
HBench:Java: An Application-Specific Benchmarking
Framework for Java Virtual Machines

Xiaolan Zhang Margo Seltzer
Division of Engineering and Applied Sciences

Harvard University
33 Oxford Street

Cambridge, MA 02138, USA
617-495-3311, 617-496-5663

{cxzhang, margo}@eecs.harvard.edu

ABSTRACT

Java applications represent a broad class of programs, ranging
from programs running on embedded products to high-
performance server applications. Standard Java benchmarks
ignore this fact and assume a fixed workload. When an actual
application’s behavior differs from that included in a standard
benchmark, the benchmark results are useless, if not
misleading. In this paper, we present HBench:Java, an
application-specific benchmarking framework, based on the
concept that a system's performance must be measured in the
context of the application of interest. HBench:Java employs a
methodology that uses vectors to characterize the application
and the underlying JVM and carefully combines the two vectors
to form a single metric that reflects a specific application’s
performance on a particular JVM such that the performance of
multiple JVMs can be realistically compared. Our performance
results demonstrate HBench:Java’s superiority over traditional
benchmarking approaches in predicting real application
performance and its ability to pinpoint performance problems.

Keywords

Java performance, benchmarking.

1. INTRODUCTION
In recent years, the Java programming language has enjoyed
increasing popularity and there has been a proliferation of Java
Virtual Machine (JVM) implementations. This poses a
question for end users: which JVM should they choose to run
their applications? There have been many attempts to evaluate
different JVM implementations. Unfortunately, these
approaches share a common drawback: they assume a fixed set
of workloads and ignore the application’s performance
concerns. Java applications represent a diverse set of programs,
ranging from those running on embedded products such as

PDAs, to applets running in browser environments, to scientific
computing applications, and recently to server applications,
which have traditionally been the stronghold of system
languages such as C and C++. Often the actual application
under test differs enough from any standard benchmark that the
results from traditional benchmarks are useless and sometimes
even misleading. Moreover, since the workloads are fixed,
traditional benchmarks encourage vendors to over-optimize
their JVM implementations to achieve good results on the
benchmarks. This may potentially hurt the performance of real
applications. Such incidents have already been reported in the
area of OS benchmarking, where graphics card vendors employ
a hack, which can severely hamper the performance of other
devices, to improve their results in standard benchmarks [8].

We believe that the goals of benchmarking in general should be
threefold:

1. To compare the performance of systems and to reason
about why applications run faster on one system than on
another. Not only should benchmarks produce meaningful
results, they should also provide a reasonable explanation
for the performance differences.

2. To guide performance optimizations. Benchmarks should
reveal performance bottlenecks or limitations of the
underlying system in the context of a particular
application, and thus help system implementers improve
the system in a way that will benefit the application of
interest.

3. To predict an application’s performance on non-existent
platforms. Benchmarks should help answer “what if”
questions and provide users with a reasonable estimate of
the application’s performance when some components of
the underlying system change, or when the behavior of the
application changes.

In this paper, we present HBench:Java, part of a more general
application-specific benchmarking framework called HBench
designed to realize the above goals.

The rest of the paper is organized as follows. Section 2 gives an
overview of some of the most popular standard Java
benchmarks. Section 3 describes the design of HBench:Java,
and Section 4 describes our prototype implementation of
HBench:Java in detail. Section 5 presents experimental results.

Section 6 describes some related work. Section 7 discusses
some unresolved issues and Section 8 concludes.

2. JAVA BENCHMARKS
Traditional Java benchmarks can be classified into the
following three categories:

1. Microbenchmarks. CaffeineMark [3] is a typical example,
in which a set of JVM primitive operations such as method
invocation, arithmetic and graphics operations, and short
sequences of code (kernels) that solve small and well-
defined problems, are measured, and the mean (typically
geometric mean) of the individual times (or scores as a
function of the time) is reported. Microbenchmarks are
useful in comparing the low-level operations of JVMs, but
it is difficult to relate them to actual application
performance in a quantitative way.

2. Macrobenchmarks that contain one or more medium-scale
to large-scale Java applications. Examples include the
SPECJVM98 suite [15], which includes a set of programs
similar to those found in the SPECCPU suite, and
VolanoMark from Volano LLC, which is based on the
company’s VolanoChat™ server. VolanoMark focuses on
a JVM’s ability to handle “long-lasting network
connections and threads” [16].

3. Combinations of the above. The JavaGrande benchmark
[2][9] is an example of this type. Designed to compare the
ability of different Java Virtual Machines to run large-
scale scientific applications, the JavaGrande benchmark
suite contains three sections. The first section consists of
microbenchmarks such as arithmetic operations,
mathematical functions, and exception handling. The
second section consists of kernels, each of which contains
a type of computation likely to appear in large scientific
programs. The final section includes realistic applications,
such as a financial simulation based on Monte Carlo
techniques. This hybrid approach of combining
microbenchmarking and macrobenchmarking provides the
ability to reason about performance disparities between
Java Virtual Machines and is particularly useful in
pinpointing performance anomalies in immature Java
Virtual Machine implementations.

The common drawback with the above approaches is that Java
applications are so diverse that it is difficult, if not impossible,
to find a set of workloads that are representative of the
applications in which end users are interested, even within a
sub-field. If the behavior of the benchmark’s workloads does
not match that of the intended application, then the benchmark
might give misleading information regarding which JVM is the
best for the application of interest. In comparison, HBench:Java
is a general benchmarking framework that can be applied to
any specific workload.

3. HBENCH:JAVA DESIGN
3.1 Overview
HBench:Java is based on the vector-based methodology of the
HBench framework [14]. The principle behind the vector-based
methodology is the observation that a system’s performance is
determined by the performance of the individual primitive

operations that it supports, and that an application’s
performance is determined by how much it utilizes the
primitive operations of the underlying system. As the name
“vector-based” indicates, we use a vector),...,,(21 ns vvvV = , to

represent the performance characteristics of a JVM, with each
entry vi representing the performance of a primitive operation
of the JVM. We call this vector Vs a system vector, and it is
obtained by running a set of microbenchmarks.

A key feature of HBench:Java is that it incorporates
characteristics of the application into the benchmarking
process. This is achieved using an application vector,

),...,,(21 nA uuuV = , with each element ui representing the

number of times that the corresponding ith primitive operation
was performed. Intuitively, the application vector indicates how
much demand the application places on the underlying JVM
and is obtained through profiling. The dot product of the two
vectors produces the predicted running time of the application
on a given JVM.

The basic strategy behind HBench has been to use the simplest
model possible without sacrificing accuracy. To that end, we
use a simple linear model, until we find that it is no longer able
to provide the predictive and explanatory power we seek. In
some cases, rather than going to a more complex model, we
retain the simplicity of a linear model by adding multiple data
points for a single primitive. For example, on some systems,
TCP connect times grow non-linearly with the number of
connections. Rather than modeling the non-linearity explicitly,
we provide three or four points in the system vector that
correspond to differing orders of magnitude for the number of
connections.

HBench:Java addresses the benchmarking goals outlined in
Section 1 in the following ways:

1. The system vector and the application vector provide an
effective way to study and explain performance differences
between different JVMs.

2. The application vector indicates which primitive
operations are important, and the system vector reveals
which primitive operations are performance bottlenecks.
System implementers can use this information to improve
primitive operations that are significant for the
application. At the same time, application programmers
can use this information to optimize the application by
reducing the number of calls to expensive primitive
operations.

3. One can predict the performance of the application on a
given JVM without actually running the application on it,

as long as the system vector is available
1
. One might also

answer “what if” questions such as “What if this primitive
takes twice as long?” by modifying the appropriate system
and application vector entries.

1 HBench:Java will work best with support from JVM vendors

who supply the system vectors for their JVM products.

3.2 Identifying Primitive Operations
A JVM is a complicated piece of software. Figure 1 shows a
schematic view of a JVM implementation. Much of a JVM’s
functionality is supported via the system classes (also called
built-in classes or bootstrap classes). A JVM includes a
memory management system that automatically manages the
heap for the application. The execution engine is responsible
for bytecode interpretation, class loading, exception handling,
thread scheduling and context switches, the native method
interface, and synchronization. The JVM implementation is
further complicated by the JIT (Just In Time) component, which
compiles Java bytecode on the fly into native machine code.

3.2.1 First Attempt
In order to create a system vector for a JVM, we need to
decompose this complexity into a set of primitive operations.
One set of candidates is the JVM’s assembly instructions, i.e.,
bytecodes. This approach, however, proved inadequate
primarily due to the presence of the JIT. Once bytecodes are
compiled into native machine code, optimizations at the
hardware level such as out-of-order execution, parallel issue
and cache effects can lead to a running time that is significantly
different from the sum of the execution times of the individual
instructions executed alone.

For example, Figure 2(a) shows two Java code sequences: an
empty loop and a loop containing an integer addition operation.
The corresponding native code produced by the JIT is shown in
Figure 2(b). On a Pentium III processor, both loop iterations
take 2 cycles to execute, due to parallel instruction issues. This
leads one to conclude that the addition operation is free, which
is clearly not true.

3.2.2 Higher Level Approach
A higher level of abstraction that is immune or less sensitive to
hardware optimization is therefore needed. We identified the
following four types of high-level components of a JVM system
vector, capturing the four major components of a JVM
implementation as depicted in Figure 1, namely, system
classes; memory management; execution engine; and JIT
compiler. The following subsections describe each component
and its primitive operations in details.

3.2.2.1 System Classes
Identifying the primitive operations for the system classes
component is straightforward — we use method invocations to
the system classes, published in the standard Java API
specification, as primitive operations.

3.2.2.2 Memory Management
We consider two primitive operations of the memory
management component, namely, object allocation and dead
object reclamation2.

For a given memory management algorithm, the cost of object
allocation is typically determined by the following two factors:

1. size of allocation,

2. status of the heap, such as number of free blocks and
their sizes.

We can represent this cost with a function Calloc(heap_status,
allocation_size). Depending on the memory management
algorithm, Calloc takes on different forms. In the case of copying
garbage collectors, the free space is a contiguous area, and
allocation can be implemented with a simple pointer
advancement. Therefore, in this particular case Calloc is just a
constant function. In the case of non-copying collectors, such as
mark and sweep collector, the allocation time depends on the
status of the free-block lists maintained by the collector. If we
characterize the heap status with simple statistical measures,

2 More details in this subject will be presented in a forthcoming

paper.

// empty loop

for (int i = 0; i < numIterations; i++) {

;

}

// loop containing integer addition

for (int i = 0; i < numIterations; i++) {

sum += i;

}

Figure 2(a). Java code sequences

//empty loop

loop_start:

 inc ecx ;; i++

 cmp ecx, [esi+04h] ;; i<numIterations

 jnge loop_start

// loop containing integer addition

loop_start:

 add edi,ecx ;; sum += i

 inc ecx ;; i++

 cmp ecx, [esi+04h] ;; i<numIterations

 jnge loop_start

Figure 2(b). Corresponding native code sequences

JVM

Memory System Execution Engine

JIT

User App.

System Classes

Figure 1. Schematic view of a JVM.

such as a normal distribution with certain mean and standard
deviation, or a uniform distribution with a certain range, we
can represent Calloc in a concise way. Furthermore, we can
measure Calloc using microbenchmarks that initialize the heap
according to the statistical measures.

An interesting fact with garbage collection performance is that
the cost of dead object reclamation depends on the amount of
live data on the heap, since the way a garbage collector
identifies live objects is to traverse the connected object graph
from a set of root objects.

We divide the cost of object reclamation into three parts: the
fixed cost (Cfixed), the per-live-object cost (Clive), and the per-
dead-object cost (Cdead). Cfixed corresponds to the fixed cost
associated with a garbage collection run, such as the
initialization of data structures. Cfixed normally depends only on
the heap size. Clive is the overhead measured per live object
(objects that survive the collection). For non-copying collectors,
Clive is typically constant. For copying collectors, Clive is a
function of the size of live objects, as live objects are
compacted (copied) at the end of a collection run. Cdead
corresponds to the per-object cost of releasing the space of the
dead object to the available space. In most cases, this involves
updating certain bookkeeping information for the freed object,
and thus Cdead is usually constant for a given collector
algorithm. In summary, the cost of object reclamation can be
represented by three functions, Cfixed(heap_size),
Clive(object_size), and Cdead. Let Nl be the distribution function
of the sizes of live object, i.e. Nl(s) is the number of surviving
objects with size s. Let Nd be the distribution function of dead
object sizes. The total cost of garbage collecting a heap of size
h can then be calculated using the following formula:

∑∑ ++=
s

ddead
s

llivefixedGC sNCsNsChCT)(**)(*)()(

3.2.2.3 Execution Engine
Primitive operations of the execution engine include bytecode
interpretation, exception handling, context switching,
synchronization operations, etc.

3.2.2.4 JIT Compiler
Performance of the JIT compiler can be measured using two
metrics: overhead and quality of code generated. JIT overhead
can be approximated as a function of bytecode size, in which
case the primitive operation is the time it takes to JIT one
bytecode instruction. The product of this per-bytecode overhead
and the number of JITted bytecodes yields the overall overhead.
Note that the number of JITted bytecodes cannot be directly
obtained from the application, as it is JVM dependent. Rather,
it is obtained by applying a JVM dependant function J to the
base application vector N, and S, where each entry in N and S
represent each method’s invocation count and bytecode size,
respectively. For example, if a JVM compiles a method the first
time it is invoked, then

∑=
i

isSNJ),(,

where si is the ith element of S. The quality of JITted-code is
harder to quantify, and is a subject of ongoing research.

4. HBENCH:JAVA IMPLEMENTATION
The HBench:Java prototype implementation currently includes
only the system classes component, as highlighted by the circle
in Figure 1. Our experience shows that applications tend to
spend a significant amount of time in system classes. Therefore
we believe that this simplistic system vector, albeit crude, can
be indicative of application performance. Our results
demonstrate that HBench:Java already provides better
predictive power than existing benchmarks.

The implementation of HBench:Java consists of two
independent parts: a profiler that traces an application’s
interactions with the JVM to produce an application vector and
a set of microbenchmarks that measures the performance of the
JVM to produce a system vector. The following two sub-
sections describe these parts in more detail.

4.1 Profiler
The profiler is based on JDK’s Java Virtual Machine Profiling
Interface (JVMPI) [7]. Once attached to the JVM, a profiler can
intercept events in the JVM such as method invocation and
object creation. The Java SDK1.2.2 kit from Sun comes with a
default profiling agent called hprof that provides extensive
profiling functionality Error! Reference source not found..
We use this default profiler to obtain statistics of method
invocations from which we derive an application vector. As a
first step, our application vector (and accordingly our system
vector) only contains method invocations to JVM system
classes. A more complete custom profiler that incorporates the
garbage collector (GC) and the JVM execution engine and that
is able to directly produce an application vector is currently
under development.

A drawback of JVMPI is that it does not provide callbacks to
retrieve arguments of method calls. To remedy this problem,
we implemented a second profiler that is able to record method
arguments; it is based on JDK’s Java Virtual Machine
Debugger Interface (JVMDI) [6]. Since JVMDI can only be
enabled with JIT turned off (for the classic version of JDK), we
keep both profilers for obvious performance reasons, with the
first profiler responsible for extensive profiling and the second
profiler responsible for the much simpler task of call tracing.

4.2 Microbenchmarks
The current set of microbenchmarks consists of approximately
thirty methods including frequently invoked methods and
methods that take a relatively long time to complete, based on
traces from sample applications. Even though these methods
represent only a tiny portion of the entire Java core API, we
found them quite effective in predicting application
performance, as shown later in Section 5.

The microbenchmark suite is implemented using an abstract
Benchmark class. To add a microbenchmark to the suite, one
implements a class that extends the Benchmark class.
Specifically, this means implementing the runTrial() abstract
method. A utility program facilitates this process by
automatically generating the corresponding source Java
program from a template file and a file that specifies key
information about the particular microbenchmark.

Typically, the runTrial() method invokes the method to be
measured in a loop for some number of iterations. A nice
feature of our microbenchmarks is that the number of iterations
is not fixed, but rather dynamically determined based on the
timer resolution of the System.currentTimeMillis() function of
the specific JVM. A microbenchmark is run long enough that
the total running time is at least n times the timer resolution (to
allow for accurate measurement), and less than 2n times the
timer resolution (so that the benchmark doesn’t run for an
unnecessarily long time). For the experiments reported in this
paper, we used a value of 10 for n.

For methods whose running time also depends on parameters,
such as the BufferedReader.read() method that reads an array
of bytes from an input stream, we measure the per-byte reading
cost and the corresponding entry in the application vector
includes the total number of bytes instead of the number of
times the read() method is called. Our current prototype
implementation supports this simple case of linear dependency
on a single argument, and we found it sufficient for the sample
applications we tested. For more complicated argument types,
the system vector entry would consist of a list of (n+1)-tuples,
(t, a1, a2,…, an), where ai is the value of the ith argument, and t is
the time it takes to invoke the method with the given
arguments. We then measure several data points in this n-
dimension space, and extrapolate the running time based on the
actual parameters included in the corresponding application
vector entry.

Figure 3 shows some sample microbenchmark results for
JDK1.2.2 (Windows NT). The time for the read() method of
BufferedReader is the per-byte read cost, and the
Class.forName() method loads an empty class.

4.3 JVM Support for Profiling and
Microbenchmarking

For some primitive operations such as class loading, the first-
time invocation cost is the true cost and subsequent invocations
just return a cached value. As a result we cannot simply
measure the cost by repeatedly calling the method with the
same arguments in a loop and dividing the total time by the
number of iterations. In the case of class loading, it means we
need to load a different class every iteration. With the timer
resolution of current JVM implementations, to achieve
reasonable accuracy, the number of iterations required is on the
order of hundreds and increases as processor speed increases.

We could automatically create these dummy classes before
starting the loop. However, not only does this approach not
scale well, creating a large number of class files also perturbs
the results since the number of classes within a directory is
usually not that large. A better solution is to have the JVM
provide a high-resolution timer API. This approach has the
added advantage of reduced benchmark running time (recall
that the number of loop iterations is inversely proportional to
the timer resolution). Most modern CPUs provide cycle
counters that are accessible in user mode, and many popular
operating systems such as Solaris and Windows NT already
provide high-resolution timer APIs.

One of the difficulties of microbenchmarking is that sometimes
a good JIT will recognize the microbenchmark code as dead
code and optimize it out. We have to insert code to fool the JIT
into believing that the variables used in the microbenchmark
loop are still live after the loop, and subsequently not optimized
out of the loop. However, there is a limit as to how much this
workaround can do. A better solution would be for the JIT to
include command-line options that allow users to specify
optimization levels, similar to those present in C/C++
compilers.

Advanced JIT techniques such as the adaptive compilation used
in HotSpot [5] pose some difficulties measuring JIT overhead,
which cannot be overcome without help from JVM
implementers. An adaptive compiler compiles methods based
on their usage. Methods might be interpreted initially. As time
progresses, some are compiled into native code with a
lightweight compiler (with little optimization). Frequently
executed methods might be re-compiled with a more powerful
backend compiler that performs extensive optimization. The
problem lies in how to model the JVM dependent function J
which, given the number of method invocations and method
bytecode sizes, yields the number of bytecodes
compiled/optimized. We think the following enhancement to
JVM would be useful:

• A JVMPI event should be generated at the beginning and
end of the compilation of a method, so that we can model
and evaluate J.

• To measure the per-bytecode compiler/optimize overhead,
the java.lang.Compiler class should be augmented with
APIs for compiling and optimizing methods.

Method Name Method Signature Time(us)

java.lang.Character.toString ()Ljava/lang/String; 2.498

java.lang.String.charAt (I)C 0.092

java.io.BufferedReader.read ([CII)I 6.897

java.lang.Class.forName (Ljava/lang/String;)Ljava/lang/Class
;

5309.944

java.net.Socket.<init> (Ljava/net/InetAddress;I)V 2171.552

Figure 3. Sample microbenchmark results.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup
We ran our experiments on a variety of Java Virtual Machines.
Table 1 shows the list of JVMs tested and their configurations.

Three non-trivial Java applications (Table 2) were used to
evaluate HBench:Java. First, we ran the applications with
profiling turned on and derived application vectors from the
collected profiles. Next we ran the HBench:Java
microbenchmarks on the JVMs listed in Table 1 and obtained
their system vectors. The dot products of the system and
application vectors gave the estimated running time for each
application on each JVM, which was then compared with the
actual running time to evaluate the effectiveness of
HBench:Java. Since our initial goal is to correctly predict the
ratios of execution times of the applications on different JVM
platforms, we use normalized speed in reporting experimental
results. This also allows us to compare HBench:Java with
conventional benchmarking approaches such as SPECJVM98
that report results in the form of ratios.

5.2 Results
Figure 4 shows the results for the scripting language WebL. In
this experiment, three primitive operations account for the
majority of the running time, shown in Table 3. Also shown in
Table 3 are the measured performance on the five Java Virtual
Machine tested. The corresponding application vector is (80,
121, 32768). It’s interesting to note that the SPECJVM98 score

of JDK1.2.2 on the PentiumPro NT machine is higher than that
on the SparcStation. However, WebL runs close to three times
faster than on the SparcStation. HBench:Java’s system vector
reveals the problem. Class loading is twice as fast for the
SparcStation JDK, and the BufferedReader.read() method
executes almost 35 times faster. It turns out that for some
reason, the NT JDK1.2.2’s JIT didn’t compile the method
sun.io.ByteToCharSingleByte.convert(), an expensive method
called many times by java.io.BufferedReader.read(). The
differences result in superior performance on the SparcStation.
Besides explaining performance differences, the predicted
ratios of execution speeds are within a small margin of the real
execution speed ratios.

Figure 5 shows the results for Cloudscape, a database
management system. We did not report the result for the Sun
JDK1.2.2 classic version on the SparcStation because
Cloudscape wasn’t able to run on it. Similarly to what we
observed for the WebL results, not only does HBench:Java
correctly predict the order of the running speed on the different
JVM platforms, the predicted ratios of the execution speeds
closely match the actual ratios. On the other hand,
SPECJVM98 does not predict the order correctly, and its
predicted speed ratios are off by a large margin in most cases.
Also similar to the case of WebL, Cloudscape spends large
amount of time in class loading.

Table 1. Java Virtual Machines tested.

JVM CPU Memory (MB) Operating System JVM Version Vendor

JDK1.2.2_NT_PRO 1.2.2 Classic Sun Microsystems

SDK3.2_NT_PRO

Pentium Pro
200MHz

128
5.00.3167 Microsoft

JDK1.2.2_NT_II 1.2.2 Classic Sun Microsystems

SDK3.2_NT_II

Pentium II
266MHz

64

Windows NT 4.0

5.00.3167 Microsoft

JDK1.2.2_SunOS_Classic 1.2.2 Classic Sun Microsystems

JDK1.2.1_SunOS_Prod

UltraSparc IIi
333 MHz

128 Solaris 7
1.2.1_O3 Production Sun Microsystems

Table 2. Java applications used in the experiments.

Application Description Input Data

WebL
A scripting language designed specifically for
processing documents retrieved from the web [17].

A WebL script that counts the number of images
contained in a sample html file.

Cloudscape

A Java- and SQL-based ORDBMS (object-relational
database management system). The embedded version
is used, i.e., the database is running in the same JVM
as the user program [4].

The JBMSTours sample application included in the
Cloudscape distribution kit. Only the BuildATour
program, which simulates the task of booking flights and
hotels, is used.

Mercator
A multi-threaded web crawler [11]. The synthetic proxy provided by the Mercator kit that

generates web documents on the fly instead of retrieving
them from the Internet.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

JDK1.2.2_NT_Pro
JDK1.2.2_NT_II

SDK3.2_NT_Pro
JDK1.2.2_SunOS-Classic

JDK1.2.1_SunOS_Prod

SDK3.2_NT_II

JVM

N
o

rm
al

iz
ed

 S
p

ee
d

SpecJVM98

Actual

hBench Predicted

Figure 4. Normalized running speeds for WebL.

Table 3. Important primitive operations for WebL.

Time (µs)
JVM

Class.forName() ClassLoader.loadClass() BufferedReader.read()

JDK1.2.2_NT_PRO 5309.944 4564.824 6.897

SDK3.2_NT_PRO 3011.411 2710.269 0.317

JDK1.2.2_NT_II 4155.065 3961.282 5.108

SDK3.2_NT_II 2281.390 2053.251 0.244

JDK1.2.2_SunOS_Classic 2264.093 2037.331 0.195

JDK1.2.1_SunOS_Prod 2487.306 2145.458 0.139

0.00

0.50

1.00

1.50

2.00

2.50

3.00

JDK1.2.2_NT_Pro
JDK1.2.2_NT_II

SDK3.2_NT_Pro
JDK1.2.1_SunOS_Prod

SDK3.2_NT_II

JVM

N
o

rm
al

iz
ed

 S
p

ee
d SpecJVM98

Actual

hBench Predicted

Figure 5. Normalized running speeds for Cloudscape.

Figure 6 shows the results for Mercator, the web crawler. We
ran the proxy server and the web crawler on two different
machines connected with a 100Mb Ethernet switch, isolated
from the outside network. The machine that hosted the proxy

server was at least as fast as the machine that hosted the client,
to insure that the proxy server was not the bottleneck. We only
collected results for a limited number of JVMs due to the

difficulty of setting up the machines in an isolated network
3
.

The results, however, are quite encouraging. Even though
HBench:Java predicted the order for JDK1.2.2_NT_Pro and
SDK3.2_NT_Pro incorrectly, the predicted ratio still matches
the actual ratio quite closely. As a matter of fact, the actual
ratio is so close to one, it is difficult to tell which one is faster.
SPECJVM98 again predicted the wrong order for Sun
JDK1.2.2. In this case, two primitive operations, the
constructor of java.net.Socket and
java.net.SocketInputStream.read(), account for the majority of
the running time. Table 4 lists the cost of these two primitives
for the four Java Virtual Machines tested. The per-byte socket
read time is quite similar for the four JVMs. The socket
initialization time, which includes the cost of creating a TCP
connection, varies a lot among the four JVMs. The
corresponding application vector entry is (19525, 147550208).

To understand why SPEC performs poorly, we examined the
time breakdown for user versus system classes. Tables 5 and 6
show the percentage of time spent in system classes for SPEC
programs and the three sample applications we tested,
respectively. These numbers were obtained using the sampling
facility of the hprof agent included in Sun’s JDK1.2.2. As the

3 We have an agreement with Compaq that requires

experiments concerning Mercator to be run in an isolated
(disconnected) network environment.

Table 5. Time breakdown for SPECJVM programs.

Program System Time (%) User Time (%)

_201_compress 2.6 97.4

_202_jess 4.5 95.5

_209_db 33.1 66.9

_213_javac 6.1 93.9

_222_mpegaudio 1.4 98.6

_227_mtrt 1.4 98.6

_228_jack 15.1 84.9

Average 9.2 90.8

Table 6. Time breakdown for sample applications.

Program System Time (%) User Time (%)

WebL 54.0 46.0

Cloudscape 33.9 66.1

Mercator 92.9 7.1

0.00

0.50

1.00

1.50

2.00

2.50

JDK1.2.2_NT_Pro SDK3.2_NT_Pro JDK1.2.2_SunOS_Classic JDK1.2.1_SunOS_Prod

JVM

N
o

rm
al

iz
ed

 S
p

ee
d

SpecJVM98

Actual

Hbench Predicted

Figure 6. Normalized running speeds for Mercator.

Table 4. Important primitive operations for Mercator.

Time (µs)
JVM

Socket.<init>() SocketInputStream.read()

JDK1.2.2_NT_PRO 2171.552 0.210

SDK3.2_NT_PRO 2575.459 0.214

JDK1.2.2_SunOS_Classic 826.780 0.262

JDK1.2.1_SunOS_Prod 660.711 0.254

data show, the SPEC programs spend most of the time in user
classes. Therefore, they are poor predictors for applications that
spend a lot of time in system classes. Notice that even though a
larger percentage of time goes to user classes for the
Cloudscape case, HBench:Java was still able to predict the
ratios quite accurately. We suspect that this is because
performance of user classes is largely determined by JIT
quality. System classes are also compiled by the same JIT, thus
performance of a collection of system classes in some way
reflects the JIT quality, which applies to user classes as well.

In theory we can use HBench:Java to predict the running time
of SPEC programs. However, since SPEC programs spend little
time in system classes, the few system classes serve as poor
sample data for measuring JIT quality, resulting in large error
rate. Therefore, for SPEC-like applications, more sophisticated
techniques to measure JIT quality are needed.

In summary, the three examples presented demonstrate
HBench:Java’s ability to predict real applications’ performance.
The results are especially encouraging since the system vector
contains only a small set of system class methods. We expect
the accuracy of HBench:Java to improve as the system vector is
completed.

6. RELATED WORK
The HBench:Java approach is similar to the abstract machine
model [10], where the underlying system is viewed as an
abstract Fortran machine, and each program is decomposed into
a collection of Fortran abstract operations called AbOps. The
machine characterizer obtains a machine performance vector,
whereas the program analyzer produces an application vector.
The linear combination of the two vectors gives the predicted
running time. This approach requires extensive compiler
support for obtaining the accurate number of AbOps and is
limited to programming languages with extremely regular
syntax. It is also highly sensitive to compiler optimization and
hardware architecture [13]. As hardware becomes more
sophisticated, the accuracy achievable with this technique tends
to decrease. This is the key reason we did not use bytecodes as
primitive operations.

Brown [1] used the vector-based approach of HBench to
evaluate operating systems. They demonstrated that it
effectively predicts the performance of the Apache web server
on different platforms. The primitive operations in this case are
system calls, and the application vector is essentially the
system call trace.

7. DISCUSSION AND FUTURE WORK
HBench:Java is still in the early stages of its development. Here
we identify a few unresolved issues and describe how we plan
to address them.

The first issue is the large number of API method calls. We
plan to attack this problem by identifying a set of core methods,
including methods executed frequently by most applications
(such as those in the String class), and methods upon which
many other methods are built (such as those in the
FileInputStream class). We then plan to analyze method inter-
dependencies and derive running time estimates of non-core
methods from the running times of the core methods. For

instance, a length() method typically takes the same time as a
size() method. We believe that it is acceptable if the estimates
of non-core classes are not 100% accurate, since we expect
these methods to be infrequently invoked. Our goal is to keep
the number of microbenchmarks for the system class method
calls under 200.

Another issue is that JIT compilers could alter an application
enough that no single application vector could be used across
all JVM platforms. Our experience so far indicates that this is
not yet a problem. However, we will closely follow this issue as
JIT technologies become more advanced.

Our short-term goal is to implement a complete set of system
class microbenchmarks for HBench:Java and to test it on more
JVM varieties and commercial applications. In the long run, we
will implement other parts of the system vector, including
components representing the memory system and the execution
engine.

8. CONCLUSION
HBench:Java is a vector-based, application-specific
benchmarking framework for JVMs. Our performance results
demonstrate HBench:Java’s superiority over traditional
benchmarking methods in predicting the performance of real
applications and in pinpointing performance problems. By
taking the nature of target applications into account and
offering fine-grained performance characterizations
HBench:Java can provide meaningful metrics to both
consumers and developers of JVMs and Java applications.

9. ACKNOWLEDGMENTS
We wish to thank Allan Heydon and Marc Najork at Compaq
Systems Research Center for providing us with the Mercator
kit, and Suiling Ku for her assistance with the Cloudscape
software. We also thank the creators of the WebL scripting
language. Special thanks go to Lance Berc from Compaq
Systems Research Center for his suggestions of Java
applications for measurement. We are grateful to the
anonymous reviewers for their insightful comments and
suggestions on improving this paper, and to David Sullivan,
Keith Smith and Kostas Magoutis for proofreading the draft.
David Sullivan implemented the first version of the
HBench:Java microbenchmarks.

10. REFERENCES
[1] Brown, A. B. A Decompositional Approach to Computer

System Performance Evaluation. Technical Report TR-03-
97, Center for Research in Computing Technology,
Harvard University, 1997.

[2] Bull, J. M., Smith, L. A., Westhead, M. D., Henty, D. S.,
and Davey, R. A. A Methodology for Benchmarking Java
Grande Applications. In Proceedings of the ACM 1999
Conference on Java Grande, pages 81-88, Palo Alto, CA,
June 12-14, 1999.

[3] CaffeineMark.
http://www.webfayre.com/pendragon/cm3/runtest.html.

[4] Cloudscape. http://www.cloudscape.com.

[5] HotSpot. http://java.sun.com/products/hotspot/.

[6] JVMDI, Java Virtual Machine Debugger Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/inde
x.html.

[7] JVMPI, Java Virtual Machine Profiling Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/inde
x.html.

[8] Jones, M., and Regehr, J. The Problems You’re Having
May Not Be the Problems You Think You’re Having:
Results from a Latency Study of Windows NT. In
Proceedings of the 1999 Workshop on Hot Topics in
Operating Systems (HotOS VII), pages 96-102, Rio Rico,
AZ, March 29-30, 1999.

[9] Liang, S., and Viswanathan, D. Comprehensive Profiling
Support in the Java Virtual Machine. In 5th USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS ’99), pages 229-240, San Diego, CA, May 3-7,
1999.

[10] Mathew, J. A., Coddington, P. D., and Hawick, K. A.
Analysis and Development of Java Grande Benchmarks. In
Proceedings of the ACM 1999 Conference on Java
Grande, pages 72-80, Palo Alto, CA, June 12-14, 1999.

[11] Mercator. http://www.research.digital.com/SRC/mercator/.

[12] Saavedra-Barrera, R. H., Smith, A. J., and Miya, E.
Machine Characterization Based on an Abstract High-
Level Language Machine. IEEE Transactions on
Computer, 38(12), December 1989, 1659-1679.

[13] Saavedra-Barrera, R. H., Smith, A. J., Analysis of
Benchmark Characteristics and Benchmark Performance
Prediction. ACM Transactions on Computer Systems,
14(4), November 1996, 344-384.

[14] Seltzer, M., Krinsky, D., Smith, K., and Zhang X. The
Case for Application-Specific Benchmarking. In
Proceedings of the 1999 Workshop on Hot Topics in
Operating Systems (HotOS VII), pages 102-107, Rio Rico,
AZ, March 29-30, 1999.

[15] SPECJVM98. http://www.spec.org/osg/jvm98/.

[16] VolanoMark. http://www.volano.com/benchmarks.html.

[17] WebL. http://www.research.digital.com/SRC/WebL/

