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Summary

A major challenge facing software libraries for scienti�c computing is the ability to

provide adequate 
exibility to meet sophisticated, diverse, and evolving application re-

quirements. Object-oriented design techniques are valuable tools for capturing character-

istics of complex applications in a software architecture. In this paper, we describe certain

prominent object-oriented features of the SAMRAI software library that have proven to

be useful in application development. SAMRAI is used in a variety of applications and

has demonstrated a substantial amount of code and design re-use in those applications.

This 
exibility and extensibility is illustrated with three di�erent application codes. We

emphasize two important features of our design. First, we describe the composition of

complex numerical algorithms from smaller components which are usable in di�erent ap-

plications. Second, we discuss the extension of existing framework components to satisfy

new application needs.

Keywords: object-oriented programming, design patterns, adaptive mesh

re�nement
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which are usable in di�erent applications. Second, we discuss the extension of existing

framework components to satisfy new application needs.

1 Introduction

The design and implementation of a quality, high-performance numerical software frame-

work must support the requirements of target problems. Providing algorithms and data

structures that meet requirements that evolve during the lifetime of the software increases

their usefulness and thus enhances the value of the software. In many software communi-

ties, libraries are commonly built to provide loosely-coupled components that are highly


exible, extensible and possess high re-use potential. However, scienti�c computing codes

infrequently apply such practices. Reasons for this range from the emphasis on eÆcient

performance to concerns about overburdening application scientists with abstract software

engineering concepts. Large, monolithic, tightly-coupled codes that address a single ap-

plication are common in scienti�c computing. Such codes tend to be in
exible. Reuse in

general support libraries is usually restricted to basic structures such as vectors, arrays,

and generic solvers. In our experience, directing object-oriented software decomposition

toward higher-level algorithm and application development has proven to be very useful

and productive.

In this paper, we present object-oriented design concepts applied in SAMRAI,

a framework for parallel structured adaptive mesh re�nement (SAMR) applications.

Complicated numerical algorithms, such as those required for SAMR, can be decomposed

into smaller parts that work together. Individual parts include time integration routines,

mesh geometry descriptions, temporal and spatial data interpolation methods, and linear
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and nonlinear solvers. Years of experience in both SAMR library and application

development are re
ected in SAMRAI design. SAMRAI currently supports several diverse

application development e�orts. SAMRAI has been, and continues to be, developed in

tandem with algorithm and application research e�orts. It has shown to be 
exible by

evolving with the needs of computational scientists as they gain improved understanding

of their applications and associated numerical methods.

Object-oriented techniques, such as design patterns [1], are ubiquitous in SAMRAI [2].

This approach has enabled SAMRAI to address new applications and exploit a signi�cant

amount of design and code re-use across applications. Our goal is to assemble applications

from algorithmic \building blocks", or distinct functional components in the framework.

We attempt to avoid imposing unnecessary restrictions on application development.

However, we have observed that our software organization in
uences design decisions

made by SAMRAI users during the development of application codes. For example,

design patterns used in the framework to decompose elements of the software have

been adopted by application developers using the library. This \design reuse", whereby

application developers emulate organizational features and software abstractions found

in the framework, facilitates new algorithm development by increasing the 
exibility of

application codes.

We begin the remainder of this paper with a brief introduction to the primary features

of SAMR computations and an overview of the SAMRAI software library and related

e�orts. Then, we introduce the Strategy design pattern which is a central algorithm

design concept in SAMRAI. This is followed by a description the implementation of three
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di�erent applications using SAMRAI: a standard Euler gas dynamics application, a hybrid

continuum-particle gas dynamics code, and a code for simulating laser-plasma instabilities.

Next, we discuss the Abstract Factory design pattern which allows parts of the framework,

such as communication routines, to be generic with respect to concrete data types, such

as particles in the hybrid code. Finally, we summarize our presentation and compare our

approach with other object-oriented scienti�c computing e�orts.

2 SAMRAI Overview

A full description of structured adaptive mesh re�nement (SAMR) algorithms and

applications is well beyond the scope of this paper as is a complete discussion of the

SAMRAI library. However, to �x ideas central to this paper, we provide brief descriptions

of basic features of SAMR, the SAMRAI library, and related SAMR software e�orts.

2.1 Structured Adaptive Mesh Re�nement (SAMR)

In many important science and engineering problems, key features of the solution reside

in localized regions of the computational domain. Adaptive mesh re�nement helps to

place spatial and temporal mesh resolution near these features where it is needed most.

By focusing memory usage and computational e�ort, a highly resolved solution may be

achieved more eÆciently than if the entire mesh is re�ned uniformly.

SAMR is a particular approach to adaptive mesh re�nement in which the computa-

tional grid is implemented as a collection of structured mesh components. The compu-

tational mesh consists of a hierarchy of levels of spatial and temporal mesh resolution.

Each level in the hierarchy corresponds to a single uniform degree of mesh spacing. Also,
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the levels are nested; that is, the coarsest level covers the entire computational domain

and each successively �ner level covers a portion of the interior of the next coarser level.

Computational cells on each level are clustered to form a set of logically-rectangular patch

regions. Simulation data is stored on these patches in contiguous arrays that map directly

to the mesh cells without indirection.

SAMR solution methods share certain characteristics with uniform, non-adaptive

structured grid methods. In particular, the computation is organized as a collection of

numerical routines that operate on data de�ned over logically-rectangular regions and

communication operations that pass information between those regions, for example, to

�ll \ghost cells". However, SAMR methods can be substantially more complicated than

those for uniform meshes since the solution is constructed on a composite mesh. That is,

the solution algorithm must treat internal mesh boundaries between coarse and �ne levels

properly to maintain a consistent solution state.

2.2 Hydrodynamics With Structured Adaptive Mesh Re�nement

Many SAMR computations are based on the work of Berger, Oliger, and Colella [3, 4],

who developed SAMR techniques for integrating hyperbolic conservation laws on a locally-

re�ned mesh in a conservative manner. The algorithm is central to the applications

discussed in this paper and motivates much of the software organization described herein.

Systems of hyperbolic conservation laws encountered in shock hydrodynamics problems

can be written in integral form as
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Here m is a vector of conserved quantities, F is a 
ux matrix, and q is a source

term. Commonly-used shock capturing schemes de�ne �nite di�erence expressions for this

equation wherem is approximated as cell-centered quantity and F terms are located on the

faces between cells. Time integration of m involves a conservative di�erence representing

the divergence of these numerical 
ux terms.

Time stepping on an SAMR mesh hierarchy is a recursive algorithm where integration

of individual levels is interleaved [3, 5]. The procedure involves two main steps: solution

advance on a level and solution synchronization between levels. Since each level employs

di�erent mesh resolution, the de�nition of numerical 
ux terms at interfaces between mesh

levels requires extra care so that the method remains conservative. Typically, the process

of matching 
uxes assumes that �ner levels provide more accurate numerical results than

coarser levels. That is, averages of �ne 
ux data are used in the �nite di�erence equations

on coarser levels at �ne mesh boundaries. Also, coarse values of the solutionm are replaced

by suitable averages of �nem data where levels overlap. Although the solution is computed

di�erently in overlapping cells because of di�erent mesh spacing on each level, the data

synchronization procedure makes the scheme consistent with respect to conservation.

Figure 1 shows a typical timestep sequence for a problem with three mesh levels and

a ratio of 4 between the mesh spacing on consecutive levels. Numbers indicate the order
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in which timesteps are performed on di�erent levels. Recall that the time increment used

in an explicit shock capturing scheme is subject to the Courant-Friedrichs-Lewy (CFL)

constraint. Thus, larger timesteps are used on coarser levels than on �ner levels. Since

the levels are also nested, each coarser level is advanced before any �ner levels. Space and

time interpolated boundary values are provided for each level from coarser levels before

the solution is advanced. Synchronization points, when 
uxes and the solution are made

consistent among levels, are indicated by horizontal lines in the �gure. Re-meshing is

performed at certain timestep intervals so that solution advance, synchronization, and

re-meshing operations are coordinated. In the diagram, remeshing points are marked by

open circles.

2.3 The SAMRAI Framework

SAMRAI is an object-oriented C++ software library developed in the Center for Applied

Scienti�c Computing at Lawrence Livermore National Laboratory. SAMRAI provides a

\toolbox" of classes that simplify the construction and management of SAMR applications.

The aims of the SAMRAI e�ort are to extend SAMR technology to new problem domains,

and to explore modern software design and implementation ideas in a numerical library

that supports complex, multi-physics problems. Two central design goals of SAMRAI are:

to allow specialization of patch-based data structures while reusing the exiting parallel

communication infrastructure that automatically treats complex, dynamically changing

data con�gurations in SAMR; and to provide a 
exible algorithmic framework to explore

solution methods for new applications.



8

The SAMRAI library is partitioned into a number of software packages. Each package

holds a collection of logically-related classes that form some functional role in an SAMR

application. To gain a sense of the functionality that SAMRAI provides, we list the

packages here:

� Toolbox provides basic utility classes applicable throughout the framework, such as

smart containers, input and restart �le management, and performance monitoring.

� Hierarchy de�nes SAMR hierarchy structural abstractions, such as hierarchy, level,

and patch, and provides basic index space and box calculus operations on which most

SAMR routines depend.

� Transfer manages parallel data communication on an SAMR mesh.

� PatchData provides various patch data types for simulation data on an SAMR

patch hierarchy, such as data arrays that are cell-centered, node-centered, face-

centered, etc.

� Math Operations provides basic arithmetic and other operations, such as dot

products and norms, needed for vectors de�ned on an SAMR mesh.

� Mesh contains classes used to construct and dynamically re-mesh levels in an SAMR

patch hierarchy.

� Geometry supports speci�c coordinate systems on an SAMR mesh, such as

Cartesian grids, etc.
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� Algorithms contains time integration and other solution algorithms applicable to

certain classes of partial di�erential equations solved an SAMR patch hierarchy.

Solution algorithms, developed for a particle application, and which can be factored

into elements that may apply to other problems are placed in this package.

� Solvers supports the development of linear and nonlinear solvers for SAMR

problems by providing vector structures and interfaces to other libraries such as

PETSc [6], PVODE [7], and hypre [8].

Computational scientists select items from these packages when constructing appli-

cations. Since many parts of the library can used without modi�cation, SAMRAI users

leverage a large code base that is shared across di�erent applications. However, new

algorithmic functionality is usually needed for new problems. Many classes in the \Algo-

rithms" package, for example, are designed to be specialized or augmented for this reason.

Also, new patch data types are occasionally needed to represent data, such as particles, on

the mesh in a manner unique to a given problem. These issues are addressed in Sections 3

and 4, respectively.

2.4 Related SAMR Software E�orts

The CCSE Applications Suite and Chombo library at Lawrence Berkeley National

Laboratory are o�-shoots of the BoxLib package [9]. BoxLib and these newer packages are

C++ class libraries for developing SAMR and block-structured �nite di�erence algorithms

for systems of partial di�erential equations. These libraries have been the cornerstone of

an impressive history of SAMR algorithm and CFD application development [10, 11, 12,
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13, 14]. The Berkeley software libraries provide complete application codes that serve as

useful guides for application development. The software representation of basic concepts

in most SAMR libraries, including SAMRAI, is directly attributable to the e�orts of the

Berkeley researchers.

Basic ideas for designing 
exible algorithm classes in SAMRAI have their origins in

the SAMR software library developed by John Trangenstein at Duke University [5, 15, 16].

The software in that library is similar to BoxLib and its extensions. However, it provides

greater freedom for specifying patch data types and provided 
exibility for application

developers to specialize algorithms through inheritance. These features greatly in
uenced

SAMRAI goals and design.

The GrACE library and its predecessor DAGH are primarily data management

infrastructures for parallel SAMR applications [17]. These libraries provide programming

abstractions for managing parallel data distribution and data decomposition on adaptive

mesh hierarchies. A unique feature of GrACE is its use of space-�lling curves to manage

parallel data distribution and maintain locality. These libraries have been used in a variety

of applications, ranging from binary black hole computations to multi-resolution spatial

databases.

AMR++ is a collection of C++ classes for implementing SAMR within Overture [18],

which is a comprehensive framework for solving partial di�erential equations in complex

geometrical regions described by overlapping regular meshes. AMR++ relies on the

A++ and P++ array class libraries [19, 20]. These libraries support automatic data

decomposition and �ne-grain data parallel operations on distributed arrays.
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The KeLP library is not an SAMR framework per se, but rather a support library

for parallel block-structured applications [21]. KeLP provides powerful mechanisms for

managing data decomposition and interprocessor communication for irregular, dynamic,

block-structured parallel applications [22].

All SAMR libraries provide a similar set of basic abstractions for SAMR computations

which include the notion of abstract index spaces, patches, levels, and hierarchies. Much of

this support approximates very closely, if it does not directly mimic, the methods and data

structures at the heart of BoxLib. Management of data on SAMR hierarchies, especially in

parallel, di�ers among packages. Parallel data distribution in SAMRAI is similar to that

employed in the Berkeley codes, KeLP, and the Trangenstein library. That is, each patch

is assigned to a single processor and numerical routines on each patch are performed by

serial Fortran, C, or C++ kernels. In contrast, P++ automatically decomposes array data

and requires that numerical operations be expressed using the P++ array syntax. The

parallel data communication abstractions in SAMRAI are generalizations and extensions

of ideas found in KeLP. SAMRAI di�ers from other software packages in several ways.

The software is designed to address problems to which SAMR has not yet been applied.

Our approach to object-orientation for composing larger, more complex algorithmic units

from smaller, re-usable elements and the ability of SAMRAI to support new patch data

types in parallel without modifying or recompiling the framework is unique.
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3 Algorithm Composition

Recall that a fundamental goal of SAMRAI is to provide a 
exible algorithmic framework

that allows code reuse across di�erent SAMR applications and supports extensions to new

solution algorithms. To accomplish this, the behavior of individual algorithmic pieces is

concisely de�ned and clean interfaces are developed to couple the di�erent pieces. The

result is a system in which individual parts may be replaced or enhanced without adversely

in
uencing the behavior of other components. Although, we continue to grapple with

these issues as new applications are attacked, the discussion in the following sections

demonstrates signi�cant progress toward our goal.

We begin by introducing the Strategy design pattern that we use in SAMRAI to

decompose complex algorithms into 
exible reusable parts. Next, we discuss three

application codes that utilize the algorithm algorithm discussed in Section 2.2 and the

Strategy pattern in various ways. The �rst code solves the Euler equations of gas dynamics.

This is a standard SAMR application and thus is useful for introducing our approach to

software organization. Then, we describe an extension of this code to a hybrid model

that couples the continuum Euler model to a discrete particle representation at �ne mesh

scales. Finally, we discuss the ALPS laser-plasma simulation code which further illustrates

the decomposition of a complex application code into components supplied by SAMRAI

and those that are problem-speci�c. Each of the two latter e�orts employs very di�erent

numerical algorithms within a single application code. The codes illustrate extensions

of our basic software approach and show re-application of software components in new

SAMR problems.
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3.1 The Strategy Pattern

The Strategy pattern is the primary object-oriented design tool employed in SAMRAI to

encapsulate algorithmic elements and de�ne reusable interfaces between them. Generically,

the purpose of the Strategy pattern is to de�ne and encapsulate a family of algorithms by

making their constituent parts interchangeable through common interfaces [1].

As an example of how we apply this pattern, recall the timestep sequence in Figure 1.

This basic sequence applies to a potentially broad range of problems, beyond hyperbolic

conservation laws. SAMRAI provides a class, called TimeRefinementIntegrator, that

encapsulates the SAMR timestep sequence. This class orchestrates data initialization,

time integration, data synchronization, and dynamic meshing operations. Other objects

provide speci�c instances of those operations. Figure 2 illustrates the coupling between

TimeRefinementIntegrator and classes that provide problem-speci�c level integration

routines via the Strategy pattern.

Here, the HyperbolicLevelIntegrator class provides a particular set of level ini-

tialization, integration, and synchronization operations appropriate for hyperbolic con-

servation laws. Another set of these routines applicable to other types of prob-

lems may be provided similarly. Each such level integration class is derived from

the TimeRefinementLevelIntegrator abstract base class. The base class de�nes the

interface between the timestep sequence generator and problem-speci�c algorithmic

routines for processing the levels. The TimeRefinementIntegrator object itself re-

mains insulated from problem-speci�c procedures because it only recognizes the abstract

TimeRefinementLevelIntegrator interface.
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3.2 Euler Gas Dynamics

In this section, we make our approach to algorithm composition more concrete by describ-

ing the implementation of a standard hydrodynamics application based on SAMRAI. The

code models the Euler equations of gas dynamics [23].

3.2.1 The Euler Application Code. The SAMR hydrodynamics algorithm in

Section 2.1 was developed to solve problems such as the Euler equations. These equations

form a system of hyperbolic conservation laws (Equation 1), where m is the vector of

conserved quantities, density, momentum, and total energy, and F is the corresponding


ux matrix.

To construct the Euler code, we compose objects found in the SAMRAI library and

introduce numerical operations particular to the Euler model. Each object performs a

certain set of algorithmic or numerical tasks, such as generating the timestep sequence that

interleaves operations on the levels, integrating and synchronizing the solution, dynamic

re-meshing, and numerical operations for the discrete equations de�ned on individual

patches. The organization of the major objects comprising this composition are illustrated

in Figure 3.

The coupling between TimeRefinementIntegrator and

HyperbolicLevelIntegrator was introduced with the Strategy pattern in Sec-

tion 3.1. The TimeRefinementIntegrator object also maintains a pointer to the

GriddingAlgorithm object which constructs and dynamically re-meshes levels in a

SAMR patch hierarchy. Re-meshing operations include tagging cells to re�ne (generally,

a user-de�ned operation), clustering these cells into box regions, and load balancing
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new patches. The Strategy pattern is applied repeatedly to allow 
exibility among these

operations. The StandardTagAndInitialize object supports several options for tagging

cells to re�ne. Application-speci�c routines provide the operations that are necessarily

problem-dependent, such as tagging near sharp gradients or large errors in the solution.

While SAMRAI provides default load balancing operations, for example, the decoupled

organization that we have chosen allows application developers to easily incorporate load

balancing routines specialized for a particular problem. To provide a new load balance

strategy, one derives a class from the LoadBalanceStrategy base class that de�nes an

interface for the needed operations to the mesh generation class. Similarly, alternative

approaches for cell tagging and clustering can be introduced.

A con�guration such as that shown in Figure 3 is designed to be assembled at run-

time. In most cases, the organization is set in the main program when objects are

created. That is, each object is initialized with objects it references when it is constructed.

For example, TimeRefinementIntegrator depends on TimeRefinementLevelStrategy.

Thus, HyperbolicLevelIntegrator is created and initialized, then this object is passed

into the TimeRefinementIntegrator constructor. The entire con�guration in Figure 3 is

generated as follows:

Euler* euler = new Euler( ... );

HyperbolicLevelIntegrator* hyperbolic_integrator =

new HyperbolicLevelIntegrator(euler, ... );

StandardTagAndInitialize* error_detector =

new StandardTagAndInitialize(hyperbolic_integrator, ... );
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BergerRigoutsos* box_generator = new BergerRigoutsos( ... );

UniformLoadBalance* load_balancer = new UniformLoadBalance( ... );

GriddingAlgorithm* gridding_algorithm =

new GriddingAlgorithm(error_detector,

box_generator,

load_balancer,

... );

TimeRefinementIntegrator time_integrator(hyperbolic_integrator,

gridding_algorithm,

... );

Figure 3 only shows the static organization of objects employed in the Euler code. It is

also important to understand the interaction among these objects. For example, during the

timestep sequence, the TimeRefinementIntegrator calls the function advanceLevel()

in the TimeRefinementLevelIntegrator object it references to advance the data on a

single level. Operations speci�c to hyperbolic conservation laws, such as �lling boundary

data for the level, advancing the data, computing a new time step, and updating 
ux

integrals, are performed by HyperbolicLevelIntegrator. These operations apply to an

entire level. Numerical routines for individual patches, such as advancePatch(), are

invoked by HyperbolicLevelIntegrator by accessing the HyperbolicPatchStrategy

object it references. Level operations are separated from numerical routines for an

individual patch via the abstract base class HyperbolicPatchStrategy. In other words,

HyperbolicLevelIntegrator only sees the interface declared by the patch strategy, not
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the fact that the Euler object performs operations on the patches. Again, this is an

application of the Strategy pattern.

Euler is the only object in the application that is speci�c to the Euler equations.

Euler contributes two types of problem-speci�c information, the variables that de�ne the

problem state and the numerical routines for treating the Euler equations on each patch

in the SAMR hierarchy. Euler registers variables, representing density, velocity, and

pressure, for example, with HyperbolicLevelIntegrator during an initialization phase

of the program. The integrator manages data storage for these quantities on the patch

hierarchy according to the needs of the integration algorithm without knowing the speci�c

number or type of variables involved. Data management operations include �lling ghost

cells for patches and moving data between levels during synchronization. Before each

routine in Euler is invoked, the integrator sets up data on the patch appropriately.

3.3 Hybrid Continuum-Particle Methods

In Section 3.2.1, we describe the composition of a standard SAMR application from

elements in the SAMRAI framework. Here, we discuss an extension of that code

that combines the continuum Euler model with a discrete particle model. This hybrid

application is a collaborative e�ort between the SAMRAI team and Alejandro Garcia

of San Jose State University [24, 25]. This project extends previous continuum-DSMC

(Direct Simulation Monte Carlo) hybrid work [26] by allowing multiple DSMC regions,

and supporting full adaptive mesh capabilities for particles in parallel.

The aim of this e�ort is to develop hybrid continuum-particle methods combined



18

with SAMR to model complex 
uid interface dynamics, such as the Richtmyer-Meshkov

instability which occurs as the interface between two 
uids of di�erent density is

accelerated by a shock [27]. Problems of this sort involve di�erent physical processes

at di�erent length scales. Hydrodynamic transport models the physics away from the

interface while molecular di�usion is the primary mechanism at the interface. A mixing

region grows from the interface and moves as the instability evolves. Particle methods

are too expensive for large problem domains of interest while continuum-based turbulent

mixing models are limited by the �nest mesh resolution. Therefore, a hybrid approach

combining continuum and discrete methods with adaptive meshing is desirable since it

o�ers the potential to resolve 
ow features properly at di�erent scales in an eÆcient

manner.

3.3.1 Hybrid Model. The hybrid model couples the Euler approximation to a DSMC

model. The two numerical approaches are vastly di�erent. The continuum Euler

model represents compressible 
uid 
ow as a deterministic system of partial di�erential

equations containing a few variables, such as density, velocity, and temperature. DSMC

approximates the Boltzmann equation using a representative, stochastic sampling of a

collection of particles. In DSMC, the system state is a collection of particles, each of

which is de�ned by a position vector, a velocity vector, and a 
uid type [28]. The DSMC

integration process involves moving and colliding particles in a manner consistent with the

kinetic theory of gases. The DSMC model is valid in 
ow regimes where the continuum

approximation breaks down, such as where important length scales in the 
uid dynamics

are near the molecular mean free path.
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In the hybrid application, DSMC is used on the �nest mesh level in the SAMR

hierarchy and the Euler model is employed on all other levels. Local mesh re�nement

concentrates the DSMC description near 
uid interfaces and shocks. Major numerical and

algorithm concerns in the hybrid approach involve the location of the continuum-DSMC

interface and the coupling of the two approximations, as shown in Figure 4.

The hybrid solution algorithm uses the same local time stepping process in the SAMR

integration scheme discussed in Section 2.1. The primary additional complexity in the

hybrid application involves coupling the continuum and particle representations [26].

Auxiliary particles are generated in \sheath" regions around each DSMC patch before

particles are advanced. This is analogous to �lling ghost cell data in the continuum case.

A probability distribution, such as Chapman-Enskog [29], determines the velocity of each

particle in the sheath region from Euler solution values and gradients in nearby cells.

During particle integration, 
ux information around each DSMC patch is accumulated to

determine mass, momentum, and energy transfer across the continuum-particle interface.

These 
uxes are used in the Euler method along with proper averaging of the DSMC state

to the continuum levels to make the two computations consistent in a manner similar to

the level synchronization in the standard SAMR hyperbolic algorithm.

3.3.2 Hybrid Application Code. The organization of the hybrid Euler-DSMC

application code is similar to that of the Euler code shown in Figure 3. A signi�cant

di�erence is that the hybrid code employs a new level integrator which coordinates DSMC

and Euler operations. The new integrator is coupled to the TimeRefinementIntegrator

instead of the HyperbolicLevelIntegrator. Figure 5 illustrates the class organization
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in the hybrid code. All classes appearing in the Euler application are reused without

modi�cation in the hybrid code. In the �gure, we omit the mesh generation objects since

their usage is identical to the Euler case.

The coupling between TimeRefinementIntegrator and HybridIntegrator

is similar to the coupling between TimeRefinementIntegrator and

HyperbolicLevelIntegrator in the Euler application. HybridIntegrator is de-

rived from TimeRefinementLevelIntegrator and obeys that interface so that when

TimeRefinementIntegrator invokes the advanceLevel() function, hybrid algorithm

operations are performed. When advancing a level coarser than the particle level,

HybridIntegrator defers to HyperbolicLevelIntegrator which applies the Euler

model. Otherwise, the DSMC routines are used to treat DSMC data on the particle level.

It is interesting to note that bulk of the operations that couple the particles and

the continuum solution in the data synchronization step are actually performed by

HyperbolicLevelIntegrator, which knows nothing about particles. The continuum

solution and the DSMC data are linked on each patch on the particle level via numerical

routines in the DsmcPatchModel class which were developed to translate information

between the two representations. We also remark that, in the hybrid code, the

StandardTagAndInitialize object is coupled to the HybridIntegrator rather than the

HyperbolicLevelIntegrator. Re�nement operations in the HybridIntegrator must

resolve features of the Euler solution as well as place �ne mesh where particles are needed.

The merging of the Euler code and the DSMC particle data structures and numerical

routines, which were developed independently of the hybrid application [30], was accom-
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plished without modi�cations to either code. The HybridIntegrator class was developed

to implement the algorithmic coupling between the two methods. The DsmcPatchModel

class was developed to couple the two descriptions of the solution state. In Section 4,

we will describe how the DSMC particle data uses the SAMRAI parallel communication

framework without changing the particle routines or recompiling SAMRAI library code.

3.4 Adaptive Laser Plasma Simulator

The �nal application that we discuss is the ALPS (Adaptive Laser Plasma Simulator)

project under development in the Center for Applied Scienti�c Computing at Lawrence

Livermore National Laboratory [31, 32]. The goal of this e�ort is to investigate SAMR

methods for modeling laser-plasma instabilities. The ability to predict and control the

interaction between intense laser light and a plasma is critical in several important

engineering applications. Filamentation instabilities, for example, appear as \speckles"

as the light passing through the plasma refracts into regions of low plasma density.

Increased light intensity in these regions causes further reduction in plasma density and,

consequently, greater light refraction. Computational methods for this sort of problem

require several cells to resolve important light wavelengths. Since real beams can be

thousands of wavelengths across, SAMR o�ers the potential to eÆciently resolve \speckles"

that are small relative to the light beam. While still a research e�ort, the ALPS code has

shown the ability to resolve certain instabilities and has demonstrated parallel adaptive

speedup.
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3.4.1 The ALPS Model. In ALPS, the plasma is represented by an Eulerian 
uid

model that describes the conservation of total mass, momentum and energy of ions. The

ions are coupled to the electrons via a nonlinear potential equation. Light propagation

is modeled using a reduced wave equation. The plasma 
uid equations are approximated

using a shock-capturing method similar to that described in Section 2.1. The ion-electron

coupling involves the solution of a Poisson equation. Light propagation is solved either

by employing a Fast Fourier Transform or a �nite di�erence paraxial approximation.

Integration of the full system of equations uses separate advance steps for the plasma


uid variables (density, pressure, velocity, and temperature), the light variables (amplitude

and intensity), and the potential. When local mesh re�nement is applied, consistency of

the solution across the di�erent levels in the hierarchy is maintained via hydrodynamic

synchronization procedures similar to those discussed in Section 2.1 combined with

composite mesh solves for the potential and the light.

3.4.2 The ALPS Application Code. The ALPS model and, thus the ALPS code, is

substantially more complex than the Euler and hybrid applications discussed previously.

The complexity arises from the need to coordinate three models with very di�erent

numerical characteristics and share simulation variables among these models. We note

that SAMRAI provides mechanisms to simplify sharing variable data among di�erent

computational models without the models becoming dependent on each other. We do not

discuss this feature here; instead we focus on high-level class organization.

The organization of the main integration objects used in the ALPS code appears in

Figure 6. The ALPS application code shares fundamental organizational features and soft-
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ware components with the applications described earlier. The timestepping sequence used

to process levels in the SAMR hierarchy is generated by TimeRefinementIntegrator. The

level integration object LaserPlasmaIntegrator is analogous to the Hybrid Integrator

in the hybrid application. It coordinates the integration of the plasma, light, and potential

equations on each level. This integrator also orchestrates the synchronization process for

variables shared by these models.

The LaserPlasmaIntegrator class is derived from the

TimeRefinementLevelIntegrator abstract base class. Thus, it is coupled to

TimeRefinementIntegrator using the Strategy pattern. The plasma is advanced

by the same HyperbolicLevelIntegrator object used in both the Euler and hybrid

codes. However, in ALPS, the HydroPatchModel object replaces Euler since the equa-

tions, and thus the variables and numerical kernels, applied to each patch are di�erent.

This 
exibility is a direct result of our use of the Strategy pattern. That is, the hyperbolic

level integration class manages can data for di�erent numerical models without direct

knowledge of those models or the variables involved.

The LaserPlasmaIntegrator object employs two other integration classes,

LightIntegrator and PotentialIntegrator, to treat the laser light and potential equa-

tion, respectively. These classes were developed especially for the ALPS code since these

procedures are speci�c to ALPS. The light routines and potential routines are decomposed

into operations applicable to an entire hierarchy level and those which apply to individual

patches. This organization mirrors the separation of the HyperbolicLevelIntegrator

and a particular patch strategy. Organization like this is commonly found in SAMRAI so
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that data management operations, such as ghost cell �lling for patches on a level at speci�c

points in an integration algorithm, are insulated from numerical operations for patches

that are more problem-speci�c. This decomposition encourages exploration of di�erent

numerical methods and makes it easier to manage such experimentation.

3.5 Analysis of The Strategy Pattern

The Strategy pattern is extremely useful for decomposing complicated algorithms and

encapsulating their elements. The use of a common interface to characterize a family

of related algorithmic components allows a system to be con�gured for a wide range

of behavior. A result of liberal use of the Strategy pattern is a sizable collection of

smaller classes instead of a few larger classes. While this may seem inconvenient and

to over-complicated matters, we believe that decomposition of this sort provides certain

advantages. First, smaller classes are more concise and easier to maintain in a library

than large monolithic classes. Second, clean encapsulation and loose coupling encourages

specialization of speci�c operations rather than wholesale rewriting of an entire class to

achieve behavior that may be only slightly di�erent than what already exists.

The encapsulation forced by the Strategy pattern provides a valuable alternative

to large, overly-complex classes that often result from the abuse of inheritance. For

instance, the design in Figure 2 could have been implemented by deriving new classes

from TimeRefinementIntegrator directly. The result would be larger, more complicated

classes that di�er in level integration procedures, but have much timestepping code in

common. In addition, the function call overhead that arises when indirection at the high
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algorithmic level in this way is negligible. We refrain from introducing abstractions below

the level of the arrays of simulation data on patches. Once data is retrieved from the

patch container, one can apply numerical operations at will. We note that many SAMRAI

users write numerical operations in FORTRAN or C for simplicity and eÆciency. It is also

straightforward to employ pre-existing numerical kernels.

4 Flexible Data Structures

The hybrid application discussed in Section 3.3 was developed by combining two pre-

existing codes, the Euler code described in Section 3.2.1 and a particle-based DSMC code

[30]. The DSMC data structures and numerical routines are insulated from SAMRAI

abstractions by a \wrapper " class, which follows the Adapter structural design pattern [1].

This class serves two important functions. First, it acts as a translator between SAMRAI

patch data and the DSMC particle structures. Second, it allows the particles to be

manipulated by the parallel communication infrastructure in SAMRAI. The serial particle

data structures were incorporated into a parallel adaptive mesh re�nement environment

without modi�cation to the DSMC routines or SAMRAI classes.

4.1 The Abstract Factory Pattern in SAMRAI

During a computation, the SAMRAI framework manipulates patch data by invoking

operations such as allocation, deallocation, copying, and marshaling and un-marshaling

data for parallel communication. An important design goal of SAMRAI is to support

arbitrary user-de�ned data on an SAMR patch hierarchy. We want to be able to introduce

new types without modifying or recompiling the framework. We also want to manage new
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and irregular data types, such as user-de�ned particles, similarly to standard types such

as cell-centered and node-centered data arrays. Thus, the patch data and communication

infrastructure in SAMRAI cannot know any speci�c data types.

The Abstract Factory creational pattern is used in SAMRAI to manage data which are

unknown at compile-time. This pattern allows the creation of families of related objects

without specifying concrete types directly [1]. The Abstract Factory pattern uses two

related inheritance hierarchies. The �rst hierarchy includes an abstract product class that

declares the interface for all objects created by the pattern. The second hierarchy provides

factory objects that create those products. Figure 7 shows how the DsmcPatchData object

that provides access to the DSMC data and numerical routines �ts into these hierarchies

like any standard data type.

In SAMRAI, a Patch is a container for any data whose storage can be mapped to a

logically-rectangular region of index space. Each concrete patch data type is derived from

the abstract PatchData class which de�nes a uniform set of member functions such as

copy() and packStream() (used for interprocessor communication). Each Patch owns a

pointer to a shared PatchDescriptor object that provides access to factory objects that

create the concrete patch data objects. In particular, the Patch asks the PatchDescriptor

to return the appropriate PatchDataFactory to allocate a concrete PatchData instance.

Thus, the allocatePatchData() function in the factory created a new concrete PatchData

object.

The Abstract Factory pattern separates concrete object creation and declaration by

encapsulating the responsibility for creating product objects. Introducing a new patch
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data type, such as DsmcPatchData, requires two basic steps. First, the DsmcPatchData

class is derived from the abstract PatchData base class and the required virtual functions

are supplied:

class DsmcPatchData : public PatchData {

void copy(const PatchData& source);

void packStream(AbstractStream& stream, ...);

int getDataStreamSize(const BoxOverlap& overlap);

...

};

Second, the DsmcPatchDataFactory is derived from the abstract PatchDataFactory base

class.

class DsmcPatchDataFactory : public PatchDataFactory {

Pointer<PatchData> allocate(const Box& box);

...

};

The DsmcPatchDataFactory allocates DsmcPatchData objects on the SAMR patch

hierarchy. Each DsmcPatchData instance is manipulated by the framework like any other

type via the PatchData interface.

4.2 Analysis of the Abstract Factory Pattern

The Abstract Factory pattern presents two potential disadvantages. First, the pattern

requires that two classes|the product class and the factory class|be implemented for
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each new product class. Second, dynamic safe type casting is needed to obtain concrete

class references. Although low-level data operations like copies are performed via the

abstract PatchData interface, user-de�ned numerical routines must process data using

the concrete class interface.

We view these concerns as minor inconveniences rather than signi�cant drawbacks in

our approach. The concrete factory class is small and is only used to call the constructor of

the product class. The interface declared by an abstract product class, such as PatchData,

concisely expresses the functionality required by any concrete product class to link into

the framework. Also, to cast from abstract product to concrete product, we use the

run-time type checking mechanism (i.e., RTTI) provided by the C++ language [33]. The

Abstract Factory pattern enhances software 
exibility and extensibility since concrete

product classes (e.g., NodeData in Figure 7) are insulated from other parts of the framework

code. Thus, new product classes are easily introduced to the framework after it has been

compiled and archived into a library.

5 Summary and Conclusions

By using object-oriented concepts, such as design patterns, in the SAMRAI software

framework, we have met two of our most important design goals: 
exible and extensible

algorithm support for diverse SAMR applications and general support for arbitrary data

types. Design patterns such as Strategy and Abstract Factory provide SAMRAI with

\plug-and-play" 
exibility to rapidly explore new structured adaptive mesh re�nement

applications. We have found object-orientation to be very useful for programming \in
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the large" in scienti�c computing software, especially for managing complex, intricate

algorithms. Plug-and-play interoperability of high-level algorithmic objects provides

several advantages. First, it frees application programmers from unnecessary, redundant

code implementation and reduces development time. Second, it promotes the exploration

of di�erent algorithmic choices within a single application. Third, it increases software

reuse within the framework, which facilitates testing, maintenance, and extensibility of

the architecture.

Another approach for managing complexity in scienti�c applications is to focus on

hiding the low-level details associated with parallel data distribution and interprocessor

communication. Both POOMA [34] and P++ [19, 20], to cite two examples, support whole

array operations on distributed parallel arrays in C++; users write the same code for serial

or parallel applications. The Overture [18] library is built on top of P++ and provides

operator classes for overlapping grid calculations. The SIERRA [35] framework focuses

on the management of data structures associated with adaptive �nite element calculations

found in engineering simulations. The primary di�erence between these approaches and

the work presented here is that SAMRAI focuses on managing the complexity of the

algorithm space, not the parallel data structures themselves. Although SAMRAI hides

much of the complexity of parallel data management on a SAMR patch hierarchy, users

tend to interact with this support directly, specifying when and where variable data is

communicated and how it is may be distributed.

The implementation described in this paper emphasize software design using in-

heritance mechanisms. Others in the scienti�c computing community are exploring
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generic programming techniques for designing software libraries. Generic programming

approaches exploit C++ template support and are based on ideas �rst expressed in the

Standard Template Library (STL) [36]. Generic programming design typically begins

by identifying key algorithmic \concepts" and then separating the implementation from

details of the data types through \container-free" approaches [37]. Perhaps the best ex-

ample of this approach in the scienti�c computing community is the Matrix Template

Library [38], which implements a high-performance linear algebra library using generic

programming ideas.

Although generic programming implementations using C++ templates may seem very

di�erent from the inheritance-based approaches described in this paper, they are, in fact,

very similar. The generic programming analysis that identi�es key algorithmic concepts is

the same as that applied to identify the methods in the abstract base class of the Strategy

pattern. Return values whose type is speci�ed as a template argument can be implemented

using the Abstract Factory pattern and explicit down-casting.

The primary di�erence between the generic programming and inheritance approaches

lies in the time of binding between abstract concepts and concrete implementations.

In the case of generic programming, this binding is done at compile-time during the

instantiation of C++ templates. For inheritance approaches, the binding is done at run-time.

Because more information is known at compile-time for generic programming approaches,

optimizing compilers typically generate more eÆcient code, especially for small, simple

objects. However, inheritance-based approaches have the advantage of being more 
exible,

since connections between objects are made at run-time and may be changed during the
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course of a simulation. For example, this capability is useful for modifying load balancing

strategies or when swapping in di�erent preconditioning methods for a linear solver.

One problem for generic programming techniques is that the implementation of

templates in C++ does not provide a convenient mechanism for specifying the interface

for a complex object. Unlike inheritance approaches, there is no way|other than user

documentation, of course|to document the abstract methods that must be provided

by the template argument. Missing methods are caught by the compiler during

template instantiation in the �nal compilation phase. Furthermore, complex algorithm

arrangements such as that described in Section 3 would result in extremely complicated

templated types with numerous, nested template arguments. In addition, ownership of

shared objects would also need to be resolved. For these reasons, we believe that generic

programming approaches are better suited to libraries with small objects that may be

expressed simply and in portions of code where performance is critical whereas inheritance

approaches are more useful for large, complex algorithms with many interacting objects.

One recent development in the scienti�c computing community is the use of component

technologies. The Common Component Architecture (CCA) working group [39] is

developing a scienti�c version of industry component approaches such as CORBA [40]. The

design approaches used in SAMRAI are amenable to such component-based approaches,

since the objects used to express SAMRAI algorithms can be directly translated into

components. Using CCA component terminology, a Strategy abstract base class becomes

a \uses port" because it uses the services of another algorithm object and each algorithm

object becomes a \provides port" because it provides a concrete strategy service to another
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algorithm object.

In conclusion, we feel that object-oriented approaches o�er the most bene�t when

applied at the higher levels of a numerical software architecture. Object-oriented

techniques enable the composition of complex algorithms from smaller, more manageable

parts that are suitable to a variety of applications. They promote code and algorithm

reuse and also facilitate testing and management of software framework components. Most

importantly, object-oriented patterns support more productive application construction by

allowing rapid exploration of new algorithms that are built from both existing and new

components.
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Fig. 1. Example timestep sequence for three mesh levels (coarse, �ne, and intermediate) and

re�nement ratio of 4. Horizontal lines indicate synchronization points between levels and circles

indicate remeshing points.
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TimeRefinementLevelIntegrator

initializeNewlevel(...)

advanceLevel(dt)

synchronizeLevels(...)
. . .

TimeRefinementIntegrator

level_integrator->advanceLevel(dt)

HyperbolicLevelIntegrator

initializeNewlevel(...)

advanceLevel(dt)

synchronizeLevels(...)
. . .

AnotherLevelIntegrator

initializeNewlevel(...)

advanceLevel(dt)

synchronizeLevels(...)
. . .

Fig. 2. SAMRAI uses the Strategy pattern to de�ne a family of time integration

algorithms. The TimeRefinementLevelIntegrator abstract base class de�nes an interface between

the TimeRefinementIntegrator object and problem-speci�c level integration objects. This diagram

follows the OMT (Object Modeling Technique) notation [1]. Slanted type indicates abstract classes

and methods, regular type indicates concrete objects and methods. Class inheritance is represented

via a line segment with a triangle.
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. . . tagCellsOnLevel(...)

tagCellsOnPatch(...)
. . .

advancePatch(dt)
tagCellsOnLevel( ... )

advanceLevel( dt )

. . .
tagCellsOnPatch(...)

. . .
regridAllFinerLevels( ... )

. . .

tagCellsForRefinement( ... )

advanceLevel(dt) . . . advancePatch(dt)

TimeRefinementIntegrator

GriddingAlgorithm

BergerRigoutsos

BoxGeneratorStrategy

HyperbolicLevelIntegrator
Euler

UniformLoadBalance

LoadBalanceStrategy

TagAndInitializeStrategy

StandardTagAndInitialize

LevelStrategy
TimeRefinement

HyperbolicPatchStrategy
Strategy

StandardTagAndInit

Fig. 3. The complete Euler application is composed of various algorithmic and numerical

components, each of which is further decomposed into other objects. Repeated use of the Strategy

pattern captures this decomposition. Some key member functions are given in the �gure to provide

a glimpse into the functionality of some of the objects.
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ii{ r , v }

ρ
Continuum state

(    , v , T )
DSMC state

Fig. 4. The Euler and DSMC models represent the state of the 
uid in fundamentally

di�erent ways. Each DSMC particle is described by a position and velocity vector. The continuum

model places density, velocity, and temperature values at the center of each cell. Proper physical

coupling of the two descriptions requires that each method sees the same 
ux information at the

interface.
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continuum level

advance
particle level

advance

advanceLevel( dt )

advanceParticles(dt)

advancePatch(dt)

advancePatch(dt)

advanceLevel(dt)

advanceLevel( dt )

TimeRefinementIntegrator

LevelStrategy
TimeRefinement

HybridIntegrator

Euler

HyperbolicPatchStrategy

HyperbolicLevelIntegrator

TimeRefinement
LevelStrategy

DsmcPatchModel

Fig. 5. Many features of the class organization in the Euler code are reused in the Euler-

DSMC hybrid code. The major di�erence is that the HybridIntegrator, which links the continuum

and DSMC models, is now coupled to the TimeRefinementIntegrator. The meshing objects, which

are identical to those in Figure 3 are omitted.
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. . .

. . .

. . .

propagateLight(...)
. . .

advanceLevel(dt)

solvePotentialEquation(...)
. . .

advancePatch(dt)

. . .

advanceLevel( dt )
. . .

advanceLevel( dt )

. . .
advancePatch(dt)

setPotentialCoefficients( )

. . .
setHelmholtzCoefficients( )

HyperbolicLevelIntegrator

PotentialIntegrator

LaserPlasmaIntegrator

LightIntegrator

LaserPatchModel

LevelStrategy

PotentialPatchModel

HyperbolicPatchStrategy

HydroPatchModel

TimeRefinementIntegrator
TimeRefinement

Fig. 6. The ALPS code borrows time integration classes from SAMRAI and shares class orga-

nization concepts with other applications. The main integration object, LaserPlasmaIntegrator,

coordinates plasma, laser light, and electrostatic potential integration on each mesh level. It is is

driven by the TimeRefinementIntegrator class used in other applications. Hyperbolic algorithm

classes in SAMRAI are also used for the plasma hydrodynamics. For brevity, we omit the meshing

objects.
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allocatePatchData( ... )

copy( PatchData& )

packStream( ... )

copy( PatchData& )

packStream( ... )

copy( PatchData& )

packStream( ... )

allocatePatchData( ... )

allocatePatchData( ... )

DsmcPatchData

Descriptor

PatchDataFactory

DsmcPatchDataFactory

Patch

Patch

NodeData

NodeDataFactory

PatchData

Fig. 7. The Abstract Factory pattern manages the allocation of data for the SAMRAI patch

hierarchy. Dotted lines indicate that subclasses of PatchData are created by associated subclasses

of PatchDataFactory. In the Euler-DSMC application, the DsmcPatchData is introduced as a

user-de�ned data type.


