
A Parallel Algorithm for Static Slicing of

Concurrent Programs

D. Goswami, R. Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, INDIA

email: < diganta; rajib >@cse.iitkgp.ernet.in

Abstract

Slicing of concurrent programs is a compute-intensive task. To speed up the

slicing process, we develop a parallel algorithm. For this purpose we use Con-

current Control Flow Graph (CCFG) as the intermediate representation. We

use a network of communicating processes to develop our parallel algorithm.

We have implemented our parallel algorithm and the experimental results ap-

pear promising.

Key Words: Program slicing, Static slicing, Process network, Program representa-

tion, Parallel algorithm, Concurrent program.

1 Introduction

Program slicing is a technique for extracting only those statements from a program

which may a�ect the value of a chosen set of variables at some point of interest in the

program. Excellent surveys on the applications of program slicing and existing slicing

methods are available in [1, 2]. Slicing is a useful tool and was �rst introduced by

Weiser [3]. Slicing is especially useful for debugging and analyzing the behavior of

distributed and concurrent programs. These programs are large and run on several

processors often at distributed location. A programmer is often at a loss to determine

the cause for a failure as freezing a computation (i.e. global snapshot) is very diÆcult

because the concurrent processes proceed independently with intermittent synchro-

nization and message passing. The accepted way to slice such a program is by �rst

converting the program into an intermediate graph representation and then process-

ing this intermediate representation. The computational complexity of these slicing

algorithms is polynomial in the size of the intermediate graphs. For a program with

1

a large number of coarse-grained processes, the intermediate graph may even contain

millions of nodes. Also, it is necessary to compute slices very fast because often these

slices are required for run-time use, e.g. debugging. In this paper, we attempt to

parallelize our previously published results on slicing of concurrent programs [4], to

compute slices faster.

Parallelization is a natural choice to speed up compute intensive programs. Har-

man et al have presented a parallel algorithm for static slicing of sequential programs

using networks of communicating processes acting concurrently [5]. Each process in

this network is de�ned by a simple function on streams of messages. In this paper,

we extend the parallel algorithm proposed by Harman et al for slicing concurrent

programs.

The rest of this paper is organized as follows. Section 2 brie
y reviews a parallel

algorithm for static slicing of sequential programs for providing the basic background

of the work. We review our intermediate graph representation for concurrent pro-

grams in Section 3. In Section 4, we discuss Weiser Slice of concurrent programs.

Section 5 describes our proposed parallel algorithm for static slicing. Section 6 gives

the correctness proof for our parallel algorithm. Experimental result and comparison

with related work are presented in Section 7. We conclude this paper in Section 8.

2 Parallel Algorithms for Static Slicing

A parallel slicing algorithm to compute slices for sequential programs was presented

by Harman et al [5]. In their method, a process network is constructed from the

program to be sliced. A process network is a network of concurrent processes and is

de�ned as a graph whose nodes represent processes and whose edges represent com-

munication channels among processes.

The CFG of the program is �rst constructed which is used to construct the pro-

cess network. The Reverse CFG (RCFG) is constructed by reversing the direction of

every edge in the CFG. Every node in the RCFG represents a process and the edges

correspond to communication channels. Edges entering a node i represent inputs to

process i and edges leaving node i represent outputs from process i.

Since every node in a RCCFG represents a process in the process network, we

will refer to a CFG node i as process i in the context of process network i.e., the

identi�er i will be used to represent a node and a process in di�erent context.

The following de�nition of controlled nodes would be useful in the next section.

De�nition 1 (Controlled Nodes) The execution of a predicate node `controls' the

2

execution of other nodes in the CFG by determining whether or not control will

de�nitely pass to these nodes or not. For each predicate p, the set of nodes that

depend on the truth value of predicate p are termed as the controlled nodes of p.

For example, for a while loop the controlled nodes of the predicate node are simply

those appearing in the body of the loop.

2.1 Process Behavior

Each process repeatedly sends and receives messages that are sets consisting of vari-

ables and node identi�ers. The behavior of each process i depends precisely on the

following information, also denoted as process state, derived directly from the CFG

of the program to be sliced:

Æ i : The node identi�er,

Æ ref(i) : The set of variables referenced in node i,

Æ def(i) : The set of variables de�ned in node i,

Æ C(i) : The set of nodes controlled by i, where i is a predicate.

Assuming a side-e�ect free program, we have def(i) = �, where i is a predicate

node. If i is not a predicate node, then obviously C(i) = �.

The behavior of each process depends on its state and the input message. Let the

input to a process i be the set I which is a set of variables and node identi�ers. The

behavior of each process in the process network is de�ned in functional notation as

follows.

Fi(I) = if I
T
(def(i)

S
C(i)) 6= �

then (I � def(i))
S
ref(i)

S
fig

else I

This is interpreted as follows:

� If the set I contains any of the variables de�ned by i or contains any of the

node identi�ers controlled by i (in case i is a predicate node), then the process

i outputs a message on all its output channels consisting of:

1. all the variables in I that it does not de�ne,

2. all variables that it references,

3. its node identi�er, i.

� Otherwise (i.e., if I has no elements in common with the de�ned variables or

controlled nodes of i), the process i merely outputs I on all outgoing channels.

3

The process i then waits for the next input message and upon receiving a message

repeats this action.

The output by process i as described above will be referred as basic output in later

sections.

2.2 Constructing A Slice

To compute a slice for the slicing criterion < n; V >, where V is the set of variables

and n is the CFG node representing a statement, network communication is initiated

by outputting the message V from process n in the process network. Messages will

then be generated and passed around the network until it eventually `stabilizes', i.e.

when no new message arrives from any node.

Once stabilized, the slice is computed by observing the output messages by each

node: Node i should be included in the slice if and only if process i has output its

node identi�er i. That is, the algorithm computes the slice of a program by including

the set of nodes whose identi�ers are input to the entry node of the CFG, because

the entry node is reachable via every node in the RCFG and thus messages output

by all nodes will eventually reach the entry process.

2.3 Correctness

The parallel slicing algorithm has been shown to be correct and �nitely terminating

by Harman et al. We reproduce some of their important results in this regard from

[5].

Theorem 1 (Termination) The process network used in the parallel slicing algo-

rithm can be de�ned in terms of recursion equation over �nite sets of variables and

node identi�ers and such recursion equation systems give rise to terminating compu-

tations [5].

Theorem 2 (Correctness) The parallel slicing algorithm is correct in the sense that

every statement included in a Weiser slice is also included using the parallel slicing

algorithm [5].

3 Intermediate Representation of Concurrent Pro-

grams

In this section, we propose a representation of concurrent programs for the purpose of

using it for parallel slicing. This representation is a generalization of CFG for sequen-

tial programs. We name this representation concurrent control
ow graph (CCFG).

4

Informally, CCFGs are forests of control
ow graphs (CFGs), one for each process

in the program, with nodes and edges added to represent interprocess communica-

tions.

3.1 Overview of Parallel Programming Constructs Used

In our subsequent discussions, we will use primitive constructs for process creation,

interprocess communication and synchronization which are similar to those available

in the Unix environment [6]. The main motivation behind our choice of Unix-like

primitives is that the syntax and semantics of these primitive constructs are intuitive,

well-understood, easily extensible to other parallel programming models and also can

be easily tested.

The language constructs that we consider for message passing are msgsend and

msgrecv. The syntax and semantics of these two constructs are as follows:

� msgsend(msgqueue, msg): When a msgsend statement is executed, the message

msg is stored in the message queue msgqueue. The msgsend statement is non-

blocking, i.e. the sending process continues its execution after depositing the

message in the message queue.

� msgrecv(msgqueue, msg): When a msgrecv statement is executed, the variable

msg is assigned the value of the corresponding message from the message queue

msgqueue. The msgrecv statement is blocking, i.e. if the msgqueue is found to

be empty, the receiving process waits for the corresponding sending process for

depositing the message.

We have considered nonblocking send and blocking receive semantics of interpro-

cess communication because these have traditionally been used for concurrent pro-

gramming applications. In this model, no assumptions are made regarding the order

in which messages arrive in a message queue from the msgsend statements belonging

to di�erent processes except that messages sent by one process to a message queue

are stored in the same order in which they were sent by the process i.e., the message

queue preserves the order of messages sent from any single process. A process exe-

cuting a msgrecv(msgqueue, msg) statement removes the �rst available message from

the msgqueue.

A fork() call creates a new process called child which is an exact copy of the par-

ent. It returns a nonzero value (process ID of the child process) to the parent process

and zero to the child process [6]. Both the child and the parent have separate copies

of all variables. However, shared data segments acquired by using the shmget() and

shmat() function calls are shared by the concerned processes. Parent and child pro-

cesses execute concurrently. A wait() call can be used by the parent process to wait

5

for the termination of the child process. In this case, the parent process would not

proceed until the child terminates.

Semaphores are synchronization primitives which can be used to control access

to shared variables. In the Unix environment, semaphores are realized through the

semget() call. The value of a semaphore can be set by semctl() call. The incre-

ment and decrement operations on semaphores are carried out by the semop() call

[6]. However, for simplicity of notation, we shall use P(sem) and V(sem) as the

semaphore decrement and increment operations respectively.

This section introduces a method to graphically represent concurrent programs in

Unix process environment. This representation is later used to compute static slices.

Our method can handle only static creation of processes. We construct the graph

representation of a concurrent program through three hierarchical levels: process

graph, concurrency graph, and CCFG. Construction of the �rst two levels is described

next only providing necessary de�nitions without going into details of the construction

of various intermediate graphs to save space. The interested reader can �nd these in

[4].

3.2 Process Graph

In [4], we have proposed a hierarchical graphical representation for concurrent pro-

grams. This is done through three levels and the �rst level of these is denoted as

process graph. A process graph captures the basic process structure of a concurrent

program.

De�nition 2 (Process Graph) A process graph, Gp = (Np; Ep; fp), is a directed

graph where Np is a set of nodes referred as process nodes. Ep � Np �Np is a set of

edges. fp is a function assigning statements to process nodes. The edges of a process

graph can be of two types: fork edges and join edges.

Informally, a process node consists of a sequence of statements of a concurrent

program which would be executed by a process.

De�nition 3 (Fork Edge) A fork edge from a node P1 to a node P2 in a process

graph exists if the last statement in the statement sequence represented by P1 is a fork

call and P2 represents the statement sequence to be executed by the parent process

immediately after this fork call or by the child process created by this fork call.

De�nition 4 (Join Edge) A join edge from a node P2 to a node P1 in a process

graph exists if all the following hold:

1. the statement sequence represented by P1 contains a wait call.

6

2. the statement sequence represented by P2 does not contain any fork call.

3. P0 is the �rst predecessor node of both P1 and P2 which represents a statement

sequence where the last statement is a fork call.

3.3 Concurrency Graph

A process graph captures only the basic process structure of a program. This has

to be extended to capture other Unix programming mechanisms such as interprocess

communication and synchronization. We achieve this by constructing a concurrency

graph. A concurrency graph is a re�nement of a process graph where the process

nodes of the process graph containing message passing statements are split up into

three di�erent kinds of nodes, namely send node, receive node, and statement node

[4]. Interprocess communication due to message passings are represented by commu-

nication edges.

De�nition 5 (Communication Edge) A communication edge from a send node S

to a receive node R in a concurrency graph exists if both the msgsend statement in the

send node S and the msgrecv statement in the receive node R uses the same message

queue.

De�nition 6 (Concurrency Graph) A concurrency graph Gc = (Nc; Ec; fc) is a

directed graph where Nc is a set of nodes referred as components. Ec � Nc � Nc is

a set of edges and fc is a function assigning statements to components. Edges of a

concurrency graph can be of following types: fork edges, communication edges, and

control edges.

Each node of the concurrency graph is called a component. The maximal set

of components which are capable of concurrent execution is called a concurrent set

of components or just a concurrent component. A concurrency graph captures the

dependencies among di�erent components arising due to message passing communi-

cations among them. However, processes may also interact through other forms of

communication such as using shared variables. Access to shared variables may either

be unsynchronized or synchronized using semaphores. Determination of such shared

dependences (represented by shared dependence edges) cannot be done from a simple

analysis of the source code.

De�nition 7 (Shared Dependence Edge) A shared dependence edge from a state-

ment s1 to another statement s2 exists if the following hold:

1. x 2 def(s1),

2. x 2 ref(s2),

3. s1 and s2 can execute concurrently.

7

To determine shared dependence across two components one must know whether

these two components are concurrent or not. We presented an algorithm based on

graph reachability for determining the set of components concurrent to a given com-

ponent [4].

3.4 Concurrent Control Flow Graph

It is interesting to observe that fork edges represent `
ow of control' among processes

in a concurrent programs. When a process forks, it creates a child process and ex-

ecutes concurrently with the child. So the fork edges in a process graph represent

parallel
ow and we will consider these as the parallel
ow edges.

We now modify the representation proposed in [4] to construct a generalized con-

trol
ow graph for concurrent programs which we will refer to as concurrent control

ow graph, (CCFG). The process graph is �rst constructed for the given program.

For simplicity of notation we refer to a process node in a process graph as a pnode.

Concurrency graph is then constructed using the method described in [4] to �nd out

the concurrent components. It is now possible to determine the pairs of statements

belonging to two di�erent pnodes. The edges between such pairs of nodes constitute

either a shared dependence edge or a communication edge. Construction procedure

for these edges have already been explained in [4].

For every pnode of the process graph, we now construct a CFG from the state-

ment sequence of that pnode. To do this, we construct special start nodes for all

pnodes to mark the entry of the CFGs of these pnodes. For the pnode that does

not have any predecessor in the process graph, this start node is denoted as Entry

and denotes the point where the program starts executing. For all pnodes which do

not have any successor in the process graph, we construct stop nodes to mark the

termination of each of them in the CFG. Figure 1(b) shows the process graph of the

example program given in Figure 1(a). The corresponding CFGs of the pnodes P0,

P1, and P2 are shown in Figure 2.

From the construction of the individual CFGs of the pnodes from the process

graph, it is obvious that the �rst node of every CFG is either a start node or

an Entry node and the last node is either a stop node or a node representing a

fork statement. The individual CFGs are now interconnected by adding inter-pnode

edges to construct the CCFG. The various inter-pnode edges are: parallel
ow edges,

shared dependence edges, and communication edges. Construction of these edges in

the CCFG is explained next. The CCFG of the example program given in Figure

1(a) is shown in Figure 3.

Let the last statement in the statement sequence in pnode1 be a fork statement

8

 main() {

1. x = ...;
2. y = ...;
3. s = /* shared variable */
4. if (fork() == 0) {
5. y = f1(y);
6. m = f2(y);
7. msgsend(q1, m);
8. if c1
9. s = f3(y)
10. else s = f4 (y);
 }
 else {
11. x = f5(y);
12. msgrecv(q1, m);
13. y = f6(m);
14. x = x + s;
15. printf("...", x);
16. printf("...", y);
 }
17. y = f7(x, y);
 }

 /* declaration */

(a) (b)

1 - 4

11 - 17 5 - 10
17

P0

P1 P2

Figure 1: (a) An Example Program and (b) Its process Graph

and pnode2 and pnode3 be its successors in the process graph. Then parallel
ow

edges from the node in the corresponding CFG of pnode1 representing the fork state-

ment to the two start nodes of the corresponding CFGs of pnode2 and pnode3 are

constructed to represent parallel
ows. For example, two parallel
ow edges exist in

the CCFG from node 4 to the two start nodes as shown in Figure 3.

Let (s; s
0

) be a statement pair representing a shared dependence edge which is

determined using the information acquired from the concurrency graph as already

explained in [4]. Let s 2 pnodei and s
0

2 pnodej in the process graph. An inter-

pnode edge in the CCFG is then constructed from the node corresponding to the

statement s in the CFG of pnodei to the node corresponding to the statement s
0

in

the CFG of pnodej to represent shared dependence. By using this procedure two

shared dependence edges are constructed in the CCFG of the example program: one

from node 9 to node 14 and the other from node 10 to node 14.

A communication edge for the statement pair (s; s
0

) is similarly added to the

CCFG where s is a msgsend statement in one pnode and s
0

is a msgrecv statement

in another pnode in the process graph such that concurrency graph reveals a potential

9

1

2

3

4

5

6

7

8

9 10

17

11

12

13

14

15

16

17

Entry start start

stop
stop

(a) (b) (c)

Figure 2: CFGs of the pnodes Shown in Figure 1(b)

communication edge between the two. The only communication edge that exists in

the CCFG of the example program is from node 7 to node 12.

We now de�ne CCFG for a concurrent graph more formally.

De�nition 8 (CCFG) A CCFG, GF , of a concurrent program is a triple (NF , EF ,

S) where NF is a set of nodes representing statements of the program, EF is a set of

edges of two types: inter-pnode and intra-pnode. Intra-pnode edges represent control

ow edges while inter-pnode edges are of following types: parallel
ow edge, shared

dependence edge, and communication edge. S is a set of dummy nodes and may be of

the following three types: start, stop, and Entry.

The construction procedure of a CCFG described above is summarized in the

pseudocode of algorithm Construct CCFG given below. We use the notations sp and

10

1

2

3

4

Entry

5

6

7

8

9 10

17

start

stop

11

12

13

14

15

16

17

start

stop

Communication edge Parallel flow edge

Control flow edgeShared dependence edge

Figure 3: CCFG of the Example Program Shown in Figure 1(a)

11

sG to indicate a statement in the statement sequence represented by a pnode and the

corresponding CFG node respectively. We also use two sets: SD, which represents

the pair of statements from two di�erent pnodes having a shared dependence edge

between them. Similarly, SC , the set of pair of statements represents communication

edges.

Construct CCFG

Input: Process Graph Gp, SD, SC
Output: CCFG

for all np 2 Np do

begin

Construct the CFG of np
end

for all np 2 Np do

begin

/* Examine all the statements in np sequentially */

for all statements in np do

begin

sp current statement examined

if sp:type = msgsend

begin

Construct communication edge (sG; sGk) such that (sp; s
p
k) 2 SC

end

else if sp:type=fork

begin

Find successors ni of np in the process graph Gp

sGi corresponding start node in the CFG of ni
Construct parallel
ow edges (sG; sGi)

end

else if sp:type= shared variable read

begin

Construct shared dependence edges (sGk ; s
G) such that (s

p
k; s

p) 2 SD
end

end

end

4 Weiser Slice of Concurrent Programs

We now develop the de�nition of Weiser slice of concurrent programs by extending

the de�nition of Wesier slice for sequential programs. Based on this de�nition, we

will compute slices of any concurrent program using our proposed technique.

12

Weiser slice for sequential programs are computed using CFGs as intermediate

representations. The slicing method (due to Weiser) from a given CFG has been

presented in [3]. In Section 3, we have proposed an intermediate representation of

concurrent programs which is a generalization of CFG. This leads us to develop a

method to compute slices of concurrent programs using Weiser's method.

Consider the slicing criterion < P; s; V >. For the given slicing criterion, each of

the pnodes will contribute its part of the slice. Let the slice for the given criterion

be Slice. Slicei denotes the section of the slice contributed by pnodei. Therefore,

the resulting slice can be expressed as the union of the individual parts of the slice

contributed by all pnodes, i.e.,

Slice =
S
Slicei

For the given criterion < P; s; V >Weiser Slice Slice is computed using the follow-

ing steps. (From now onwards, a node in the CCFG corresponding to a statement s

in the process graph will be annotated as sF).

1. Slice �

2. If s 2 pnodei, then compute Slicei from the CFG of pnodei using the criterion

< s; V >. (Slicei is the Weiser slice of the pnodei).

3. Slice Slice
S
Slicei

4. Generate new criteria < pnodej; sm; V
0

> if all of the following hold:

(a) sm 2 pnodej and sm:type = msgsend or shared variable use,

(b) there exist shared dependence or communication edge (sFm; s
F
k) in the CCFG,

and

(c) sk 2 Slice

5. Repeat steps 2 to 4 using the new criteria generated until the slice Slice stabi-

lizes.

We denote this slice, which is computed by extending the Weiser's technique to

concurrent programs, as Weiser Slice.

5 A Parallel Algorithm for Static Slicing

To compute static slices of concurrent programs, we extend the parallel algorithm

proposed in [5] to CCFG, our representation of concurrent programs. We �rst con-

struct the process network for any given concurrent program. The topology of the

13

process network is given by the Reverse Concurrent Control Flow Graph (RCCFG).

The RCCFG is constructed from the CCFG by reversing the direction of all edges.

Every node of the RCCFG represents a process and every arc represents a commu-

nication channel between these processes. The RCCFG of the example concurrent

program shown in Figure 1(a) is shown in Figure 4.

1

2

3

4

Entry

5

6

7

8

9 10

17

start

stop

11

12

13

14

15

16

17

start

stop

Figure 4: RCCFG of the Example Program Shown in Figure 1(a)

There are some additional processes and channels in the process network which

do not exist in process networks for sequential programs. These processes arise in

the process network of concurrent programs due to statements used for interprocess

communication, process creation, etc. Behaviors of these processes and channels are

14

di�erent from those of ordinary ones as described in the context of sequential pro-

grams in [5]. We now outline how these processes and channels are handled to

compute slices from the process network of concurrent programs.

In the standard Unix semantics each message passing statement uses a message

queue msgque and a message msg [6]. The input to a process in the process network

is denoted as I. We assume that the type of statement represented by a process in the

process network is given by process:type and may be any of the following: msgsend,

msgrecv, fork, shared var use, and ordinary (ordinary represents any statement other

than these four). A process of type shared var use in a process network represents a

statement which uses a shared variable. Similarly, the type of a channel representing

an edge is given by channel:type and may be any of the following: sd-channel (rep-

resenting a shared dependence edge), com-channel (representing a communication

edge), and ordinary channel (representing any edge other than these two).

5.1 Process Behavior

Behavior of each of the processes in the process network of a concurrent program is

de�ned as follows.

Let the input to the process i in the process network received from the input

channel c be the set I. Please recall that I is a set of variables and node identi�ers.

Behavior of process i depends on the types of process i and input channel c. De-

pending on the type of i we get the following four cases. The corresponding process

behavior is presented with each case.

Case 1: i.type = msgsend

if c.type = com-channel, then I = I [fig

Transmit I on all output channels

Case 2: i.type = msgrecv

if msg 2 I then f

I = I [fig

If outgoing com-channel from this process i is not disabled,

then transmit fmsgg on com-channel and then disable the

com-channel

g

Transmit I on all output channel except the com-channel

Case 3: i.type = shared var use /* Let x is the shared variable */

if def(i) 2 I f

If outgoing sd-channel is not disabled, then transmit fxg

15

on sd-channel and then disable this sd-channel

g

Transmit basic output on all output channels except the sd-channel

Case 4: i.type = fork

Transmit I[fig on all output channels

Case 5: i.type = ordinary

Transmit basic output on all output channels

We now brie
y explain the above steps.

� msgsend: If a process in a process network representing a msgsend statement

receives an input I, it simply transmits I on all output channels. Before trans-

mitting, it adds its node identi�er to I if it receives I from a com-channel,

otherwise it is transmitted unaltered.

� msgrecv: If a process in a process network representing a msgrecv statement

receives an input I, it checks whether the input I contains the msg (that is

used in the syntax of the msgrecv statement). If not, then it transmits I on

all output channels without any change except the com-channel. Otherwise,

it transmits I along with its node identi�er on all output channels except the

com-channel, and transmits a new message, fmsgg, on the com-channel.

� Shared variable use: Whenever a process in a process network which is having

sd-channel as one of its output channels receives an input I, it checks whether I

contains the variable de�ned by the corresponding statement. The behavior of

the process is same for all output channels except the sd-channel as described

in Section 2.1, i.e., it outputs the basic output. But it outputs a new message

on the sd-channel containing only the shared variable if I contains the relevant

shared variable for this process, otherwise it does not output anything on the

sd-channel.

� fork: A process representing a fork call always outputs the input along with its

node identi�er on all output channels.

The processes representing the dummy nodes, for example, start and stop simply

transmit all their input unaltered through the output channels.

The messages sent along sd-channels and com-channel, if any, are transmitted

only once. This is because of the fact that the message that is output on any one of

these channels, is always �xed as shown in case 2 and case 3 above.

16

5.2 Constructing A Slice

A slicing criterion for a parallel program is a triple < P; s; V >, where P is a process,

s is a statement in this process and V is a set of variables. To compute a slice with

respect to this criterion, the process network is �rst initiated. Let n be the node in

the CCFG corresponding to the statement s in the process P . Let n
0

be the process

in the process network corresponding to the CCFG node n. The process network

is then initiated by transmitting fn
0

,V g on all output channels of n
0

considering the

process behavior already discussed. Each process in the process network repeatedly

sends and receives messages until the network stabilizes. The network stabilizes when

no new messages are generated in the whole network. The set of all node identi�ers

that reach the Entry node gives the required static slice.

The steps for computation of slices are summarized below.

1: Construct the hierarchical CCFG for the concurrent program.

2: Reverse the CCFG.

3: Compile the RCCFG into a process network.

4: Initiate network communication by outputting the message fs; vg from the

process in the process network representing statement s in the process P ,

where < P; s; v > is the slicing criterion.

5: Continue the process of message generation until no new messages are

generated in the network.

6: Add to the slice all those statements whose node identi�ers have reached

the entry node of the CCFG.

Construction of the slice with respect to the criterion < P1; 15; x > for the ex-

ample program given in Figure 1(a) is explained in Figure 5(a). This �gure shows

the sequence of message generation and sending these messages by processes in the

process network. The process network is initiated by outputting the message f15,xg

by node 15 on its output channel to node 14. This is represented in the �gure by

(15,14) { f15,xg. On receiving the message, node 14 (which is a shared var use type)

outputs the same message fsg on its two sd-channel to node 9 and 10 and the mes-

sage f14,15,xg on the other ordinary channel according to case 3 of process behavior.

Message generation and transmission by nodes continues according to the the rules

of various cases as discussed above. Finally, the process network terminates when

no new messages are generated in the system. To compute the slice, we take the

node identi�ers which reach the Entry node of the RCCFG. This gives us the slice

f1,2,3,4,5,8,9,10,11,14,15g.

Computation of another slice with respect to the criterion < P1; 16; y > is shown

in Figure 5(b). The resulting slice is found to be f2,4,5,6,7,12,13,16g. Sequence of

17

(15,14) - {15,x}

(14, 9) - {s}
(14,10) - {s}
(13,12) - {14,15,s,x}
(12,11) - {14,15,s,x}
(11, start) - {11,14,15,s,x,y}
(start, 4) - {11,14,15,s,x,y}
(4, 3) - {4,11,14,15,s,x,y}
(3, 2) - {3,4,11,14,15,x,y}
(2, 1) - {2,3,4,11,14,15,x}
(1, Entry) - {1,2,3,4,11,14,15}
(9, 8) - {9,y}
(10,8) - {10,y}
(8, 7) - {8,9,10,y}
(7, 6) - {8,9,10,y}
(6, 5) - {8,9,10,y}
(5, start) - {5,8,9,10,y}
(start, 4) - {5,8,9,10,y}
(4, 3) - {4,5,8,9,10,y}
(3, 2) - {4,5,8,9,10,y}
(2, 1) - {2,4,5,8,9,10}
(1, Entry} - {2,4,5,8,9,10}
Terminate

(14,13) - {14,15,s,x}

(a) (b)

(16,15) - {16,y}
(15,14) - {16,y}
(14,13) - {16,y}
(13,12) - {13,16,m}
(12,11) - {12,13,16,m}
(12, 7) - {m}
(11, start) - {12,13,16,m}
(start, 4) - {12,13,16,m}
(4, 3) - {4,12,13,16,m}
(3, 2) - {4,12,13,16,m}
(2, 1) - {4,12,13,16,m}
(1, Entry) - {4,12,13,16,m}
(7, 6) - {7,m}
(6, 5) - {6,7,y}
(5, start) - {5,6,7,y}
(start, 4) - {5,6,7,y}
(4, 3) - {4,5,6,7,y}
(3, 2) - {4,5,6,7,y}
(2, 1) - {2,4,5,6,7}
(1, Entry) - {2,4,5,6,7}
Terminate

Figure 5: Sequence of Message Generation and Message Passing in the Process Net-

work during Computation of the Slice of the Example Program Shown in Figure 1(a)

(a) w.r.t. the Criterion < P1; 15; x > and (b) w.r.t the Criterion < P1; 16; y >

message generation and sending these messages by processes in the process network

is shown in the �gure.

6 Correctness of the Parallel Slicing Algorithm

In this section, we show that our parallel slicing algorithm has �nite termination

property and that it computes correct slices. We consider a slice to be correctly

computed if it is identical to the Weiser slice as de�ned in Section 4.

Theorem 3 (Termination) The process network used in the parallel slicing algo-

rithm for concurrent programs gives rise to terminating computations.

Proof: Consider that the process graph for the given program consists of a single

pnode indicating that the program has a single process. Hence, by Theorem 1, the

corresponding process network has �nite termination. Theorem 1 also applies when

18

the process graph consists of more than one pnode but no inter-pnode edges in the

CCFG except the parallel
ow edges. In this case also, the process network can be

expressed in terms of recursion equation as that in Theorem 1.

If there exists any inter-pnode edge in the CCFG, the process network will contain

some sd-channels and/or com-channels. During execution of the process network

when these channels are used, messages through these channels are transmitted only

once and then disabled as described in case 2 and 3 in Section 5.1. The set of such

channels in a process network is �nite and hence this set will eventually be exhausted

after a �nite number of steps. At that point, by applying Theorem 1, we prove �nite

termination of the process network. 2

Theorem 4 (Correctness) The parallel slicing algorithm is correct in the sense

that every statement included in a Weiser slice will also be included using the parallel

slicing algorithm.

Proof: Consider the case when the process graph consists of a single pnode or more

than one pnode without any inter-pnode edge except parallel
ow edges in the CCFG.

Then a slice computed with respect to any criterion will be internal to a particular

process. So using Theorem 2 we �nd the resulting slice to be correct.

Let us consider the case where the process network consists of more than one

pnode with inter-pnode edges. If a slice is computed using the parallel algorithm for

the criterion < pnodei; s; V >, then Slicei will be computed as usual by initiating

network communication at the process in the process network corresponding to the

CCFG node sF . Slicei will be correct by Theorem 2. Let us consider the case where

sk 2 Slicei and sk:type is shared variable use. Hence, there is an inter-pnode edge

(sFm; s
F
k) in the CCFG such that sm 2 pnodej for some j. Now, by applying case

3 of process behavior as described in Section 5.1, a message will be transmitted on

the output sd-channel (corresponding to the shared dependence edge) by the process

corresponding to the CCFG node sFk . The message is simply fxg, where x is the

shared variable used in sk. This step leads to start of computation of Slicej in pnodej
by starting message generation at and transmission from the process corresponding to

the CCFG node sFm i.e. using the new criterion < pnodej; sm; x >. Slicej computed

will be correct according to Theorem 2. If sk:type is msgrecv, then by applying case

2 and case 1 as described in Section 5.1 and forwarding the same argument as that

in case of shared variable use type, we get correct slice Slicej in the pnode pnodej.

Of course, in this case we assume that there exists a com-edge (sFm; s
F
k) in the CCFG

such that sm 2 pnodej for some j. Since this process of generation of new criteria

continues until the slice Slice stabilizes, �nally we will get the slice Slice =
S
Slicei

which is the correct Weiser Slice (as de�ned in Section 4) for the given concurrent

program. 2

19

7 Implementation and Experimental Results

We have implemented the parallel algorithm for computing dynamic slices of con-

current programs. The implementation environment is Digital-Unix and we have

considered a subset of C language with Unix primitives for process creation and in-

terprocess communications.

The module structure of our prototype implementation is shown in �gure 6. The

Program analyzer analyzes the program code to extract all information pertaining

to process creation, join, and termination. We have used the standard Unix tools lex

and yacc to carry out the syntax and semantic analysis of the program code. The in-

formation collected for every statement s during this analysis are: node id, statement

type, ref(s), def(s), C(s), input channels (numbers and types), and output channels

(numbers and types).

The Process graph constructor uses the information collected by the program

analyzer component to create the process graph. We have used data structures linked

through pointers to implement the edges and nodes of the process graph.

The Concurrency graph constructor refers to the process graph generated

by the process graph constructor as well as the information generated by the pro-

gram analyzer to extract the send/receive calls made by various processes. Using this

information it splits the relevant nodes of the process graph into statement nodes,

send nodes and receive nodes. Communication edges are constructed between cor-

responding send and receive nodes. The concurrency graph constructor component

also incorporates the algorithm to compute the concurrent components.

RCCFG constructor constructs the RCCFG by �rst constructing the CFGs

of individual pnodes and then by adding the inter-pnode edges to connect the CFGs.

RCCFG

Program
Analyzer

Coordinator

Scheduler

Parallel
Execution

slicing Criterion

Constructor
Conc. Graph

Constructor

Program
Code

Constructor
Process Graph

Slice User input of

Figure 6: Architecture of the Implementation of the Parallel Algorithm

20

The Coordinator module takes the RCCFG as input and creates processes for

every RCCFG node and then submit to the Scheduler. The Scheduler assigns

these processes to available processors for parallel execution. The Coordinator also

reads the user input (slicing criterion and number of processors). Based on the number

of processors, the Scheduler assigns the processes to as many processors. The Coor-

dinator is also responsible for terminating all the processes as soon as the network

`stabilizes' i.e. when no new messages are generated in the system. After termination

of the parallel execution, the Coordinator collects the message received by the entry

node and outputs the slice.

A major aim of our implementation is to investigate the achieved speed up in com-

puting slices. The algorithm has been tested with several programs. The length of the

programs that we have used for testing vary from 30 to 100 lines. We have considered

a subset of C programming language in writing these programs. The results obtained

from 8 sample programs have been shown in �gure 7. Program sample 1 is shortest

in length and program sample 8 is the longest. For di�erent program samples �gure

7 shows the speed up achieved in two processor (solid line), three processor (dashed

line), and four processor (dotted line) environment.

We have noticed encouraging results from the implementation. It is observed that

speed up achieved for di�erent programs { in two processor environment is between

1.13 and 1.56; in three processor environment is between 1.175 and 1.81; and in four

processor environment is between 1.255 and 2.08. For the same number of processors

used, speed up varies for di�erent program samples. It is seen that the achieved speed

up is higher for larger programs. This may be due to the fact that the number of nodes

in the process network for larger programs is higher compared to smaller programs,

leading to more parallelism and consequently higher utilization of the processors. It

is also obvious from the result that the speed up for the same program increases with

the number of processors used and varies between 1.13 to 2.08 for di�erent program

samples when the number of processors is increased from 2 to 4.

7.1 Comparison With Related Work

Speeding up slice computation has been an important objective of the researchers

working in this area [1, 2, 7, 8]. However, most of the reported research in this

regard has been in the form of proposing more eÆcient algorithm. Parallelization

of slicing algorithm is scarcely reported in literature. The only published parallel

algorithm we could �nd was proposed by Harman et al [5]. Their algorithm is

applicable only to sequential program slicing. We have extended it to compute slices of

concurrent programs. We have also implemented the parallel algorithm to investigate

the achieved speed up.

21

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

1 2 3 4 5 6 7 8

S
pe

ed
 U

p

Program Samples (arranged in increasing order of size)

P=2
P=3
P=4

Figure 7: Speed Up Achieved for Di�erent Program Samples by Using Our Parallel

Algorithm

8 Conclusion

In this paper, we have introduced a parallel algorithm for static slicing of concurrent

programs. For this purpose, we use CCFG as the intermediate representation of

concurrent programs. CCFG represents intra-process control
ow edges and inter-

process data and communication edges. We have also de�ned Weiser Slice for con-

current programs. A parallel algorithm for slicing concurrent programs using process

network has been proposed. We have shown that our parallel algorithm has �nite

termination property. It has also been shown to compute correct Weiser Slices. We

have developed a prototype implementation of the algorithm and the performance

results are encouraging.

References

[1] F. Tip, \A survey of program slicing techniques," Journal of Programming Lan-

guages, vol. 3, no. 3, pp. 121{189, September 1995.

[2] D. Binkley and K. B. Gallagher, \Program slicing," Advances in Computers, Ed.

M. Zelkowitz, Academic Press, San Diego, CA, vol. 43, pp. 1{50, 1996.

[3] M. Weiser, \Program slicing," IEEE Trans. on Software Engineering, vol. 10,

no. 4, pp. 352{357, July 1984.

22

[4] D. Goswami, R. Mall, and P. Chatterjee, \Static slicing in unix process environ-

ment," Software - Practice and Experience, vol. 30, no. 1, pp. 17{36, January

2000.

[5] M. Harman, S. Danicic, and Y. Sivagurunathan, \A parallel algorithm for static

program slicing," Information Processing Letters, vol. 56, no. 6, pp. 307{313, 1996.

[6] M. J. Bach, The Design Of The Unix Operating System. Prentice Hall India Ltd.,

New Delhi, 1986.

[7] D. Goswami and R. Mall, \An eÆcient method for computing dynamic program

slices," Information Processing Letters, (to appear).

[8] H. Agrawal and J. Horgan, \Dynamic program slicing," In Proceedings of the ACM

SIGPLAN '90 Conf. on Programming Language Design and Implementation, SIG-

PLAN Notices, Analysis and Veri�cation, White Plains, New York, vol. 25, no. 6,

pp. 246{256, June 1990.

23

