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Abstract

Rapid advances in technological infrastructure as well as the emphasis on application support systems have sig-
naled the maturity of grid computing. Today’s grid computing environments (GCEs) extend the notion of a
programming environment beyond the compile-schedule-execute paradigm to include functionality such as net-
worked access, information services, data management, and collaborative application composition. In this article,
we present GCEs in the context of supporting multidisciplinary communities of scientists and engineers. We
present a high-level design framework for building GCEs and a space of characteristics that help identify require-
ments for GCEs for multidisciplinary communities. By describing integrated systems for five different multidisci-
plinary communities, we outline the unique responsibility (and opportunity) for GCEs to exploit the larger context
of the scientific or engineering application, defined by the ongoing activities of the pertinent community. Finally,
we describe several core systems support technologies that we have developed to support multidisciplinary GCE
applications.
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1 Introduction

Grid computing environments (GCEs) have matured significantly in the past few years. Advances in technological
infrastructure as well as a better awareness of the needs of application scientists and engineers have been the primary
motivating factors. In particular, the shift in emphasis from low-level application scheduling and execution to high-
level problem-solving [16] signals that grid computing will become increasingly important as a way of doing science.
We use the term GCE to broadly denote any facility by which a scientist or engineer utilizes grid services and
resources to solve computational problems. Our definition thus includes facilities from high-performance scientific
software libraries [55] augmented with grid access primitives to domain-specific problem-solving environments
(PSEs) [24, 71] that provide targeted access to applications software.

GCEs extend the notion of a programming environment beyond the compile-schedule-execute paradigm to in-
clude functionality such as networked access [15], information services, data management, and collaborative ap-
plication composition. This is especially true when designing such systems for supportingmultidisciplinary grid
communities, the focus of this paper. Our emphasis at Virginia Tech has been on exploiting the high-level problem-
solving context of such ‘virtual organizations’ [35] and building on the grid architectures, services, and toolkits
(e.g., [8, 33, 79, 77]) being developed by the grid community. In working with large, concerted groups of scien-
tists and engineers in various applications (aircraft design, watershed assessment, wireless communications system
design, to name a few), we have identified several recurring themes important for supporting and sustaining such
communities. Our goal in this paper is to document these themes, present a high-level design framework for building
GCEs [36], and describe some solutions we are working on to address the concomitant needs.

In the remainder of this section, we present usage scenarios from multidisciplinary communities that will help
us characterize requirements for GCEs. We also describe a high-level framework for building and organizing pro-
gramming environments for such communities. In Section 2, we describe PSEs that we have built for five different
multidisciplinary communities. Section 3 discusses a variety of issues pertaining to software systems support for
GCEs. In particular our semistructured data management facility plays a central role in exploiting the rich problem-
solving context of multidisciplinary grid communities. Two other elements of our GCE framework are described in
Section 3: Sieve (a collaborative component composition workspace) and Symphony (a framework for managing
remote legacy resources). We conclude with a brief discussion of future directions in Section 4.

1.1 Multidisciplinary Grid Communities: Scenarios

We begin by describing some scenarios to illustrate the needs typical of multidisciplinary grid communities. We posit
that there are fundamental differences in the usage patterns for a single researcher (or even a group of collaborators)
working on a relatively homogeneous problem as compared to the usage patterns found in the communities we have
in mind. For example, how does a grid community for solving matrix eigenvalue problems differ from, say, one for
aircraft design or wireless communications? We identify three scenarios that are suggestive of the distinctions we
would like to make.

� Scenario 1:A specialist in ray tracing, a channel modeler, and a computer scientist are addressing the problem
of determining the placement of wireless base stations in a square mile area of a large city such that the
coverage is optimal [51]. In terms of execution, this problem involves a computation expressed as a digraph
of components, written in multiple languages (C, Matlab, and FORTRAN), and enclosed in an optimization
loop (see Fig. 1, left). Notice that information is exchanged between executions in three different languages
and is streaming between the optimizer and the simulation. In addition, a variety of intermediate results
are produced, not all of which are direct performance data. Such results are typically cached to improve
performance, visualized at different stages of the execution, or simply saved for later inspection. Furthermore,
the components (codes) are developed at different times by different researchers and many are still under
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Figure 1: (left) Compositional modeling for designing a wireless communications system. (right) A slice of an
aircraft configuration design space through three design points.

active development. Their I/O specifications hence cannot be enumerated in advance to achieve matching of
components. Further, the possibilities of how components could be cascaded and combined can itself evolve
over time. How can a programming environment be designed that allows the binding of problem specifications
to arbitrary codes and allows their arbitrary composition?

� Scenario 2:A team of aircraft design engineers and numerical analysts are attempting to minimize the take-off
gross weight (TOGW) for an aircraft configuration design involving 29 design variables with 68 constraints
[42] (see Fig. 1, right). High-fidelity codes dealing with aerodynamics, mechanics, and geometry determine
how changes in design variables affect the TOGW. This application domain is characterized not by an abun-
dance of data, but rather by a scarcity of data (owing to the cost and time involved in conducting simulations).
Consequently, the solution methodology involves a combination of high accuracy computations, surrogate
modeling (to provide response surface approximations for unsampled design regions [56]) and a robust data
management system to help focus data collection on the most promising regions. As a result, evaluating a
design point might involve executing a high-fidelity computation, using low-fidelity approximations to obtain
an estimate of the TOGW and/or querying a database to lookup previously conducted simulations. In addition,
the resources for computing and data storage could be geographically distributed. How can a single environ-
ment provide unified access to such diverse facilities and what programming abstractions are available that
allow its efficient and effective use?

� Scenario 3: A group of computer scientists, nuclear physicists, and performance engineers are modeling
Sweep3D [57, 59], a complex ASCI benchmark for discrete ordinates neutron transport. They concur that
efficient modeling of this application (over the90% accuracy level) requires analytical modeling, simulation,
and actual system execution paradigms simultaneously [2]! They use a metasystem infrastructure to combine
these various models together in a unified manner. However, they are undecided over when toswitchcodes
during the computation — do they use a low-level simulator for80% of the available time, and then switch
to analytic models or can they be confident of extrapolating using analytical models even earlier? What
if excessive multi-threading on a machine leads to too many fluctuations in their estimates? What system
architectures are available that enable compositional modeling when information about component choices is
obtained during the computation (rather than before)?
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1.2 Multidisciplinary Grid Communities: Themes

The key dominant theme in these scenarios, and one that is well accepted as an integral aspect of grid computing, is
the ability to docompositional modeling[14, 54]. In the context of problem-solving, Forbus [30] defines this term
as ‘combining representations for different parts of a [computation] to create a representation of the [computation]
as a whole.’ In this paper, we employ this term to convey merely an approach to problem-solving and its use is
not meant to imply an implementation technology, such as distributed object components (although that is one of
the common ways of providing the functionality). For instance, a scientist explicitly moving input and output files
across multiple program executables can be viewed as performing compositional modeling (albeit in a very primitive
manner). Thus, a component could be any piece of software, executable, model fragment, or even a set of equations
that helps the scientist to formalize the process of modeling a computation.

A second aspect (again, one whose assertion will hardly be controversial) iscollaboration. By definition, a GCE
for a grid community must support groups of scientists and engineers, not just single investigators. These users rely
on each others’ codes and data, contribute results to the total effort, communicate in a variety of ways, and organize
themselves around subproblems in ways that are hard to predict. They may need to collaborate in real-time on a
given simulation, but they are often at physically separate locations. Collaborative workspaces are fundamental to
the way multidisciplinary research is conducted.

While the above two aspects are underscored in many grid projects, GCEs for multidisciplinary communities
have a unique responsibility (and opportunity) to exploit the largercontext of the scientific or engineering applica-
tion, defined by the ongoing activities of the pertinent community. Typical GCEs only deal with one simulation at a
time. The larger context we allude to here may include previous scientific results which can be used to improve the
efficiency of current simulations or avoid computation altogether if a desired result is already available. The context
may denote the fact that a simulation is being run as part of a higher-level problem-solving strategy, e.g., involving
optimization or recommendation. Context also implies previous computational experience or performance, e.g., grid
resources may be assigned more intelligently if the performance of previous similar simulations is known. A final
example of context is the fact that a given simulation is often part of anensembleof simulations; recognizing this
aspect can help in creating more sophisticated simulation management tools.

As we will show below, the synergy resulting from consideration of all of the above three aspects (compositional
modeling, collaboration, context) poses a unique set of research issues pertinent for multidisciplinary communi-
ties. An important goal of our approach is to maximize the synergy between grid computing on the one hand and
multidisciplinary scientific problem-solving on the other. Thus, we are trying to answer two questions: (i) ‘How
can a multidisciplinary community setting be exploited to better use a grid?’; and (ii) ‘How can the grid setting be
exploited to better serve a scientific problem-solving community?’

1.3 GCEs for Multidisciplinary Grid Communities: Characteristics

Abstracting from the scenarios described above, and reflecting on the three themes just discussed, where do we
locate multidisciplinary grid communities in the ‘space’ of computational grid users? To answer that question,
we find that the following three dimensions are useful in characterizing GCEs for multidisciplinary communities.
These dimensions should not be viewed as a one-to-one translation of the above themes into features; rather, they
are the most pertinent forms of distinctions that will help us identify requirements for GCEs for multidisciplinary
communities.

� Emphasis on component coding effort versus component composition effort

Traditional programming environments emphasize either the coding of components (influenced by an im-
plicit composition style) or the aspect of connecting them together (to prototype complex computations). For
instance, when coding effort is paramount and composition is implemented in a distributed objects system
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(e.g., [22, 39]), techniques such as inheritance and templates can be used to create new components. Other
implementations involving parallel programming [12, 19, 31] or multi-agent coordination [25, 26] provide
comparable facilities (typically APIs) for creating new components. Component composition effort, on the
other hand, emphasizes the modeling of a computation as a process of, say, graphically laying out a network
of components (e.g., [52]). By providing a sufficiently rich vocabulary and database of primitive components,
emphasis is shifted to composition rather than coding.

Design decisions made about component implementation and composition style indirectly influence the op-
tions available for composition and coding, respectively. This dimension distinguishes programming environ-
ments based on how they ‘carve up’ compositional modeling; which of these efforts do they emphasize more?
By placing what forms of restrictions and assumptions on the other? In a multidisciplinary setting (e.g.,Sce-
nario 1), programming environments are required to emphasize both efforts in almost equal importance. The
needs of the underlying application (in this example, wireless communications) render typical assumptions on
both coding and composition style untenable.

� Cognitive discordance among components

An indirect consequence of typical compositional modeling solutions is that they commit the scientist to an im-
plementation (and representation) vocabulary. For example, components in LSA [39] (and most object-based
implementations) are required to be high-performance C++ objects, instantiated from class definitions. This
is not a serious constraint for typical grid communities since there is usually substantial agreement over the
methodology of computation. The only sources of discordance here involve format conversions and adherence
to standards (e.g., matrices in CSR format versus matrices in CSC format).

In multidisciplinary grid communities (seeScenarios 1 and 2), there are huge differences in vocabulary (e.g.,
biologists, civil engineers, and economists using a watershed assessment PSE have almost no common ter-
minology) and fundamental misunderstandings and disagreements about the way computations should be
organized and modeled (e.g., aerodynamicists, control engineers, and structural engineers model an aircraft
in qualitatively different ways). Furthermore composition in such a setting typically involves multiple legacy
codes in native languages, and requires the ability to adjust to changing data formats, data sources (e.g., user-
supplied, accessed through grid information services, streamed from another module etc.). Cognitive discor-
dance is a serious issue here, one that is impossible to address by committing to a standard vocabulary for
implementing components. Such messiness should be viewed not as a limiting bottleneck, but a fundamental
aspect of how multidisciplinary research is conducted.

� Sophistication of simulation management

Traditional GCEs make a simple-minded distinction between the representation of a component and its imple-
mentation, suitable for execution on the grid. Representation is usually intended to imply naming conventions
and association of features (e.g, “is it gcc-2.0.8 compliant?”) to help in execution. Once again, this has not
proved a serious constraint since grid services have traditionally focused more on executing computations
(single runs) and less on high-level problem solving. The sophistication of simulation management is directly
related to the representational adequacy of components in the GCE.

For situations such as described inScenarios 2 and 3, the scientist would like to say “Conduct the same
simulation as done on Friday, but update the response surface modeling to use the new numbers collected by
Mark.” Or perhaps, “collect data from parameterized sweeps of all performance models of the Sweep3D code
where the MPI simulation fragment occupies no more than30% of the total time.” Simulation management can
be viewed as a facility for both high-level specification of runs as well as a way to seamlesslymixcomputations
and retrievals from a database of previously conducted simulations (seeScenario 2). This implies that data
management facilities should be provided not as a separate layer of service, but as a fundamental mode by
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Figure 2: Layers of functionality needed to support multidisciplinary grid communities.

which the simulation environment in a GCE can be managed. The recent NSF-ITR-funded GriPhyN project
[7] and the Sequoia data management system [74], both multidisciplinary endeavors, are motivated by similar
goals. Simulation management also serves as a way of documenting ‘history’ of computational runs and
experiments. For example, in conducting parameterized sweeps [17], knowing that certain particular choices
have been executed elsewhere on the grid allows flexibility in load balancing and farming out computations to
distributed resources.

1.4 GCEs for Multidisciplinary Grid Communities: A High-Level Architecture

Finally, by way of introduction, we present a high-level architecture or design framework for organizing and building
GCEs for multidisciplinary grid communities (see Fig. 2). We believe that programming capabilities improve by
recognizing modeling assumptions and explicitly factoring them out in a system design architecture. Fig. 2 does
not describe an architecture in the full sense of the word, e.g., with precisely defined interfaces between layers.
However, it does separate out the various functions or modes that must be represented in a powerful and effective
multidisciplinary community GCE. The functional framework of the Grid summarized in Fig. 2 is complementary
to ones that are based on protocol layering (see [35]) and commodity computing (see [37]).

Model: A model is a directed graph of specific executable pieces defining the control-flow and data-flow in a
computation, e.g., the digraph in Fig. 1 (left). We distinguish between a model and its representation in a
GCE; the representation might involve just the model’s name or it might involve opening up the boxes (nodes
in the digraph) and representing them in a more sophisticated fashion. Although models consist of ready-to-
run pieces of code, these pieces may be parameterized.

Model Instance: A model instance is a model with all parameters specified. Note that some of these parameters
may not be specified until runtime. Thus, while there might not exist a static conversion from models to model
instances, the distinction between model instances and models is still useful. For example, using two different
input data sets with the same model corresponds to two different model instances and a parameter sweep tool
can be used to generate such model instances.
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Simulation: A simulation is a model instance assigned to and run on a particular computational resource on the
grid. It is useful to distinguish between a model instance and a simulation because, for example, a single
model instance can be run (and re-run) many times using different computational resources or different random
number sequences; each of these would be a new simulation by our conventions.

Given these definitions, the framework summarized in Fig. 2 can be used to organize the various functions which
should be supported in a GCE for a typical multidisciplinary grid community. Themodel definitionlayer is where
users who need to create or modify models find tools to support this activity. Users who simply use existing models
require only trivial support from this layer. In theparameter definitionlayer we locate those activities that associate
model instances with models. Examples include tools that generate parameter sweeps [17] or other types of model
instance ensembles, as well as the use of problem-oriented scripting languages to generate multiple model instances.
(Note that we are using ‘parameter’ in a very broad sense here, making no specific assumptions about exactly how
these parameters are defined or what they include.) Another activity that is naturally found at the parameter definition
level is a ‘database query’ mode, in which results from previous simulations are accessed, perhaps instead of doing
new computations. The next layer,simulation definition, is where a model instance (or set of model instances) is
assigned to grid resources. In the simplest case, a user simply chooses some subset of available grid resources
to which the model instance should be mapped. More interesting, however, are the possibilities for simulation-
management tools which take a set of model instances and assign them to the grid, perhaps with sophisticated
load balancing strategies or leveraging performance summaries from previous simulations. The lowest two levels
appearing in Fig. 2,grid servicesandcomputational grid, correspond to the software and hardware resources (e.g.,
Globus, networks, machines) that make computational grids possible. As mentioned earlier, our emphasis has been
on high-level, application-specific issues. We omit further discussion of the architecture, protocols, and services
being developed elsewhere for these levels (e.g., see [35]).

Note that not all services or activities fit neatly into the categories shown. For example, in computational steer-
ing [52], model parameters may be modified and computational resources re-assigned at runtime; so the parameter
and simulation definition services are interleaved with execution in this setting. Other important aspects of an ef-
fective GCE are not explicitly represented in Fig. 2. For example, support for collaboration is implicit throughout.
However, this high-level view of required layers of functionality helps organize and orthogonalize our efforts.

In keeping with the typical end-to-end design philosophy of the Grid [34], we have attempted to provide support
for these new services as layers of abstraction over traditional low-level grid scheduling and resource management
facilities. In addition, our resulting high-level architecture ‘teases out’ typically blurred layers into distinct levels
at which various services can be provided. Three of our specific contributions to this architecture include (i) a
lightweight data management system that supports compositional modeling (at the model definition level), helps
view experiment evaluation as querying (at the parameter definition level), and provides bindings and semistructured
representations (for all levels) (ii) a collaborative component composition workspace (Sieve) for model definition,
and (iii) a framework for distributed resource control (Symphony) that provides core support for parameter and
simulation definition and management. We describe these efforts in more detail in Section 3.

2 Motivating Applications

This section briefly describes five PSEs that are variously situated along the grid community characteristic axes
(see Section 1.3). These examples highlight the diversity of multidisciplinary communities that a unifying GCE
architecture must support.
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Figure 3: (left) Input interface to the CMA model in the WBCSim PSE [43]. (right) Wireframe model of a wood-
based composite showing failed layers (gray) and active layers (black), and the orientation of fibers in each layer. In
this figure, the second layer has failed.

2.1 WBCSim

WBCSim is a prototype PSE that is intended to increase the productivity of wood scientists conducting research on
wood-based composite materials, by making legacy file-based FORTRAN programs, which solve scientific problems
in the wood-based composites domain, widely accessible and easy to use. WBCSim currently provides Internet
access to command-line driven simulations developed by the Wood-Based Composites (WBC) Program at Virginia
Tech. WBCSim leverages the accessibility of the Web to make the simulations with legacy code available to scientists
and engineers away from their laboratories. WBCSim integrates simulation codes with a graphical front end, an
optimization tool, and a visualization tool. The system converts output from the simulations to the Virtual Reality
Modeling Language (VRML) for visualizing simulation results. WBCSim has two design objectives: (1) to increase
the productivity of the WBC research group by improving their software environment, and (2) to serve as a prototype
for the design, construction, and evaluation of larger scale PSEs. The simulation codes used as test cases are written
in FORTRAN 77 and have limited user interaction. All the data communication is done with specially formatted
files, which makes the codes difficult to use. WBCSim hides all this behind a server and allows users to supply the
input data graphically, execute the simulation remotely, and view the results in both textual and graphical formats.

WBCSim contains four simulation models of interest to scientists studying wood-based composite materials
manufacturing — rotary dryer simulation (RDS), radio-frequency pressing (RFP), composite material analysis
(CMA), and particle mat formation (MAT). The rotary dryer simulation model was developed as a tool to assist
in the design of drying systems for wood particles, such as used in the manufacture of particleboard and strandboard
products. The rotary dryer is used in about 90 percent of these processes. The radio-frequency pressing model
was developed to simulate the consolidation of wood veneer into a laminated composite, where the energy needed
for cure of the adhesive is supplied by a high-frequency electric field. The composite material analysis model was
developed to assess the strength properties of laminated fiber reinforced materials, such as plywood. The mat for-
mation model is used to calculate material properties of wood composites, modeling the mat formation process as
wood flakes are deposited and then compressed into a mat. This model is crucial for all other manufacturing process
models, as they require material properties as input.

The software architecture for WBCSim is three-tiered: (i) the legacy simulations and various visualization and
optimization tools, perhaps running on remote computers; (ii) the user interface; and (iii) the middleware that co-
ordinates requests from the user to the legacy simulations and tools, and the resulting output. These three tiers are
referred to as the developer layer, the client layer, and the server layer, respectively. The developer layer consists
primarily of the legacy codes on which WBCSim is based. The server layer expects a program in the developer
layer to communicate its data (input and output) in a certain format. Thus, legacy programs are ‘wrapped’ with
custom Perl scripts, and each legacy program must have its own wrapper. The client layer consists of Java applets
and is responsible for the user interface (see Fig. 3, left). It also handles communication with the server layer, is the
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Figure 4: (left) VizCraft design view window showing aircraft geometry and cross sections [42]. (right) Visualiz-
ing 156 aircraft design points in 29 dimensions with a careful assignment of variables to color drivers reveals an
interesting association.

only layer that is visible to end-users, and typically will be the only layer running on the user’s local machine. The
server layer is the core of WBCSim as a system distinct from its legacy code simulations and associated data view-
ers. The server layer is responsible for managing execution of the simulations and for communicating with the user
interface contained in the client layer. WBCSim applications require sophisticated management of the execution
environment; the server layer, written in Java, directs execution of multiple simulations, accepts multiple requests
from clients concurrently, and captures and processes messages that signify major milestones in the execution (such
as the computation of an intermediate value). Graphical results from the simulations are communicated to the clients
using an HTTP server (see Fig. 3, right).

2.2 VizCraft

VizCraft [42] is a PSE that aids aircraft designers during the conceptual design stage. At this stage, an aircraft
design is defined by a vector of 10 to 30 parameters. The goal is to find a vector that minimizes a performance-based
objective function while meeting a series of constraints. VizCraft integrates simulation codes to evaluate a design
with visualizations for analyzing a design individually or in contrast to other designs. VizCraft allows the designer
to easily switch between the view of a design in the form of a parameter set, and a visualization of the corresponding
aircraft geometry. The user can easily see which, if any, constraints are violated. VizCraft also allows the user to
view a database of designs using the parallel coordinates visualization technique. VizCraft is a design tool for the
conceptual phase of aircraft design whose goal is to provide an environment in which visualization and computation
are combined. The designer is encouraged to think in terms of the overall task of solving a problem, not simply
using the visualization to view the results of the computation.

VizCraft provides a menu-driven graphical user interface to the high speed civil transport (HSCT) design code
that uses 29 variables and 68 realistic constraints. This code is a large (million line) collection of C and FORTRAN
routines that calculate the aircraft geometry in 3-D, the design constraint values, and the take-off gross weight
(TOGW) value, among other things. VizCraft displays the HSCT planform (a top view), cross sections of the airfoil
at the root, leading edge break, and tip of the wing, and color coded (red, yellow, green) constraint violation infor-
mation. To help manage the large number of constraints, they are grouped conceptually as aerodynamic, geometric,
and performance constraints. Design points, and their corresponding TOGW, are displayed via active parallel co-
ordinates. The parallel coordinates are also color coded, and they can be individually scaled, reordered, brushed,
zoomed, and colored. A parallel coordinate display for the constraints can be similarly manipulated. While the inte-
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Figure 5: Front-end decision maker interface to the L2W PSE [70], depicting landuse segmentation of the Upper
Roanoke River Watershed in Southwest Virginia.

gration of the legacy multidisciplinary HSCT code into a PSE is nontrivial, the strength and uniqueness of VizCraft
lie in its support for visualization of high dimensional data (see Fig. 4).

2.3 L2W

Landscapes to Waterscapes (L2W) is a PSE for landuse change analysis and watershed management. L2W or-
ganizes and unifies the diverse collection of software typically associated with ecosystem models (hydrological,
economic, and biological), providing a web-based interface for potential watershed managers and other users to ex-
plore meaningful alternative land development and management scenarios and view their hydrological, ecological,
and economic impacts. Watershed management is a broad concept entailing the plans, policies, and activities used
to control water and related resources and processes in a given watershed. The fundamental drivers of change are
modifications to landuse and settlement patterns, which affect surface and ground waterflows, water quality, wildlife
habitat, economic value of the land and infrastructure (directly due to the change itself such as building a housing
development, and indirectly due to the effects of the change, such as increased flooding), and cause economic effects
on municipalities (taxes raised versus services provided). The ambitious goal of L2W is to model the effects of
landuse and settlement changes by, at a minimum, integrating codes/procedures related to surface and subsurface
hydrology, economics, and biology. The development of L2W raises issues far beyond the technical software details,
since the cognitive discordance between computer scientists (developing the PSE), civil engineers (surface and sub-
surface hydrology), economists (land value, taxes, public services), and biologists (water quality, wildlife habitat,
species survival) is enormous. The disparity between scientific paradigms in a multidisciplinary engineering design
project involving, say, fluid dynamicists, structural, and control engineers is not nearly as significant as that between
computer scientists, civil engineers, economists, and biologists. A further compounding factor is that L2W should
also be usable by governmental planners and public officials, yet another different set of users.

The architecture of the L2W PSE is based on leveraging existing software tools for hydrology, economic, and
biological models into one integrated system. Geographic information system (GIS) data and techniques merge both
the hydrologic and economic models with an intuitive web-based user interface. Incorporation of the GIS techniques
into the PSE produces a more realistic, site-specific application where a user can create a landuse change scenario
based on local spatial characteristics (see Fig. 5). Another advantage of using a GIS with the PSE is that the GIS can
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Figure 6: (left) Example outdoor environment for designing a wireless communications system in the S4W PSE [51].
(right) Propagation coverage prediction around the region of interest in the environment.

obtain necessary parameters for hydrologic and other modeling processes through analysis of terrain, land cover, and
other features. Of all the PSEs described here, L2W is unique in that it is centered around a GIS. Currently, L2W
integrates surface hydrology codes and economic models for assessing the effect of introducing settlement patterns.
Wildlife and fisheries biologists were involved in the L2W project, but their data and models are not fully integrated
as of this writing. The biological models include the effect of development on riparian vegetation, water quality, and
fish and wildlife species.

2.4 S4W

S4W (‘Site-Specific System Simulator for Wireless Communications’) is a collaborative PSE for the design and
analysis of wideband wireless communications systems. In contrast to the above described projects, the S4W project
is occurring in parallel with the development of high-fidelity propagation and channel models; this poses a unique set
of requirements for software system design and implementation (ref.Scenario 1in the introduction) [78]. S4W has
the ability to import a 3-dimensional database representing a specific site (see Fig. 6, left), and permits a wide range
of radio propagation models to be used for practical communications scenarios [51]. For example, in a commercial
wireless deployment, there is a need to budget resources, such as radio channel assignments and the number of
transmitters. S4W allows wireless engineers to automatically drive the simulation models to maximize coverage
or capacity, or to minimize cost. Furthermore, unlike existing tools, S4W permits the user to import measured
radio data from the field, and to use this data to improve the models used in the simulation. A knowledge-based
recommender system [65] provides improved modeling capability as the software corrects the environment model
and the parameters in the propagation model, based on measured data. Finally, the ability to optimize the location of
particular wireless portals in an arbitrary environment is a fundamental breakthrough for wireless deployment, and
S4W has the ability to perform optimization based on a criterion of coverage, QoS, or cost (see Fig. 6, right).

While primitive software tools exist for cellular and PCS system design, none of these tools include models
adequate to simulate broadband wireless systems, nor do they model the multipath effects due to buildings and other
man-made objects. Furthermore, currently available tools do not adequately allow the inclusion of new models into
the system, visualization of results produced by the models, integration of optimization loops around the models,
validation of models by comparison with field measurements, and management of the results produced by a large
series of experiments. One of the major contributions of S4W is a lightweight data management subsystem [78]
that supports the experiment definition, data acquisition, data analysis, and inference processes in wireless system
design. In particular, this facility helps manage the execution environment, binds representations to appropriate
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implementations in a scientific computing language, and aids in reasoning about models and model instances.
Supported by a $1M grant from the NSF Next Generation Software program, S4W is designed to enhance three

different kinds of performance — software, product, and designer. Superior software performance is addressed in
this project by (i) developing fundamentally better wireless communication models, (ii) constructing better simula-
tion systems composed from the component wireless models via the recommender, and (iii) the transparent use of
parallel high-performance computing hardware via the composition environment’s access to distributed resources.
Superior product performance (the actual deployed wireless systems) is addressed by using optimization to design
optimal rather than merelyfeasiblesystems. Superior designer performance is directly addressed by the synergy
resulting from the integrated PSE, whose purpose is to improve designer performance and productivity.

2.5 Expresso

The Expresso project [6] addresses the entire lifecycle of microarray bioinformatics, an area where ‘computing tools
coupled with sophisticated engineering devices [can] facilitate discovery in specialized areas [such as genetics, en-
vironment, and drug design]’ [45]. Microarrays (sometimes referred to asDNA chips) are a relatively new technique
in bioinformatics, inspired by miniaturization trends in micro-electronics. Microarray technology is an experimen-
tal approach to study all the genes in a given organism simultaneously; it has rapidly emerged as a major tool of
investigation in experimental biology. The basic idea is to ‘print’ DNA templates (targets), for all available genes
that can be expressed in a given organism, onto a high-density 2D array in a very small area on a solid surface. The
goal then is to determine the genes that are expressed when cells are exposed to experimental conditions, such as
drought, stress, or toxic chemicals. To accomplish this, RNA molecules (probes) are extracted from the exposed
cells and ‘transcribed’ to form complementary DNA (cDNA) molecules. These molecules are then allowed to bind
(hybridize) with the targets on the microarray and will adhere only with the locations on the array corresponding to
their DNA templates. Typically such cDNA molecules are tagged with fluorescent dyes, so the expression pattern
can be readily visualized as an image. Intensity differences in spots will then correspond to differences in expression
levels for particular genes. Using this approach, one can ‘measure transcripts from thousands of genes in a single
afternoon’ [45]. Microarrays thus constitute an approach of great economic and scientific importance, one whose
methodologies are continually evolving to achieve higher value and to fit new uses.
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The Expresso PSE [6] is designed to support all microarray activities including experiment design, data acquisi-
tion, image processing, statistical analysis, and data mining. Expresso’s design incorporates models of biophysical
and biochemical processes (to drive experiment management). Sophisticated codes from robotics, physical chem-
istry, and molecular biology are ‘pushed’ deeper into the computational pipeline. Once designs for experiments are
configured, Expresso continually adapts the various stages of a microarray experiment, monitoring their progress,
and using runtime information to make recommendations about the continued execution of various stages. Cur-
rently, prototypes of the latter three stages of image processing, statistical analysis, and data mining are completely
automated and integrated within our implementation.

Expresso’s design underscores the importance of modeling both physical and computational flows through a
pipeline to aid in biological model refinement and hypothesis generation. It provides for a constantly changing
scenario (in terms of data, schema, and the nature of experiments conducted). The ability to provide expressive and
high performance access to objects and streams (for experiment management) with minimal overhead (in terms of
traditional database functionality such as transaction processing and integrity maintenance) [44] is thus paramount
in Expresso.

The design, analysis, and data mining activities in microarray analysis are strongly interactive and iterative.
Expresso thus utilizes a lightweight data model to intelligently ‘close the loop’ and address both experiment design
and data analysis. The system organizes a database of problem instances and simulations dynamically, and uses data
mining to betterfocusfuture experimental runs based on results from similar situations. Expresso also uses inductive
logic programming (ILP), a relational data mining technique, to model interactions among genes and to evaluate and
refine hypothesized gene regulatory networks. One complete instance of the many stages in Expresso has been
utilized to study gene expression patterns in Loblolly pine [46], in a joint project with the Forest Biotechnology
group of North Carolina State University.

3 Systems Support for Multidisciplinary GCE Applications

This section describes several core systems support technologies useful for developing GCEs (and currently em-
ployed in the applications outlined so far). Many of these tools and frameworks rely on the notion of representations
of components; we begin by motivating this idea.

3.1 Representations in a GCE

One of the main research issues in GCEs is modeling the fundamental processes by which knowledge about scientific
models is created, validated, and communicated. As mentioned in Section 1 and illustrated in the many example
systems of Section 2, the expressiveness with which a scientist could interact with a GCE is directly related to the
adequacy of representation provided by the system. While it is true that there is no universal representation that is
ideal for all purposes, traditional approaches employed in grid projects (for representing models, for model instances,
and for simulations) are very restrictive.

Recall that we defined a model to denote a directed graph of specific computational codes or executables. The
notion of the ‘representation of a model’ is open to many interpretations and intensely debated in the modeling
literature (see for instance [29]); we will not attempt to settle this debate here. Instead, we adopt an operational
definition for the representation of a model, namely that it is an abstraction of the model that permits useful problem-
solving capabilities that would not be possible with the model alone. The abstraction could refer to the functional
behavior of the model (e.g., a signature), the structural constituents of the model (e.g., a digraph of model fragments),
a profile of its performance (to aid in design and analysis), its relationships to other models, and/or information about
how it fits within the larger computational context of the GCE and the activities conducted within it.
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Consider two extremes of representing a single computational component (the simplest model) in a GCE. A
black-box representation would be one where just the name of the component serves as its representation. Such a
solution will definitely aid in referring to the component over the grid (e.g., ‘run the XYZ software’), but doesn’t
help in any further sophisticated reasoning about the component (.g., ‘is XYZ an iterative algorithm?’) At the other
extreme, a white-box representation is one where the component itself serves as its representation (for example,
mathematical descriptions of scientific phenomena). Usually in such cases, the representation is accompanied by a
domain theory and algorithms for reasoning in that representation. For instance, the QSIM system [58] is a facility
where once a component (e.g., one for the cooling of liquid in a cup [30]) is defined, it is possible to reason about the
properties and performance of that component (e.g., when are the contents of the cup drinkable?). While extremely
powerful, such designs work well only within restrictive (and sometimes artificial) applications. An intermediate
solution is to annotate components with (feature, value) pairs describing attribute-based properties. For instance,
annotations might involve directives, flags, and hints for compiling the code on a specific platform.

These issues are amplified when we consider the model to be a digraph of computational components. While
many projects distinguish between models and representations, two main approaches can be distinguished here. In
the first category, representations are motivated by the need to manage the execution environment (e.g., ‘schedule
this graph on the grid, taking care to ensure that data files are properly matched’). Examples here are the Linear
System Analyzer (LSA) [40] and the Component Architecture Toolkit (CAT) [13] at Indiana University, the ZOO
desktop experiment management environment at the University of Wisconsin [50], the Application Visualization
System of Advanced Visual Systems, Inc. [76], and the SCIRun computational steering system at the University of
Utah [52]. Projects in the second category are based on AI research in compositional modeling [28, 62, 69] and are
motivated by formal methods for reasoning with (approximate and qualitative) representations. The modeling and
performance requirements in a multidisciplinary GCE mean that both approaches are too restrictive.

With the advent of XML and the emergence of the Web as a large-scale semistructured data source, interest in
semistructured representations has expanded into the GCE/PSE community. A plethora of markup languages, XML-
based formats, and OO coding templates have been proposed for representing aspects of domain-specific scientific
codes (e.g., SIDL [21]). In addition, a variety of formats have been proposed recently (e.g., SOX [38]) for defining
metadata associated with various stages of computational experiments [38]. A major advantage of such solutions is
that the ensuing representations can be cataloged and managed by database technology.

Our goal is to investigate representations that (i) allow the binding of problem specifications to models (and
model instances), without insisting on an implementation vocabulary (for the models); (ii) can help us to reason
both about the models being executed as well as data produced from such simulations; and (iii) help design facilities
such as change management, high-level specification of simulations, recommendation, optimization, and reasoning
(about models and model instances).

3.2 BSML: A Binding Schema Markup Language

Akin to other GCE projects, our emphasis here will be on semistructured representations for models. However we
view markup languages such as XML as less of a data format, programming convention, or even a high-level ab-
straction of a programming environment. Rather, we view them as a vehicle to definebindingsfrom representations
to models in a GCE. Binding refers to the process of converting XML data to an appropriate encoding in a scientific
computing language (the reverse process is fairly straightforward). There are several forms of bindings in a GCE —
binding of values to language variables, converting an XML format to some native format that can be read directly
by the model, and/or generating source code for a stub that contains embedded data and a call to the appropriate
language function using these data as parameters. Notice that we do not make a distinction between invoking a
component procedurally in a scientific computing language, generating code that invokes a component, or executing
a program with command line arguments. All of these are bindings from one representation to various assumptions
on the execution environment (which is presumably being handled by the existing computational setup). Our lack
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<element name=’pdp’>
<sequence>

<element name=’rmsDelaySpread’
type=’double’/>

<element name=’meanExcessDelay’
type=’double’/>

<element name=’peakPower’
type=’double’/>

<code component="optimizer">
<bind>print "$peakPower\n"</bind>

</code>
</sequence>
<repetition>

<sequence>
<element name=’time’ type=’double’/>
<element name=’power’ type=’double’/>
<code component="chtts1|chttm">

<bind>print " $time $power\n"</bind>
</code>

</sequence>
</repetition>
<code component="chtts1|chttm">

<begin>print "M = [\n"</begin>
<end>print "];\n"</end>

</code>
</element>

Figure 8: BSML descriptions for a class of XML documents pertaining to power delay profiles (PDPs) in the S4W
PSE. Sample bindings for MATLAB are shown by thebind tags.

of any stringent assumptions on the computational codes or method of invoking models is fundamental to multidis-
ciplinary research. From the viewpoint of the GCE, a single representation could be stored but which can allow all
these forms of bindings to be performed.

A full description of our BSML (Binding Schema Markup Language) is beyond the scope of this article (for more
details, see [78]). We briefly mention that BSML associates user-specified blocks of code with user-specified blocks
of an XML file. ‘Blocks’ can be primitive datatypes, sequences, selections, and/or repetitions. Intuitively, primitive
datatypes denote single values, such as double precision numbers; sequences denote structures; selections denote
multiple choices of conveying the same information; and repetitions denote lists. While not particularly expressive,
this notation is meaningful to GCE component developers, simple and efficient to implement, and general enough to
allow the building of more complex data representations.

Consider, for example, representing a power delay profile (PDP) from the S4W project in XML. A PDP is a two-
column table that describes the power received at a particular location during a specified time interval. Statistical
aggregates derived from power delay profiles are used, for example, to optimize transmitter placement in S4W. We
can use BSML to define bindings between PDPs and all applicable models in S4W. Applying a parser generated
from such a BSML document (see Fig. 8 for an example) to a PDP will yield native code in the underlying execution
environment (in this case, an executable Matlab script that contains embedded data). For a different native execution
environment, a different binding could be defined (for the same data type). Hence, our representation is truly
semistructured.

Notice that we can rapidly prototype new model instances with this technique. Similarly, we can use the same
BSML source to provide bindings for an optimizer (for locating base stations, seeScenario 1in Section 1). The
feedback will be a sequence of peak powers, one number per line. Some twenty five lines of BSML source can
therefore take care of data interchange problems for three components. Storing these PDPs in a database is also
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Figure 9: A facility for creating model instances from specifications represented in a Binding Schema Markup
Language (BSML).

facilitated. From a system point of view, the schemas are the metadata and the software that translates and converts
schemas is the parser generator. Figure 9 shows a typical configuration.

Both the data and the metadata are stored in a database. A parser is lazily generated for each combination of
model’s input port and the actual BSML schema whose data instance is connected to that port. Model descriptions
can also be stored in the database. They consist of model id, description, schemas of its input and output ports,
various execution parameters, and annotations, such as relations to other models (see Section 3.5). We do not
provide any tools for checking the consistency of the output data with the output schemas because, unlike in Web or
business domains, this is rarely an issue. A GCE model’s output schema is rigid and does not depend on the actual
input schema.

The execution environment manager (see Fig. 9) glues the generated parsers to the components. For full-featured
languages like FORTRAN, it will simply link the parser with the model’s code. Prototyping for languages like
Matlab requires more attention. The output of the parser for such languages is typically the source code that needs
to be supplied to the interpreter. The exact way the parsers are linked to the model is specified by the model’s
execution parameters. From this point, each model together with a set of generated parsers looks like a program that
takes a number of XML streams as inputs and produces a number of XML streams as outputs. This is an appropriate
representation for the management of the execution environment. Our goal is similar to those in [4, 27, 41] in that
the common motivation is management of the execution environment; at the same time, our concern with high-level
problem-solving (see next three sections) shifts the emphasis from a unifying programming environment to one that
allows a data-driven approach to managing large-scale multidisciplinary codes.

Finally, it is relatively straightforward to store any resulting data from such processes in a database system. If an
RDBMS is used, we can reuse BSML to generate a number of SQL update statements in the same manner we used
it to generate a Matlab script in Fig. 8. One of these ‘models’ will then connect to the database and execute these
statements. This is no different from other format conversions happening in the GCE.
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3.3 Format Conversions and Change Management

One of the benefits of semistructured data representations is automatic format conversion. This feature is useful in
the following situations: (i) A model is changed over time, but data corresponding to the older versions has already
been recorded in the database system. An example from S4W is the evolution of the space partitioning parameters
in the ray tracer. After we have realized that placing polygons at the internal nodes of the octree can improve space
usage by an order of magnitude, more parameters have been added to space partitioning; (ii) Several components
need essentially the same parameters, but are not truly plug-and-play interchangeable. Minor massaging is necessary
in order to make their I/O specifications match.

We model the following changes: insertions, deletions, replacements, and unit conversions. Insertions and
deletions correspond to additions and removals of parameters. For example, a moving channel builder takes the
same inputs as a static one, plus the velocity of the receiver. Thus, any input to a moving channel builder can be
converted to the input to a static one by projecting out the receiver’s velocity. Replacements represent changes in
parameter representation, such as a conversion between spherical and rectangular coordinates. Unit conversions are
a special case of conversions that are quite common and can be easily automated, such as conversions between watts
and decibel milliwatts. Unit conversion can be performed by equation and constraint solvers [30].

In our XML representation, insertions can be handled by requiring default values for new parameters. Removals
amount to deleting the old values. Replacements and unit conversions require user-supplied or automatically gen-
erated conversion filters. The modeling literature abounds in such conversions, but it is important to realize that
conversion facilities are ad-hoc by nature, and therefore only work for small changes in the schema. Typically, it
is not necessary to find a globally optimal conversion sequence. A thorough treatment of change detection can be
found in [20].

Change management can also be used to realize any problem-solving feature that involves transforming between
semistructured representations. For example, consider the possibility that two students configure a GCE indepen-
dently with different choices for various stages in a computational pipeline and arrive at contradictory results. They
could then query the database for ‘What is different between the experiments that produced data in directory A
from the ones in directory B’? — providing responses such as ‘The only difference is that a calibration threshold of
0:84 was used in B instead of0:96 for A,’ which are obtained by automatically analyzing the XML descriptions [1].
Change detection and processing is crucial in several GCE projects, such as Expresso (see Section 2.5) where objects
of interest change formats, stations, and schema rapidly.

3.4 Executing Simulations = Querying

Recall that we defined a simulation as a model instantiated with inputs, along with an assigned computational
resource. This captures the notion of applying multiple models to multiple inputs to generate a database of simulation
results and performance data. In this section, we describe how our semistructured representations of models and
bindings can aid in even higher level problem-solving facilities. In particular, we concentrate on facilities such as
the ‘parameter sweep’ tool [17] and the ‘database query’ mode (found in the parameter definition layer of Fig. 2). The
facilities described in this section (i) produce model instances and also (ii) associate data generated from simulations
back with the corresponding model instances. We gloss over the aspect of how simulations corresponding to a model
instance are actually executed, since they are addressed in Section 3.7. In particular, when we refer to executing a
simulation we imply that some assignment of computational resources to model instances has been done by the
simulation definition layer (see Fig. 2).

In the database paradigm, a model instance can be represented as a view. Executing the simulation corresponds
to materializing the view. The query behind the view is a join over models and data. To be meaningful, a simulation
must further satisfy somesyntacticand/orsemanticconstraints. Syntactic constraints ensure that the simulation can
indeed be executed. Each simulation run must be given enough data and the data must conform to the appropriate
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<experiment id=’diff. prop.’>
WHERE <environment id=’$id’>

<meta><type>urban</type></meta>
</environment> CONTENT_AS $env IN "envs"
CONSTRUCT <experiment id=’diff. prop.: $id’>

<model>...</model>
<inputs>

<input>$env</input>
...

</inputs>
<outputs>...</outputs>

</experiment>
</experiment>

Figure 10: Constructing new XML data (to recalculate PDPs in S4W) using the XML-QL query notation.
WHERE..CONSTRUCT is the format for expressing queries in this language. Notice that the query is parame-
terized by the$env variable whosetype is restricted to beurban.

schemas. Semantic constraints ensure that the models are meaningful in the specific problem domain. We will
describe semantic constraints in the next section. In our framework, users can impose custom constraints, such
as ‘use only the datasets from last week.’ Specifying a model instance therefore maps naturally into a database
query. This feature also supports the provision of iteration, aggregation, and composition operators by introducing
minimal overhead in implementation. For example, compositions can be achieved by relational joins, aggregation
by user-defined VIEWs, and iteration by ‘index striding’ on domain-specific records.

Consider the following scenario. An S4W developer of ray tracing propagation models has added a model that
takes diffraction into account. She now wants to recalculate the PDPs for the environments where diffraction is
most significant, e.g., for urban outdoor environments. Her request for new simulations can be specified in a query
notation such as XML-QL (see Fig. 10 for how this can be done). The result of this query is a sequence of model
instances, which can be associated with corresponding simulations and scheduled for execution. Not only is this form
of specification concise, it also enables us to use well-known query optimization techniques to push costly operations
‘deeper’ into the computational pipeline [47]. In particular, query-based representations of model instances lose the
distinction betweenconducting a simulation to collect dataand looking up (already simulated) data from a
database. Coupled with grid information services, such a representation can help determine if specified simulations
have been conducted elsewhere on the grid, to avoid duplication of effort. Furthermore, ‘nearby’ simulations can be
retrieved to construct a surrogate function for the entire simulation or parts of it, thereby replacing costly executions
with cheap surrogate function evaluations. In large scale, multidisciplinary, engineering design the construction and
use of such surrogates has become standard practice. The query approach facilitates the automatic construction and
validation of surrogates or functional approximations.

In our current implementation the above two modes — simulation by executing a code and simulation by query-
ing — are provided as distinct services. Before we can seamlessly mix computations with retrievals from a database,
a logic for such a facility has to be defined. For example, do we adopt a policy that looks for cached results before
spawning out simulations? Or is it a best-search effort for doing costly operations on external clusters and con-
ducting smaller simulations locally? Or does it use different fidelity approximations (see Section 3.5) for different
ranges of the parameter sweep? The design of these policies (along with their associated business and organizational
ramifications) will influence the acceptability of the ‘execution as querying’ viewpoint.
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Figure 11: Relations between channel modeling components in S4W.

3.5 Reasoning and Problem Solving

What constitutes a good model? GCEs should provide the facility to reason about a model and its constituent parts in
terms of the features of the problem being solved and the desired performance constraints. For instance, this might
help in recommending models for new problem instances, based on representational goals and performance criteria.
A lot of domain-specific knowledge [62] is required to arrive at promising model choices, but a few general rules
can be outlined.

First, a model must not contain any components that make incompatible assumptions about the phenomena being
modeled. Following Nayak [62], we call such componentscontradictory. An example of contradictory components
in S4W is a class of model builders (static and moving). Second, some modeling choices may constrain the form
of the rest of the model. For example, the signal filters of the transmitter and the receiver mustmatch. And finally,
models in a given class, say filters, often support similar forms of reasoning. We use the termclassificationto
describe this aspect.

An example of these relations in S4W is given in Fig. 11. The labels represent a small model library and the links
represent the relations. Note that these relations are domain-specific and cannot be derived from the source in any
general-purpose language. They must be supplied by the user (in this case, wireless system designer) as annotations
to components. Such relations can then be used to prune the search space for recommendation and problem-solving.

An alternate, data-driven approach to reasoning is described in [48, 66, 67], where we have explored the
knowledge-based selection of solution components for individual application domains. Such ‘recommender sys-
tems’ [63] can help in the natural process of a scientist/engineer making selections among various choices of algo-
rithms/software in a GCE. They are typically designed off-line by organizing a battery of benchmark problems and
algorithm executions [48], and mining it to obtain high-level rules that can form the basis of a recommendation.
For instance, Fig. 12 describes a situation where data mining reveals regions of preference for one PDE algorithm
over another, by mining a database of PDE solves. Visualization of performance data from scientific applications
is also related to this aspect [72]. The importance of data mining in providing decision support in large-scale sim-
ulations [18] has also been recognized in other projects [32, 53, 60, 61, 64, 68]. Our framework is novel in that it
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Figure 12: Mining and visualizing recommendation spaces for selecting amonggmres (first picture) and direct
solver (second) on nearly singular PDE problems; The x- and y-axes of the pictures denote problem and method
parameters along which performances of the solvers are characterized. The intensity in the colormap reflects the
number of problem instances in a bucket for which the given algorithm was superior;90% confidence regions mined
automatically forgmres (third) and direct solve (fourth), by the method described in [66] are also shown. For these
regions, the given methods were superior for at least90% of the problem instances.

captures the entire problem-solving process prior to the scheduling of a simulation and the semistructured format
for model instances allows the embedding of mining functions as primitives into standard query languages (akin
to [75]). It also facilitates the incorporation of performance models of the various parts of a computation [3] in
reasoning and recommendation.

3.6 Sieve: A Collaborative Component Composition Workspace

Readers familiar with components and distributed internet-based applications will recognize that many goals of
GCEs described earlier apply to other distributed applications. While the details differ, describing a computation
as a network of components and providing access to a database (in this case the database of experimental runs)
are not unique to computational science. While supporting legacy code is often central to computational science
applications, this need is also not novel.

However, the combination of issues embodied in multidisciplinary GCE settings presents novel problems. These
include the fact that individual runs of a simulation can take hours; the extensive and integrated use of visualization;
the inherently distributed nature of the computation (i.e., certain sub-models may need to run on differing systems
for reasons related to resource needs, or simply because they are legacy codes written for differing systems); the
desire for synchronous collaboration; and the needs of multidisciplinary users, no one of whom is an expert in all
aspects of the larger system (recall the L2W PSE from Section 2.3).

We embody the model definition activities of a GCE in a (collaborative) visual workspace, in which the user
places various objects. These objects are components that represent individual codes, optimization tools, visualiza-
tion software, etc. These components are linked together by the user to form networks that indicate the flow of data
or control. The links between components are often represented by arrows. For example, a component representing
an input file on some computer might be linked by an arrow to another component representing a model/optimizer
combination. Another arrow links the model/optimizer combination to a visualizer. The intent is that the GCE will
cause the input file to be moved to the machine storing the model and optimizer, and the model/optimizer will then
be invoked. The output of this process will then be passed to the visualization, (perhaps on another machine) with the
results displayed on the user’s screen. The fundamental interface design is similar to that of a modular visualization
environment (MVE) or the Khoros image processing system [80].

Our primary tool for creating interfaces for model building is named Sieve. Sieve provides a collaborative
workspace that supports the deployment of of JavaBeans. At its heart, Sieve is a collaborative “Java Beanbox”
whose library APIs provide support for creating a variety of component-oriented applications. In particular, Sieve
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Figure 13: Example of a Sieve workspace with dataflow and annotations.

provides to programmers convenient facilities for defining not only the component themselves, but also for defining
the actions performed by the links between components, along with specifying the format of the data that flows
along those links. Together with Symphony (see next section), Sieve provides the foundation for constructing PSEs,
as their combination creates a collaborative environment for controlling distributed, legacy resources.

Sieve provides an environment for collaborative component composition that supports the following:
� A Java-based system compatible with standard WWW browsers
� A convenient environment for generating visualizations through linking of data-producing modules with data-

visualization modules
� Collaboration between users through a shared workspace, permitting all users to see the same visualizations

at the same time
� Support for annotating the common workspace, visible to all users
� A convenient mechanism for linking in new types of components
Sieve presents the user with a large, scrollable workspace onto which data sources, processing modules, and

visualization components may be dropped, linked, and edited. Figure 13 shows a Sieve workspace containing a
simple data-flow network. This example illustrates a particular collection of beans that support various statistical
visualizations.

Our design for Sieve allows processing and visualization modules to be generic, with all data-source–specific
details hidden by the source modules. In addition, data-flow semantics can be tailored to the individual application
characteristics and available grid services. For instance, the components of Figure 13 conform to an API which
allows data to be viewed by adjacent modules in the network as a two-dimensional table containing objects of
any type supported by the Java language. For other applications, the components could invoke grid services and
file transfer utilities to effect the data-flow. Source modules simply convert raw data into the assumed data-flow
representation. Processing modules can manipulate these data and present an altered or extended view. Visualization
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modules can then produce visual representations of the data in the system and also serve as interfaces for data
selection.

Sieve’s support for defining link types permits a great deal of flexibility in combining various collections of
components. For example, if a component had been created that did not support the table format just described
for our current visualization components, all that would be needed is for the programmer to create a link class
that converts between the two data formats in question. The Sieve runtime environment will automatically deduce
the appropriate link class to use when two components are linked together. Thus, if the new component (with its
unique data format) were the source for the link, and one of the existing (table driven) visualization components
were the target, then Sieve would determine that the link class to instantiate is the one that does the appropriate data
conversion between the two components.

3.7 Symphony: Managing Remote Legacy Resources

Symphony is a component-based framework for composing, saving, sharing, and executing simulations [73]. Sym-
phony views a simulation as a collection of programs and data resources intended to be executed as a unit. It is
composed by assembling individual Symphony components into an acyclic directed graph and thus corresponds to
a representation of a model or model instance as described in Section 1.4. The directed graph models the data flow
relationships among the individual components. Such a graph is shown in Fig. 14 and described later. Each Sym-
phony component is a surrogate for some actual program or data resource. The actual resources may, and usually do,
reside on different machines that are able to communicate through an underlying network. In addition to modeling
data-flow relationships, the connections between two Symphony components allow the components to synchronize
the behavior of the computational resources they represent. Simulations may be saved by their creators for repeated
reuse and shared with other users in a problem-solving community. Simulations are transparently executed in a man-
ner that respects the data-flow requirements of individual programs in the composition. Execution transparency in
this context means that all system level operations of program execution and of data movement across geographically
distributed locations must be largely, if not totally, transparent to the user.

The Symphony framework, based on Sun’s JavaBeans component architecture [49], has two principal elements:
a composition environment in which a simulation is constructed and a back-end execution environment in which
the described computation is performed. Symphony beans can be placed in any runtime environment that supports
JavaBeans, such as Sieve (see Section 3.6). Fig. 14 shows Symphony running in Sun’s Java BeanBox. The BeanBox
interface allows generic Symphony components to be selected from a palette (not shown in Fig. 14) and dropped into
the BeanBox’s workspace. The properties of components in the workspace can be changed through customization
to contain information about a specific computation resource for which the bean is a surrogate. Symphony includes
Program beans that represent executable entities on some machine, and several beans for representing sources or
destinations of data including a File bean, and beans that model input and output data streams.

The standardized architecture of JavaBeans provides for a large range of possible composition environments and
operating systems that Symphony can work with. One such composition environment is Sieve (see Section 3.6),
which adds the ability for several users to remotely collaborate on the same simulation. While Symphony was
originally developed to exploit the graphical user interface of composition environments, we also envision that a
simulation can be constructed and executed based on other representations (e.g., an XML description derived from
a query-based specification of model instances). Languages for Grid workflow specification [11] are also relevant
here.

When a simulation is executed, the components initiate, monitor, and synchronize the operations performed in a
back-end execution environment. The back-end execution environment and the components collaborate to transport
files between machines, execute programs, and connect data streams as needed to realize the computation specified
in the network of beans. The operations are performed so as to respect the defined dataflow relationships defined
by the simulation. The back-end execution environment was originally based on a specially created server. Our
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Figure 14: Design of a Symphony Bean Network.
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current goal is to interface Symphony with one or more computational grids and networks of workstations for this
purpose. In general, we envision Symphony as an abstraction layer on top of popular grid middleware systems
that will ease and unify the access to grid resources and provide a foundation for collaboration among grid users
through the exchange of pre-configured simulation components or even whole simulation. We believe that such a
framework would be valuable to the community and would foster the more widespread application of computational
grids significantly.

A simple simulation is depicted in Fig. 14. The simulation shown in Fig. 14 represents a remote program
(Program 1) which takes a parameter file and a data file as input and generates an intermediate result file. This file
is then used by another program (Program 2) to generate the final result which is also stored in a file and a summary
of the computation which is sent to the standard output. The standard output in turn is redirected to a local file that
is used as the input for a local file viewer application (a helper bean).

In terms of the functional layers presented in Fig. 2, Symphony provides both simulation definition and model
definition services. Symphony provides the runtime structure to synchronize the execution of a collection of pro-
grams without user intervention. As noted above, a configured and connected set of Symphony beans could be
generated by programmatic means or from some syntactic (e.g., XML) description. This description might itself
be produced by the parameter definition layer in Fig. 2. However, Symphony currently lacks a number of impor-
tant features that should be provided by simulation definition subsystems. For example, it should be possible to
build cyclic simulations that would execute repeatedly. Such a simulation would include a component to determine
termination based on convergence or other optimization criteria. Additionally, support for parameter sweep style
execution should be provided. Exploiting the concurrent execution of programs unrelated through data-flow con-
straints is also desirable. Symphony currently provides some facilities at the model management layer because it, in
cooperation with the composition environment, provide a user interface through which a simulation (a model) can
be constructed. More sophisticated model definition features are clearly desired. For example, it should be possible
to aggregate part or all of a simulation as a single unit. This would allow for easier organization of larger simulations
and also provide a better basis for sharing complex assemblies of components among users.

Some of the issues we are currently addressing in our work with Symphony are: defining a general syntax for
resource declaration and job specification, support for the Globus middleware [33] and it’s security infrastructure,
support for other middleware and security architectures, providing means for more effective data routing between re-
sources, and support for resource discovery mechanisms and automatic resource allocation through super schedulers.
A brief discussion follows.

A general syntax for resource declaration and job specification is needed to denote computational resources in a
grid-independent manner. We have had initial success with implementing a resource description that lets us create
program beans which abstract programs accessible through our local Globus grid by using the Globus Commodity
Toolkit for Java. Our program beans can be customized with information collected from a Grid Information Index
Service (GIIS [23]), from a local resource configuration file or through manually entered parameters. We also added
a Globus authentication service which provides an interface for all Symphony beans to get access to a default Globus
user proxy that these beans can use to authenticate themselves to grid resources.

We are currently investigating the use of more efficient methods than used in the original version of Symphony
to transport data files as well as executables from one location to another. For the Globus interface we are look-
ing at employing third-party GSI-FTP and standard FTP services as well as globus access to secondary storage
(GASS [10]) services which are based on the HTTPS protocol.

We are examining resource discovery and automatic resource allocation through super schedulers. We propose
to interface with a resource brokerage system which could automate the resource selection process for compute
resources by comparing the constraints stated by the software resource, user preferences and user rights against to
the properties of the available resources in the grid.

The Symphony framework requires a security architecture that will provide for finer grained and more flexible
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control of rights than is currently available on computational grids. The requirement for finer grained control arises
from Symphony’s ability to exchange simulation components and whole simulations between users. Current grid
security infrastructures do not support these requirements. We believe that elements of the CRISIS [9] architecture
may prove to be very useful to the aims of Symphony and should be implemented in future grid security systems.

4 Discussion

Our approach to GCEs can be characterized by an emphasis on high-level problem-solving facilities, and their im-
plementation using traditional grid information and lower-level services, for multidisciplinary grid communities.
Our unifying framework for multidisciplinary applications leverages concepts from data management, model repre-
sentation, and compositional modeling into a cohesive methodology.

By viewing descriptions of model instances (and simulations) as entries in a database, programmatic descrip-
tions of new model instances (and simulations) can be automatically created by writing queries. By writing BSML
specifications and using Symphony to associate the resulting simulations with the underlying computational envi-
ronment, scientists and engineers are able to interact with GCEs in the vernacular of the domain. The distinctions
made by our framework mirror other projects such as CACTUS applications [5], where the emphasis is on creating
portals that integrate large-scale simulation and visualization.

The presented techniques also allow us to store descriptions, ‘run’ the descriptions to obtain data, record the data
back in the database, and associate the data with the description that corresponds to its experimental setup. This
emphasis on the entire problem-solving context facilitates sophisticated services such as change management.

In contrast to the variety of standards (many, XML-based) available for scientific data, our data model is aimed
at capturing representations of simulations, not just simulation data. We posit that the description of a simulation is
a more persistent representation of the data (it produces) than the data itself. As technology matures and evolves,
recording how specific data was obtained is important for the purposes of ensuring repeatability and reliability. For
example, if gridding technology for microarrays improves, then ‘running’ the same (stored) description with the new
setup can be used to arrive at new, current, results. Since there is nothing in our design that commits us to a rigid
schema, our data model can elegantly adapt to changes over time.

These requirements point to the future directions in the development of GCEs. We are now extending our ideas
to apply to runtime scenarios, such as computational steering and closing-the-loop between design and analysis (see
Section 2.5). Runtime recommendation of models will become pertinent in heterogeneous and distributed scenarios,
where information about application characteristics is acquired only during the computation. Connections to grid
information services have to be established to enable GCEs to participate in large-scope projects that span multiple
institutions and data sources.

The ‘simulation as querying’ viewpoint provides a useful conceptual abstraction for the effective utilization of
computational grids. A long-term goal is to design GCEs that help unify modeling, simulation, analysis, and design
activities — this is especially pertinent in multidisciplinary applications. Our architecture and systems support
technologies are uniquely designed to support such an integrated mode of investigation.
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