
1

A Java Extension Framework for Web-based Simulation*

Tao Tang and Chu R. Wie+

State University of New York at Buffalo, Dept. of Electrical Engineering, Bonner Hall,

Buffalo, NY 14260

Keywords framework, Java, web-based, simulation, legacy, native

Abstract

We have designed a framework for the web-based simulation

applications with a Java front-end. In this paper, we discuss the

architectural design and related considerations of this

framework. We present details of a multi-layer architecture, key

components and their functions, and the abstraction of the common

features in the web-based simulation into this framework. This

framework is implemented in Java technology with object-oriented

design. This framework can incorporate an arbitrary legacy

simulation application in various domains by using configurable

and extensible interfaces. The usage of our framework can be in

the area of developing Java web-based simulation services and

simulation problems.

* Supported by National Science Foundation
+ Author to whom correspondence should be addressed, wie@eng.buffalo.edu

2

1 Introduction

Simulation is an effective tool in learning, research and development. Access to various

simulation resources is often limited due to the cost involved in deploying and maintaining the

software packages. With the growth of the World Wide Web (WWW) and commercial

information distribution systems over the last few years, there has been effort by various groups

to extend the simulation resources to the World Wide Web [Kapadia 2000; Chen 2000; Romberg

1999; Haupt 1999]. The resource is then accessible via the web through a uniform user interface,

the web browser. A web-based simulation has advantages over native application-based

simulations due to its portability and location transparency -- being able to deliver computing

and simulation services to end-users anytime anywhere. In addition, it does not need to expose a

large amount of resources and control to the end-user while serving sufficient utilities. A well-

designed framework is very useful for developing such systems with a considerably less effort,

yet yielding a high quality design and performance for the developed product. This framework

can possess such attributes as platform independence, extensibility, and ease of use and

maintenance. This paper presents the design and implementation of a framework for web-based

simulation applications. This framework was developed with an objective to extend the legacy

simulation applications to the web using Sun Microsystems' Java technology [Sun Microsystems

Inc. 1995]. This framework was applied to implement a web-based microelectronic device

simulation package which is named WebSimMicro [Tang 2001; WebSimMicro website 2001].

WebSimMicro project is an online simulation service accessible via a web browser, implemented

using the framework which is presented in this paper.

3

This framework takes into consideration the management issues of remote and local

resources for the simulation packages, the request queuing, security models, database and disk

storage issues. It supports a multi-layered architecture and an object-oriented composition

design, which is important for extension and maintenance. Common tasks of a middle-layer of

web-based applications are integrated into this framework. The common tasks include user

authentication, session control, request pool, input/output interfaces, engine container

management, abstract engine, activity audit and administration suite. Therefore, our framework

accommodates many common tasks of the web-based simulations and provides a complete

middle-layer support. This framework is readily reusable for extending any native simulation

packages to the WWW with little additional design or implementation effort.

Java technology provides the ability to distribute computing services over the Internet in a

platform independent manner. The following components are often included in the web-

extension: the Java Applets embedded in a web browser as the front-end user interface; the

servlets connecting the applet to the server-side Java; JNI (Java Native Interface) connecting the

server-side Java to the native simulator; and the Java Database Connectivity (JDBC) for

accessing a relational database. Java brings an advantage of a pure object oriented design,

extensibility and platform independence. In addition, it helps separate the presentation logic from

the computation logic. The user interface is completely replaced by the Java applet presentation.

By using Java applets as the graphical user interface (GUI), the users do not need to know the

details of usage syntax of the specific simulator. The underlying computational work is done

remotely by the application engine residing in a server computer.

4

This framework and the WebSimMicro project, which is presented in our separate paper

[Tang, 2001], provide two kinds of facilities: the tools for building a web-based simulation

application, to be used by software developers, and the services for performing online

microelectronic device simulations, to be used by the end users of the simulator. In this paper we

focus on the framework architecture and design.

2 Related Work

There are various reported web-simulation projects. These works can be roughly

categorized according to their relative emphasis on the framework research (software

engineering) or on the implementation effort (development of the web-simulation software

product). The frameworks proposed include Purdue University Network-Computing Hubs

(PUNCH) [Kapadia 2000; PUNCH website 1998]; Web-based ELectronic Design (WELD) at

the University of California Berkeley [WELD website 2001]; ARCADE [Chen 2000; ARCADE

technical report 2000]; UNiform Interface to COmputing REsources (UNICORE Plus) [Almond

1999; Romberg 1999; Romberg 2000; UNICORE Plus website 2001]; TheGateway at Syracuse

University [Haupt 1999; WebFlow website 2001]; and the Framework for Educational Java

Applets [Yuan 2001; Yuan and Wie 2001]. Projects aimed at providing web-based simulation

tools include Advanced Web-based Simulation (AWS) [AWS website 2001]; Java based Digital

Simulation Automation System (JSAS) [Hur 1999]; The WEB-accessible Petri Net Tool

(WebSPN); HAmburg DEsign System on digital circuits (HADES) [HADES website 2000]; and

the Java Applet Service on Semiconductor Simulation [Wie 1999; Wie 1998].

5

Some of these projects (PUNCH, JSAS) provide a basic input extension to the web-based

simulation without graphical design assistance, and expose the original input syntax of the

wrapped software applications to the end user. Therefore, these products depend on the users'

knowledge in the specific simulation package. Some of them present the framework based on a

procedural approach, i.e., lack the platform independence [Kapadia 2000]. These characteristics

limit their portability. However, the strength of this approach is that the full capability of the

simulator is available to the end user. Others (UNICORE, ARCADE, THEGATEWAY, WELD)

use the Java technology, and provide a uniform design, but with a specific emphasis on certain

implementations. UNICORE's security architecture requires local user ID and the application is

accepted only in a batch mode [Romberg 1999]. ARCADE [Chen 2000] and THEGATEWAY

[Haupt 1999] targeted on the collaborative features of distributed applications. WELD [WELD

website 2001] targets on the data management tools for distributed environment. ARCADE

proposed multi-layer architecture and emphasized the collaboration in developing distributed

sub-modules for a given application [Chen 2000]. Based on our past experience in the web-based

micro-electronic device simulation, we wanted to move the end-user's attention away from the

syntax of the specific simulation packages and toward the physical design aspect of the device.

In addition, a pure object-oriented and multi-layer framework was preferred for extensibility.

Platform independence was favored for portability. The framework must also be easy to use. We

designed a framework that meets these requirements.

3 Framework Architecture

The architecture of our proposed framework was designed to meet the static structural

requirements of the web-based simulation, the efficiency of application integration, and the

6

overall performance of the web-based simulation system. By adopting a multi-layer architecture

and dividing the distinct functions into different components distributed across various layers,

we aimed to loosen the coupling between components, to increase reusability, and to improve

development efficiency. Components could be flexibly grouped to meet the performance

requirements and to form a thin client and thin server model.

The proposed framework was based on the decomposition of a web-based simulation

system into components and tiers. A tier consists of a collection of components. The overall

framework architecture is divided into presentation tier, logic tier and application tier.

3.1 Logic view

The overall logic of the system is shown as in Figure 1. Components sit on three major

tiers according to their key role within the framework. The coupling stream among components

generally follows the flow of a simulation task. Login servlet provides the global access

management to the entire system. It also controls the creation of user profiles and the user

administration.

Presentation tier: The Input/Output Java applets work as the front end of the system. In

the eyes of the end users it is the whole system to deal with while from the view of a simulation

application, the input applet plus the logic layer delegate every action of the user to the

application engine.

Logic tier: Gateway servlet is the component that the input applet talks to. This servlet is

responsible for gathering and pre-processing the user inputs and prepare the simulation

7

environment. The simulation controller controls the flow of multiple job requests and sets a

proper context for each job. It manages the simulation requests on different topics using a

scheduling scheme.

Application tier: Engine Container identifies the environment and requirement for each

simulation job and will actually call the simulator (or the engine which wraps the native

simulator). An engine container regulates the flow of execution in a given simulation job.

There are different job management roles for the engine container and for the simulation

controller. The engine container handles multiple user requests on the same simulation topic

from different users. The simulation controller controls the jobs for all topics and users, which

then assigns each job to an appropriate container based on the job topic, as illustrated in Figure

2. In this way, the engine container actually maintains a sub-queue of the jobs that the simulation

controller manages.

Let us review a simple example of a web-based microelectronic simulation on bipolar

junction transistor (BJT) I-V characteristics. The user logs into her simulation session and views

the BJT device structure through a design interface (input applet). Then the user inputs her own

design parameters for the device to specify a BJT transistor structure and submit the whole

design to the server. Later the user will check the simulation status. Should the simulation job be

completed, she would retrieve the information regarding the simulation jobs done previously --

here the Current-Voltage (I-V) data as well as the I-V graph are available for preview. After

viewing the output, she may revise the parameters to do the simulation again. If she is satisfied

8

with the results, she wraps up her work by packing all the useful data and downloads the pack to

her local workstation. Then this simulation task is completed.

The sequence for this scenario can be classified as login, simulation and status checking. The

logic for login and status checking is common for most web-based applications. The simulation

sequence diagram is illustrated in Figure 3.

3.2 Component view

Based on the example scenario from the previous section, we further specified the components

with operations like:

• User login/logout

• The device design interface

• Simulation job control

• Simulator wrapping

• Simulation status and history

• Simulation data presentation, and

• Utilities for packing the simulation output and downloading

These components spread over the three tiers which we discussed earlier.

3.2.1 Components in the Presentation Tier

Presentation deals with the most basic input/output functionality of the application. Some

other components that span over more than one tier, such as login authentication, are also

classified into this group. This tier can achieve a high reusability by encapsulating the

9

presentation requirements and presentation modes that are common to various application

engines. The actual implementation of this tier is strongly related to the web components such as

Java Server Pages (JSP) or Servlet and JavaBean [Sun Microsystems Inc. website 2000].

• UI Programming Models

The user interface (UI) update can be made the responsibility of either the client or the web

server, which corresponds to two programming models: client-driven UI or server-driven UI. For

the client-driven UI model, the client gets data from the server, buffers the data, and changes the

user interface according to the logic built into the client side [Wie 1999; Wie 1998]. On the other

hand, in the server-driven UI model, whenever the user interface needs an update, the client

sends the HTTP request to the web server, then the server generates a new page according to the

logic built into the server side, and sends the page back to the client [IBM Inc. 2000]. The client-

driven UI model is suitable for small components due to the fact that the logic components have

to be either downloaded or pre-installed for each client. When dealing with large UI components,

however, the server-driven UI has the advantage of reducing the network traffic.

Our framework supports both models. Specifically, JSP/Servlets implement the server-

driven UI model and are mostly used in the simulation management tasks; and the Java applets

implement the client-driven UI model and are mostly used in the simulation input/output UI.

This makes sense because most management tasks, such as status query or the simulation history

display, do not need much intervention from the users. This is suitable for the server to generate

and show the UI all at once. On the other hand, the input/output tasks such as the device

parameter design and a graphical view of the output may involve a substantial amount of user

10

interactions and updating of the UI. If implemented in a server-driven UI, there will be a

considerable traffic between the client and the server, which will decrease the efficiency.

Therefore, by using a client-driven UI, i.e., moving the UI logic to the client side, the overall

performance of the web application has been increased in our framework.

• Input and Output Interfaces

The input and output user interfaces are implemented as configurable Java applets. They

can also serve as the base classes for more problem-specific input and output requirements. It

interacts with the end user for design issues of the simulation problems, and delegates the user

for the consequential communication with other components in the framework. It allows the user

to modify, submit, reset the design, and retrieve the application output in a uniform manner.

Class InputApplet constructs an input interface for the application and provides the default

values for the input. Class OutputApplet is responsible for displaying the graphics to the user. It

uses most codes in building the graphical user interface and responds to the choose diagram

action and refresh request from the user. Both of them also keep the identity of the simulation

jobs.

3.2.2 Components in The Simulation Logic Tier

The simulation logic part hides details of the web technology. A brief consideration of the

interface between the UI and the web simulation logic is useful here.

Logic part of a web simulation is the unit that is ultimately responsible for coordinating the

client requests and the simulator responses. The logic part must address a wide range of potential

11

requirements which include ensuring transactional integrity of the application components,

maintaining and quickly accessing the application data, supporting the coordination of workflow

processes, and integrating new application components into the existing structure. To address

these requirements and help facilitate the development of logic on the web simulation server, the

framework provides the following core functions:

• Database interaction,

• Collaboration between jobs ,

• Application integration for possible extension, and

• Reusable utilities

Java platform provides a wide range of programming and data access services that

facilitates the development of the logic part for our web-based simulation framework.

Gateway Servlet (GS): The gateway servlet acts as a glue between the presentation tier UI

and the logic tier. It links the middleware (i.e. logic tier) and the front-end UI controls, collects

the user inputs, and operates independently for different simulation tasks. It connects to the front-

end at the client side and accepts the client requests, collects the design parameters, and

delegates the end-user for the interaction with the logic layer components.

Simulation Controller (SC): Simulation jobs may be submitted from multiple users at the

same time and many of them may request the same simulator (i.e., the same application engine).

Generally, for an application running in a web environment, its resources may need to be shared

among multiple jobs at the same time. The SC acts between the gateway servlet and the engine

12

container, and therefore acts as an execution agent. Here, the engine container contains all the

necessary simulation engines for a complete simulation job.

Engine Container (EC): The last major component in the logic layer of the framework is

the engine container. The engine container is responsible for holding separate engines and

combining them as a whole working unit for a specific simulation topic, as well as dealing with

the queuing and the calling of different jobs on a shared simulation engine. In addition, it uses an

instance object of DBManager to interact with the database on the job and queue status. To

achieve a higher degree of reusability, the container is designed to hold any engine.

Utility Components: Several utility components are developed in our framework. These

components represent a collection of standard methods designed for various purposes. They can

be designed in a highly reusable way. Many of the utility components used in our framework are

implemented with the techniques provided in the Java technology.

3.2.3 Components in the Application Tier

For a real simulation to take place on the web, the core driving part is the underlying

simulator which is usually a well-developed program for certain application area. One of the

goals for integrating these programs into the a web environment is to make the smallest possible

changes to the original package.

Java Native Interface (JNI) [Java Native Interface Specification 1999] allows a Java code,

that runs inside a Java Virtual Machine (JVM), to inter-operate with functions that are written in

13

native programming languages, i.e., the platform-dependent functions. JNI adds flexibility in

integrating legacy native applications into Java, but it also adds complexity for the development.

By using JNI, the Java code may lose its platform independence, valued most by Java. Caution

must be taken when developing JNI applications because it may not be pointer safe any more.

For our framework, this is not a problem because for any actual use of the framework, the

application engine must reside on certain specific platform. The application tier of the framework

is where the local package joins in. One important task of this framework is to provide a generic

interface to these native applications. The implementation details mostly depend on the

framework user of an individual simulation topic.

Abstract Engine: It is desirable that most or all of the common features of various simulation

packages be extracted into a higher level abstraction for a generic simulation package. The

abstract engine was created for this purpose. It is an abstract component which cooperates with

other components in the framework. Most common features of various application engines are

abstracted and used here.

Abstraction included most essential attributes that an engine has to have. For example, an

engine does certain computing or logic operations. This feature was abstracted as do simulation.

An engine also manipulates the user inputs and outputs and does error handling. This feature is

abstracted as do IO. Another benefit of abstract engine is that some additional useful functions

can be added during the implementation. A concrete engine (i.e., a subclass of the

AbstractEngine class) will inherit these functions automatically. For example, the ability to

14

control the total number of instances of a single engine at any given moment can be added as a

class variable.

Batch Engine: Our framework has a BatchEngine class as the base component for all engines

that runs in batch mode. BatchEngine is an abstraction of these applications within the general

black-box model, i.e., take one input and give one output, but hide all internal processes. It is the

base wrapper for a non-interrupted application and presents the basic controlling interfaces. The

input command scripts are prepared by the application developer. When calling a native

application, we only need to specify this script file as the input, which then significantly

simplifies the integration of new batch applications into the framework.

Interactive Engine: Our framework has designed a base InteractiveEngine class for the purpose

of wrapping interactive applications. It is required that such applications must provide a native

Application Programming Interface (API), for example the C libraries, for manipulating the

command interpreter such as to initialize and close the interpreter, send commands and retrieve

responses. The InteractiveEngine class provides methods to initiate the engine and talk to the

interpreter from time to time by emulating the real user's behavior, for example, giving a

command to the application engine. The implementation is based on the API mapping and

slightly more complex than that of batch engines. It should contain at least the following

operations: initialize or close a command interpreter, send commands, and retrieve responses

[Tang 2001].

15

4 Discussion

Our framework was designed for extending legacy applications to the Web. The

application of the framework in developing the web-based simulation can be illustrated as in

Figure 4. The development efforts are directed to the two end of the architecture: the

presentation tier development involving the input applet HTML configuration or InputApplet

class extension for advanced UI requirements; the application tier application integration by

extending the appropriate engine classes (BatchEngine or InteractiveEngine). The common

middleware tasks for the web-based application are encapsulated in the framework. The

consideration of middleware function and the ease-of-use are achieved in the framework,

compared with the non-object-oriented designs. Our framework and other frameworks presented

[Kapadia, 2000; Chen 2000; Hur 1998] can be mutual complementary in the architecture, the

user interface models, the security model, and the legacy application integration methods. By

adopting three-layer architecture and object-oriented design, we attempted to realize the function

modulization and isolation, to increase the design flexibility and scalability, and most

importantly, to improve the productivity and efficiency in the web-based application

development. Implemented in Java, our framework supports three design steps with clear and

consistent tasks: input design, engine configuration, and output design. The presentation layer

provides components with data-driven implementations, which separates the simulation-generic

and problem-specific requirements therefore lifts the reusability and extensibility. The logic layer

contains the simulation controller and the engine container which are responsible for queuing,

transaction control, monitoring and task collaboration. They provide implementations for the

middle-layer tasks and provide a faster implementation. By abstracting the simulation engines

16

into two models (batch engine and interactive engine), the application layer makes it possible to

achieve the engine independence. In other words, different engines can be treated and integrated

in a uniform way. This is an essential benefit when leveraging and extending the legacy

simulation programs to the web environment. In addition, the framework provides a collection of

utilities with an easy-to-use interface.

The limitation of our framework may result from the abstraction itself. Due to the

abstraction, some problem-specific designs were pushed out of the framework. In order to fit into

the framework, they sacrifice their problem-specific requirements to a more generic form. For

example, the user interface component in our framework, which contains the design image of the

simulation problem and parameter panel component, is an agreement between general

requirement and the more specific requirement in accommodating legacy applications. This eases

the learning curve for an entry level user but may limit the full control over the application for an

experienced user. Therefore, for the experienced users who want the maximum use of the

application, the traditional simulation method such as telnet and rlogin is still a preferred way.

The future improvement to our framework is in incorporating distributed simulation

models into the framework. The back-end simulation jobs can be fulfilled in parallel, by several

servers in collaboration. This will reduce the turn-around time for the simulation jobs.

Appropriate communication protocols that fit our framework are Java RMI-IIOP and CORBA.

CGI-to-CORBA prototype has been proposed in ARCADE [Chen 2000]. The Java RMI-IIOP

may fit better into our Java-based framework. The integration of a distributed simulation model

will make it possible for the simulation to run across organizations and platforms jointly.

17

Another improvement can be made by using Extensible Markup Language (XML) to

describe the data in the process of generating input files from the templates provided by the

framework. XML may become an the industry-wide standard, adopted by an increasing number

of institutions [Weiss 1999]. The framework users may use multiple frameworks in order to

integrate a variety of class libraries and components in their development. Making use of XML

for the data exchange among various frameworks eliminates the problems that may arise from

incompatible data definition standards. This shall increase the interoperability between different

frameworks.

5 Summary

We have designed a framework for Java-based web extension of native applications. Our

framework has been designed to facilitate the web extension of native packages. It was intended

to save the development time and to improve the quality of design and implementation of web-

extension of native programs. By incorporating the Java technology, WWW, and object-oriented

design, our framework consists of a set of reusable components and the reusable architectural

design. We have implemented a web-based simulation package of microelectronic devices by

applying this framework, which is presented in a separate paper [Tang 2001]. It allows a remote

access to such powerful microelectronic engines such as FLOODS [Liang 1994] and MINIMOS

[Selberherr, 1980]. Finally, a website that provides the web-based simulation in our

microelectronic device is available for public access [WebSimMicro website 2001].

18

6 Acknowledgements

We would like to acknowledge the financial support by National Science Foundations

through the grant numbers DUE9752316, DUE9950794 and a partial support from the

University of Virginia through a subcontract number 526007.

19

REFERENCES

ALMOND, J., SNELLING, D. 1999. Uniform access to supercomputing as an element of electronic
commerce. Future Generation Computer Systems (Special Issue on Metacomputing, Volume
15, 5-6, Oct.), 539-548.

ARCADE technical report. 2000. http://www.icase.edu/Dienst/UI/2.0/Describe/ncstrl.icase/TR-
2000-39.

AWS website. 2001. http://aws.ctc.com.
CHEN, Z., MALY K., MEHROTRA, P. AND ZUBAIR, M. 2000. Arcade: A web-Java based

framework for distributed computing. NASA/CR-2000-210545 ICASE Report No. 2000-39
(Oct.), 14.

HADES website. 2001. http://tech-www.informatik.uni-hamburg.de/applets/
hades/html/hades.html.

HAUPT, T., AKARSU, E., FOX, G., KALINICHENKO, A., KIM, K. S., SHEETHALNATH, P., YOUN, C.
H. 1999. The gateway system: uniform web based access to remote resources. ACM 1999
Java Grande Conference. San Francisco, CA, Jun.

HUR, Y., KACPRZAK, D., SZYGENDA, S. A. 1998. Java based digital simulation automation
system. International Conference on Web-Based Modeling & Simulation.

IBM application framework for e-business. 2001. Web application client programming model.
http://www-4.ibm.com/software/ebusiness/clientwp.html.

Java Native Interface Specification. 1999.
http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.html.

KAPADIA, N. H., FORTES, J. A. B., AND LUNDSTROM, M. S. 2000. The Purdue University
network-computing hubs: running unmodified simulation tools via the WWW. ACM
Transactions on Modeling and Computer Simulation 10, 1 (Jan.), 39-57.

KAPADIA, N. H., FIGUEIREDO, R. J., FORTES, J. A. B. 2000. PUNCH: web portal for running
tools. IEEE Micro. 20, 3. 38-47.

LIANG, M. AND LAW, M. 1994. An object-oriented approach to device simulation - FLOODS.
IEEE Transactions on CAD, 13, 10. 1235-1240.

PUNCH website. 1998. http://www.ece.purdue.edu/punch.
ROMBERG, M. 1999. The UNICORE architecture: seamless access to distributed resources.

Proceedings of the Eighth IEEE International Symposium on High Performance Distributed
Computing (HPDC-8, Aug.). IEEE Computer Society, Los Alamitos, CA, 287-293.

ROMBERG, M. 2000. UNICORE: Beyond web-based job-submission. Proceedings of the 42nd
Cray User Group Conference (May 22-26). Noordwijk.

SELBERHERR, S., SCHUTZ, A., AND POTZL, H. W. 1980. MINIMOS - a two-dimensional MOS
transistor analyzer. IEEE Transactions on Electron Devices, 27, 8 (Aug.). 1540-1550.

SUN MICROSYSTEMS INC. 1995. http://java.sun.com.
Sun Microsystems Inc. product page. 2000, http://java.sun.com/products/jsp,

http://java.sun.com/products/servlet, http://java.sun.com/products/javabeans.
TANG T., WIE, C. R. 2001. WebSimMicro: web-based simulation of microelectronic devices.

Submitted to ACM Transactions on Modeling and Computer Simulation.
TANG, T. 2001. WebSimMicro: framework and implementation of

web-based simulation on microelectronic devices. Masters Thesis, State University of New
York at Buffalo (May).

UNICORE Plus website. 2001. http://www.fz-juelich.de/zam/RD/coop/unicoreplus.

20

WebSimMicro website. 2001. http://jas7.eng.buffalo.edu.
WEISS, A. 1999. XML gets down to business. Networker 3, 3 (Sep.). 36.
WELD website. 2001. http://www-cad.eecs.berkeley.edu/Respep/Research/weld.
WebFlow website. 2001. http://www.npac.syr.edu/users/haupt/WebFlow.
WIE, C. R. 1999. Educational java applet service. http://jas.eng.buffalo.edu.
WIE, C. R. 1998. Educational java applets in solid state materials (invited paper). IEEE Trans.

on Education 41, 4 (Nov.). 354.
YUAN, Z. 2001. Design, implementation and application of framework in Java educational

applets. State University of New York at Buffalo Masters Thesis.
YUAN, Z, WIE, C. R. 2001. Framework design and implementation for Java educational applet.
Submitted to IEEE Transations on Education.

21

Figure Captions

Figure 1. Logic diagram

Figure 2. Job management in simulation controller and engine container

Figure 3. Simulation sequence diagram

Figure 4. Use the framework.

22

Login
Servlet

Input
Applet

Gateway
Servlet

Simulation
Controller

Batch Engine Interactive Engine

Database
Manager

User's
Extension

…

Presentation Tier Logic Tier Application Tier

Abstact
Engine

Engine
Container

1 1…*1 *

Figure 1.

23

ID: 1001 Topic 1 from user A

ID: 1002 Topic 2 from user A

ID: 1003 Topic 1 from user B

ID: 1004 Topic 1 from user C

ID: 1005 Topic 2 from user C

Requests:

…

ID
:

10
01

ID
:

10
03

ID
:

10
04

ID
:

10
02

ID
:

10
05

…

…

…

Assign

Si
m

ul
at

io
n

co
nt

ro
lle

r Engine container
for topic 1

Engine container
for topic 2

Figure 2

24

submit()

User

login()

:InputApplet :GatewayServlet

parseParameters()

submit()

createJobDir()

:SimuController :EngContainer :DBManager

saveParameters()

prepareFiles()

updateLog()

setJobID()

setWorkingDir()

run()
addEngine()

doSimulation()
callEngines()

updateStatus()

Figure 3

25

InputApplet

String simulationID;
Image deviceImage;
Vector engineNames;
Vector paraNames;
Vector paraValues;

parseParameters()
setDefaultValues()

HTML
Congiguration

AbstractEngine

File input;
File output;
File error;

doSimulation()

Extended
input applet

Logic
tier

Batch
Engine

Interactive
Engine

Extended
Engine

Extended
Engine

Framework

Figure 4

26

	Introduction
	Related Work
	Framework Architecture
	Logic view
	Component view
	Components in the Presentation Tier
	Components in The Simulation Logic Tier
	Components in the Application Tier

	Discussion
	Summary
	Acknowledgements

