectral
method. After t = 11, the kinetic energy in both cases shows similar changes because the
effects of the initial temperature are negligible. The magnitude of the kinetic energy was,
however, different for the two cases. The averaged kinetic energy and z-component of the
angular momentum 3 [ (r x v) dV at a quasi-steady state are given in Table 1. At ¢ > 11,
the magnitude of the kinetic energy for the case by GeoFEM was approximately 93% that
of the case by the spectral method. Conversely, the z-component of angular momentum
averaged over the shell was larger than that by the spectral method. These results suggest
that details of convection patterns also difference.



GeoFEM

Vorticity Velocity

120,00

45,00

-30.00 :
t =12.96
-105.00

-150.00

Spectral
method

1.2E+02
7.9E+00

= 0.0
g 0.0

R =0

=6.7E+00

Figure 4: Intensity of the z-component of vorticity (left panels) and velocity (right panels) at
cross section z = 0.34 in a quasi-steady state. The results for the simulation by GeoFEM at
t = 12.96 are given in left panels, and the results for the simulation by the spectral method
at ¢ = 12.0 are given in the right panels. The vorticity range is from -180.0 to 120.0 for both
cases, and that of the velocity is from -6.7 to 7.9 for the case by the spectral method and
from -7.0 to 9.0 for the case by GeoFEM.

Time variation of convection patterns

As many simulation results have demonstrated, convection patterns propagate in the longi-
tudinal directions as described by

(v,0) = f(r,0,¢ —wt), (30)
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Figure 5: Time evolution of kinetic energy averaged over the spherical shell.

GeoFEM | Spectral method
Kinetic energy 31.6 33.5
Angular momentum | -0.919 -0.849
drift frequency -1.88 -1.62

Table 1: Kinetic energy and angular momentum averaged over the spherical shell and drift
angular frequency of the convection pattern at ¢ = 18.0. A positive drift angular frequency
is defined as eastward propagation.

where w is the drift angular frequency. To investigate variations of the convection patterns
and the drift frequency, the radial velocity at the mid-depth of the shell and the equatorial
plane was plotted as given in Fig 6, which shows that convection patterns propagate westward
throughout these simulations, and the number of convection columns changes from 4 pairs to
3 pairs when 7.0 < ¢ < 10.0. The drift frequency becomes almost constant when ¢ > 11, but
the differences between the simulations are observed. To estimate the drift angular frequency
at the quasi-steady state, a component of the radial velocity described as v,(t) cos (3¢ — wt)
was chosen. The drift angular frequency in the quasi-steady state was estimated by the phase
of a wave of this velocity component, and the drift frequency plotted as a function of time
in Fig.7. As given in Fig.7, the magnitude of the drift frequency is larger than that in the
case by the spectral method; i.e., the convection pattern propagates rapidly in the case of
GeoFEM. As given in Table 1, the magnitude of the drift frequency in a quasi-steady state
is 1.13 times that for the case by the Spectral method.

4. Discussion

The simulation results by GeoFEM and spherical harmonics expansion demonstrate similar
convection patterns and time variations. As seen in Table 1, however, about deviations of
10% are observed for several values in the results. The two simulations have many differences;
that is, spatial resolution, radial resolution, and initial temperatures. The resolution in the
radial direction may cause serious problems. In both cases, the radial resolution affects the
convection patterns around both boundaries because the radial resolution is too coarse to
describe the boundary layers. The error in the case by GeoFEM may be larger than that by
the spherical harmonics expansion, because the radial resolution in the case by GeoFEM is
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Figure 6: Radial velocity v, along the equatorial plane and mid-depth of the shell as functions
of the longitude (horizontal axis) and time (vertical axis). This figure shows the propagation
of the convection pattern in the zonal direction. A positive value represents outward flows.
The grayscale range is from -17.5 to 18.5.

lower than that by the spectral method. However, when a larger number of nodes are set in
the radial direction, the length of the time step has to be set to a much shorter value. In fact,
the simulation was performed with a grid that has 64 nodes in the radial direction and the
mesh pattern was set described in Section 3. In this case, length of the time step was set to be
0.1 times the previous case, and CPU time was 20 times longer than that for the simulation
given in Section 3. The simulation was executed to t = 4.5 and reached a quasi-steady state
in a shorter period of time (see Fig.8 and Fig.9). The magnitude of averaged kinetic energy
and angular momentum was 32.7 and -0.866, respectively. Only 3% difference was observed
between the results by GeoFEM and the spectral method.

Therefore, the simulation was performed with a significantly higher resolution, particu-
larly around both boundaries. This requires significantly shorter time steps. The length of
time step is controlled by the diffusion terms. In order to perform simulations with signifi-
cantly longer time steps, the Crank-Nicolson scheme may be more suitable scheme for solving
the diffusion terms than the present scheme.

The elapsed time for the simulations shown in Section 3 is estimated as shown in table
2. It is difficult to directly compare the elapsed time by GeoFEM with that by the spectral
method because of the different spatial resolutions, methods and platforms. However, it is
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Figure 7: Drift angular frequency of the radial component of velocity with three wave numbers
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thermal diffusion time. This plot represents the drift frequency after ¢t > 11 when three pairs
of convection columns are observed. A positive drift angular frequency suggests a convection
pattern drift to the east.
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Figure 8: Time evolution of kinetic energy averaged over the spherical shell for the cases by
GeoFEM. Results by the mesh with 33 layers are given by the solid line (as in Fig.5), and
that by the mesh with 64 layers are given by dotted line.

noted that a MHD simulation requires time steps about that are 10 times longer than that
the proposed simulations when the same parameters are set for the fluid. In this study,
2 x 10° time steps were carried out, such that it took approximately 250 hours to obtain
simulation results at t = 20.0 and just 22 hours by the spectral method. One of reasons is
that the finite element mesh had higher resolution than that used in the spectral method.
The finite element mesh corresponds to a degree of truncation level of the (3842/4)%5 ~ 31
in the spectral method. If the simulation by the spectral method is attempted with this
higher degree of truncation, the process will take (30/18)° = 12.8 times the elapsed time
given in Table 2. If the MHD simulation is performed with the same FEM mesh, time
steps, and platform, it will take approximately 5000 hours to execute. Furthermore, because
the spherical shell is divided in the radial direction in the spectral method, the simulation
can not be performed on more than 64 processors. However, the proposed simulation code
utilizes approximately only 4% of the peak performance of the SR8000, while approximately
30% of the peak performance is utilized in the spectral method. One of the reasons for this
is that an SX-4 has SMP type vector processors. Because of the architecture of the SX-4
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Figure 9: Convection pattern at ¢ = 12.96 for the case with 33 layers in the radial direction
and at t = 4.45 for the case with 64 layers in the radial direction. Convections are as in
Fig.3.

Method Platform number of element | Elapsed time (sec) | Ratio (%)
GeoFEM SRB000( 8PEs) 17432 1293 4.2
GeoFEM SR8000(16PEs) 9482 649.1 4.1
GeoFEM | SR8000(32PEs) 5449 1037 37

| Spectral method | SX-4(16PE) | - | 33.3 | 31 ]

Table 2: Elapsed times and ratio of performance to the peak performance for the first 100
time steps.

and the method of parallelization, it is easy to maximize the efficiency of the simulation.
However, significant modifications are required to maximize the efficiency of the simulation.
For example, the present simulation has been performed using 'flat MPI’; that is, a process
for each local domain has been performed on each processor and communicates using MPI.
Since one node of an SR8000 system consists of SMP type 8 processors, the simulation for
each subdomain can be performed on each node. The number of domains can be decreased
to 1/8 times of that in the present simulation and the number of overlapping regions can be
decreased. As seen in Table 2, elapsed time is short when the number of domains is small.

The simulations were performed with just with 32 processors in the present study. How-
ever, the number of processors in each system is rapidly increasing. The Earth Simulator
(ES), which is name of the supercomputer under development as part of this project, has
512 nodes with SMP type 8 vector processors. A MHD simulation based on the present
simulation will be performed on the ES. Approximately 5 x 10° nodes will be set and the
simulation will be performed over 10° steps with the Crank-Nicolson scheme for solving the
diffusion terms. The advantage of the FEM approach will be clarified when the simulation
is performed on a massively parallel computer such as the ES.
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5. Conclusions

The authors have been developing a simulation code for the fluid motion in a rotating spheri-
cal shell modeled on the Earth’s outer core to aid in the understanding of the dynamics of the
fluid in the Earth’s outer core. The code is based on the Thermal-Hydraulic subsystem of Ge-
oFEM, which provides a parallel FEM platform. Simulations of thermally driven convection
in the rotating spherical shell without magnetic field were performed. Tri-linear hexahedron
elements were used for the spatial distribution, and the spherical shell divided into 33 layers
including both boundaries. A total of 3842 nodes were set in a refined icosahedral pattern
on each spherical surface. The Finite Element mesh was divided into 32 domains for parallel
computation by the partitioner in GeoFEM. For time evolution of the temperature and ve-
locity by the inertia, buoyancy, and Coriolis forces, the 2nd-order Adams-Bashforth scheme
was applied. Pressure was solved by the parallel CG solver of the GeoFEM. In the simulation
by the spectral method used to verify the proposed technique, poloidal and toroidal velocity
components and temperature were expanded into the spectral harmonics expansion in the
azimuthal and elevation direction, and the finite difference method applied in the radial di-
rection. For the time integration, the Crank-Nicolson scheme was applied for diffusion terms
and the Adams-Bashforth scheme for all other terms was applied. Because dimensionless
numbers such as the Rayleigh number and the Taylor number are too large for practical
implementation, they were redefined in the range appropriate for the simulation; that is, the
Prandtl number was set to 1.0, the Taylor number to 2.5 x 10°, and the Rayleigh number to
1.5 x 10* = 1.8R,,, where R, is the critical Rayleigh number. Rigid constrains were set on
the inner and outer boundaries as a boundary condition for velocity, and the temperature
set to 1 on the inner boundary and 0 on the outer boundary. Simulations were performed to
20 times the thermal diffusion time.

The convection pattern results show that three dominant pairs of convection columns that
are parallel with respect to the rotation axis are formed and that these columns propagate
westward in the quasi-steady state. Although different initial values of the temperature
were used in the two simulation methods, similar convection characteristics were observed.
However, the kinetic energy in the shell is was approximately 93% that of the case using
the spectral method, and the magnitude of the drift angular frequency of the convection
pattern was 1.13 times larger than that for the simulation by the spectral method. These
discrepancies were mainly caused by the difference in the spatial resolution in the radial
direction.

It is necessary to simulate the motion of the fluid magnetohydrodynamically in order to
investigate the dynamics of the Earth’s core and the geodynamo process. Thus, development
of a MHD code based on this subsystem is deferred to further studies. Modifications to the
proposed technique are required to maximize the computational efficiency.

Acknowledgement

This study is part of the ”Solid Earth Platform for Large Scale Computation” project funded
by the Ministry of Education, Culture, Sports, Science and Technology, Japan through its
”Special Promoting Funds of Science & Technology.”

The authors would like to thank Prof. Yoshi-yuki Hayashi (Hokkaido University), Dr.
Shin-ichi Takehiro (Kyushu University), and Mr. Muga Nakanishi (Tokyo Institute of Tech-
nology) for their help in understanding for the simulation results, Dr. Masaki Okada for
his advice for using the Hitachi SR8000 system in the Information Science Center, National
Institute of Polar Research, and colleagues in the GeoFEM project team for their support.

14



References

[1] Baumgardner, J. R. and Frederickson, P. O., Icosahedral Discretization of the Two-sphere,
S.I.AM. J. Numer. Anal., 22, 1107-1115, 1985.

[2] Bullard, E. C. and Gellman, H, Homogeneous dynamos and terrestrial magnetism, Phil.
Trans. Roy. Soc. Lond., A247, 213-278, 1954.

[3] Busse, F. H., Thermal instabilities in rapidly rotating systems J. Fluid Mech., 44,
441-460, 1970.

[4] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford University Press,
1961.

[6] Christensen, U., Olson, P., and Glatzmaier, G. A., Numerical modelling of the geody-
namo: a systematic parameter study, Geophys. J. Int. , 138, 393-409,1999.

[6] Fornberg, B. and Merrill, D., Comparison of finite difference and pseudospectral methods
for convective flow over a sphere, Geophys. Res. Lett., , 24, 3245-3248, 1997.

[7] Frazer, M. C., Spherical hermonic analysis of the Navier-Stokes equation in magnetofluid
dynamics, Phys. Farth Planet Inter., 8, 75-82,1974.

[8] GeoFEM Web Site: http//www.geofem.org

[9] Glatzmaier, G. A. and Roberts, P. H., A three-dimensional self-consistent computer sim-
ulation of a geomagnetic field reversal, Nature , 377, 203-209, 1995a.

[10] Glatzmaier, G. A. and Roberts, P. H., A three-dimensional convective dynamo solution
with rotating and finitely conducting inner core and mantle, Phys. Farth Planet.
Inter. , 91, 63-75, 1995b.

[11] Gubbins, D. and Roberts, P. H., Magnetohydrodynamics of the Earth’s Core, in Geo-
magnetism vol.2, pp.1-183, Academic Press, 1987

[12] Honkura, Y., lijima, T. and Matsushima, M., Magnetic field reversal resulting from a
dynamo process in a spherical shell, J. Geomag. Geoelectr., 44, 931-941, 1992.

[13] Kageyama, A., Sato, T., and the Complexity Simulation Group, Computer simulation
of a magnetohydrodynamic dynamo, Phys. Plasmas, 2, 1421-1431, 1995.

[14] Kuang, W. and Bloxham, J., An Earth-like numerical dynamo model, Nature, 389,
371-374, 1997.

[15] Kuang, W. and Bloxham, J., Numerical modeling of magnetohydrodynamic convection
in a rapidly rotating spherical shell: weak and strong field dynamo action, J. Comput.
Phys., 153, 51-81, 1990.

[16] Matsui, H., Studies on the Basic Processes of Magnetic Field Generation Based on MHD
Simulation in the Rotating Spherical Shell, Ph.D. Thesis, Tohoku Univ., 1999.

[17] Lesur, V. and Gubbins, D., Evaluation of fast spherical transforms for geophysical ap-
plications, Geophys. J. International, 139, 547-555, 1999.

[18] Nakajima K., and Okuda, H., Parallel Iterative Solvers with Localized ILU Precon-
ditioning for Unstructured Grids on Workstation Cluster, International Journal of
Computational Fluid Dyunamics, 12, 315-322, 1999.

[19] Sakuraba, A. and Kono M., Effects of the inner core on the numerical simulation of the
magnetohydrodynamic dynamo, Phys. Farth Plant. Inter. 111, 105-121, 1999.

15



[20] Schmalzl, J. and Hansen, U., A fully implicit model for simulating dynamo action in a
Cartesian domain, Phys. Farth Plant. Inter. ; 120, 339-349, 2000.

[21] Stuhne, G. R. and Peltier, W. R., Vortex Erosion and amalgamation in a New model of
Large Scale Flow on the Sphere, J. Comptational Phys., 128, 58-81, 1996.

[22] Stuhne, G. R. and Peltier W. R., New Icosahedral Grid-Point Discretizations of the
Shallow Water Equations on the Sphere, J. Comptational Phys., 148, 23-58, 1999.

16



