
Automatic Determination of Matrix-Blocks
Lapack Working note 151,
University of Tennessee Computer Science Report ut-cs-01-458

Victor Eijkhout�

revision 06 June 2001

Abstract

Many sparse matrices have a natural block structure, for instance arising from the discretisa-
tion of a physical domain. We give an algorithm for finding this block structure from the matrix
sparsity pattern. This algorithm can be used for instance in iterative solver libraries in cases
where the user does not or can not pass this block structure information to the software. The
block structure can then be used as a basis for domain-decomposition based preconditioners.

1 Introduction

Sparse matrices can often be described as having a limited bandwidth and a limited number
of nonzeros per row. However, this description does not do justice to a structure that is
visible to the naked eye. Many sparse matrices come from discretised partial differential
equations on a physical domain in two or three space dimensions. From the way the variable
numbering traverses the problem domain, in a natural way a block structure arises. In a
plot of the matrix sparsity pattern, blocks corresponding to lines or planes in the domain,
or whole substructures, can be easily discerned.

Direct matrix solvers often ignore such a matrix structure. Indeed, succesful solvers are
based on renumbering the matrix, regardless the original ordering. Examples are the Cuthill-
McKee ordering [3] which reduces the bandwidth of the matrix, and the multiple minimum
degree ordering [4] which more directy aims to minimise fill-in. This approach succeeds
by virtue of the fact that such direct solvers are purely based on the structure of the matrix,
and disregard the numerical entries. Time to solution is fully a property of the structure and
independent of the numerics.

For iterative solvers such an approach is less desirable. The time to solution is strongly
dependent on numerical properties, and only to a lesser degree on structural properties.
This issue is only exaccerbated by the incorporation of a preconditioner in the iterative
scheme. It would then make sense – and we will show with an example how serious this
issue is – to take structure information into account in the construction of a preconditioner.
In particular, for preconditioners that are based on partitioning of the domain, such as Schur
complement methods and Schwarz methods, one would aim to let the domains chosen
correspond to domains arising naturally from the application.

In cases where the user writes the full application and the iterative solver, our story would
now end on the above note of recommendation. However, in practical cases, users may

� This work was supported in part by the National Science Foundation, grant number ACI-9876895.

1



rely on an iterative solver library, and be limited to the interface it provides for supplying
structural information in addition to the bare matrix entries. Looking at this problem from
the side of the library developer, we can not always assume that a user has the opportunity,
sophistication, or time to supply such annotations to the matrix.

We conclude that there is a legitimate opportunity for software that automatically deter-
mines a matrix structure. Such software could be incorporated into existing iterative solver
libraries, where it would retrieve information that, because of a fixed user interface, simply
can not be provided by the user. Another application for this software would be the Net-
Solve package [2]. We have proposed such a structural partitioner as part of a more general
intelligent black-box linear equation solver [1].

In the next two sections we describe two partitioning algorithms, one for regular matrices,
and one for general matrices. We conclude by giving a practical example showing the
efficacy, and indeed necessity, or our partitioning approach.

2 Regular matrix partitioner

If a matrix derives from a discretized PDE on a ‘brick’ domain, it has a structure where
all blocks are of equal size. Facilitating the analysis is the fact that all nonzero diagonals
are parallel to the main diagonal. For this regular case we develop a partitioner that finds
all possible block structures. The fact that there can be more than one block structure is
due to the physical nature of the problem: blocks can correspond to for instance lines or
planes in a three-dimensional domain. Our algorithm proceeds by successively discarding
outer diagonals, which would correspond to the connections between blocks, and finding
any block-diagonal structure in the remainder.

We always start by symmetrising the matrix, so that we need test only in, say, the upper tri-
angle. Symmetrising the matrix is unlikely to lose us anything and it might help in locating
block in structurally unsymmetric matrices such as may derive from upwind differencing
schemes. Using the upper triangle rather than the lower is a decision typically based on the
storage scheme: the test for null rows is obviously cheaper in a compressed storage scheme.

For i = 2 : : : n

if the subblock A(1 : i� 1; i : n) is zero,
mark i as a split point

Figure 1: Find starting points of block-diagonal blocks (algorithm outline)

Finding whether a matrix subblock is zero is a computationally expensive routine; the prac-
tical implementation would test consecutive rows and abort once a zero element has been
found.

For i = 2 : : : n

test all row segments A(j; i : n) for j = 1 : : : i� 1 in succession,
if any is nonzero, i is not a split point;

continue with the next (outer) i iteration
if all segments are zero, mark i as a split point

Figure 2: Find starting points of block-diagonal blocks (practical implementation)

2



The algorithm for finding the block structure spit points is then enclosed in a loop that finds
all values p such that the p-th diagonal of A is nonzero and the p + 1-st is zero. For such
values, we apply algorithm 1 to the 2p+ 1 bandpart of A.

This algorithm can be parallelised at little cost. All processors decide locally which p values
denote ‘outer’ nonzero diagonal. It then takes one all-to-all communication step to pick
the global candidates. The algorithm of figure 2 can then be run locally for all applicable
p values, and the results again later globally accumulated.

3 General matrix partitioner

The algorithm above relied on the fact that the nonzero off-diagonals are parallel to the
main diagonal to discard the connections between blocks. For matrices from irreguar do-
mains, or regular domains that have already been subjected to a Cuthill-McKee ordering,
we can make no such assumption. What is more, the connecting blocks can be arbitrarily
close to the main diagonal, since the diagonal blocks can be of any size, especially with the
Cuthill-McKee ordering, there are guaranteed to be both large and small blocks.

Thus we need a different test for whether a point i can be the start of a block. The test we
used is the following:

If i is the start of a block, then j > i is the start of a block, if A ij 6= 0,
Aij�1 = 0, Ai�1j�1 6= 0 and Ai�1j = 0.

This simple test formalises the common sense criterium that subsequent blocks correspond
to subsequent slices out of the domain, and that their respective beginnings are connected,
as are their endings, and no beginning of one block can be connected to the end of another.
Occasionally this test will be too stringent, so we keep track separately of those points for
which only the conditions on Aij and Aij�1 are satisfied; we can use those points to restart
the process if needed. If there are several choices of possible next split points, we choose
one that gives a block not too different in size from what we have encountered so far; we
use deviation from the average size as a measure.

As a refinement of this test we observe that testing on single matrix elements may often not
give the right results. Instead we test on whether a small subblock is zero. The subblocks
have the indicated matrix elements as a corner point. We have to choose the size of the
subblock; right now we use (j�i)=10 as a crude heuristic, but more sophisticated estimates
are possible.

We start off the algorithm by declaring that 1 is the start of a block, and we only consider
points i for which Ai�1;i 6= 0. For each such i point, we then find all possible j points.
After this, we string together start and end points until we span the matrix.

In order to execute this algorithm in parallel, we note that the test on A i�1i can be done
with only minimal communication with one neighbouring processor. The tests on such
elements as Aij may require communication with more than one processor, but since the
tests are not interdependent, their communications can be bundled. Finally, only the stage
of stringing together the start and end points is sequential, but will take barely more time
than is needed for a broadcast along a linear arrangement of the processors.

The above process will occasionally give blocks of disparate sizes; in a post-processing
step we merge small blocks with adjoining large blocks.

3



4 Practical application and further research

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 17632

Figure 3: Matrix of a two-material problem

As a practical application we used the Bi-Conjugate Gradient algorithm with an alternating
Schwarz preconditioner on a two-material problem with large differences in material coeffi-
cients; figure 3. The is almost regular in structure, but the last diagonal block is smaller than
the rest, so an even distribution will not cut the block boundaries. Additionally, because
of the way boundary conditions between the materials are discretised, the off-diagonal
nonzero structure has gaps and a few outlying diagonals.

We do not plot the results of the regular splitting algorithm of section 2, since it gives
precisely the structure as desired and expected. We give two plots of the output of the
general split algorithm (section 3): once with all splits found indicated (figure 4), and once
after consolidation of the small blocks (figure 5). We see that the general algorithm finds all
the large blocks, and is only minimally confused by the gaps in the off-diagonal sparsity.

We tested two matrices of the same sparsity domain, one small of size 1641, and one of
medium size 5655; we simulated 8 processors throughout. In the first case (table 1) we see
that the general split algorithm gives the same number of iterations as the optimal split,
generated by the regular algorithm. The penalty for using an even splitting is a factor of
almost 4 in iterations. By comparison, we give the number of iterations for the Jacobi
method. In the case of the larger matrix we see that through fortuitous circumstances the
general splitting performs marginally better than the ‘optimal’ one. Again there is a large
penalty for choosing incorrect blocks as the even splitting does.

There are some opportunities for refinement of the algorithms developed here. In our al-
gorithms we used the ‘fact’ that the upper right corner of a block in the upper triangle of
a matrix is zero. This fact does not hold if the differential equation has periodic boundary
conditions. We aim to develop heuristics that can detect this case. However, it may be the
case that such heuristics need to be guided by user-supplied information, such as that there
are periodic boundary conditions at all.

4



0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 159596

Figure 4: Same matrix as figure 3, with all split points found indicated

optimal splitting 73
general splitting 73
even splitting 261
jacobi preconditioner 494

Table 1: Iteration counts for differently split Schwarz preconditioners on a small matrix
problem

References

[1] D. C. Arnold, S. Blackford, J. Dongarra, V. Eijkhout, and T. Xu. Seamless access to
adaptive solver algorithms. In M. Bubak, J. Moscinski, and M. Noga, editors, SGI
Users’ Conference, pages 23–30. Academic Computer Center CYFRONET, October
2000.

[2] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational
Science Problems. The International Journal of Supercomputer Applications and High
Performance Computing, 1997.

[3] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
ACM proceedings of the 24th National Conference, 1969.

[4] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matices. Clarendon
Press, Oxford, 1986.

5



0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 50238

Figure 5: Same matrix as figure 4, after consolidation of small blocks

optimal splitting 145
general splitting 138
even splitting 465
jacobi preconditioner 1044

Table 2: Iteration counts for differently split Schwarz preconditioners on a medium size
matrix problem

6


