4 Êý¾Ý²¢ÐÐÐÔ |
![]() |
»ù±¾ÎïÀíÏÖÏó£¬ÀýÈçÈÈÁ¿²úÉúºÍÏûʧÌØÐԺ͵ç×ÓÐźÅËٶȣ¬ÔÚÀíÂÛºÍʵ¼ùÉÏÏÞÖÆÁ˵¥´¦Àí»úϵͳµÄ¼ÆËãËٶȡ£ËäÈ»ÕâЩÏÞÖÆÄ¿Ç°ÔÚ´óÔ¼"gigafiop"(ÿÃëÊ®ÒÚ¸öÊýÖµ²Ù×÷)·¶Î§ÄÚ£¬µ«ÊÇһЩ¼ÆËã¿ÆѧµÄµ±´úÓ¦ÓÃÐèÒª¸ü¸ßµÄËٶȣ¬ÀýÈç¶àÊý"grand challenge"ÖеÄÓ¦ÓÃÎÊÌâ. ͨ¹ýÔö¼Ó´¦ÀíÆ÷µÄ¸öÊýÀ´Ìá¸ß¼ÆËãÄÜÁ¦±ÈÔö¼Óµ¥´¦Àí»úµÄËٶȸü¿ÉÐС£½«À´ÓпÉÄÜËùÓÐÉæ¼°´óÁ¿¼ÆËãµÄÓ¦Óý«Ê¹²¢Ðм¼ÊõµÃµ½¼«´óÓ¦Óá£
Ó¦ÓóÌÐò¿ÉÒÔʹÓÃÁ½ÖÖ(»òÕßÆäÖÐÒ»ÖÖ)»ù±¾ÐÎʽ£¬ÔÚÕâÀï±»³Æ×÷¡°Êý¾Ý²¢ÐС±ºÍ¡°´¦Àí²¢ÐС±¡£Êý¾Ý²¢ÐÐָͬʱ¶ÔÐí¶àÊý¾Ý¶ÔÏóÖ´ÐÐÏàËƵļÆËã¡£ÕâÖÖ²¢ÐеÄÔÐÍ(ÓÈÆä¶ÔÓÚ¼ÆËã¿ÆѧӦÓÃ)ÊǶÔÒ»¸öÊý×éµÄËùÓÐÔªËØͬʱ½øÐвÙ×÷¡ª¡ªÀýÈ磬ÓÃÒ»¸ö¸ø¶¨ÖµÈ¥³ýÊý×éµÄÿ¸öÔªËØ(±ÈÈçÔÚ¾ØÕó¹éԼʱ½«Ö÷ÔªÐлù×¼»¯)
Õë¶ÔÌض¨Ä¿µÄ£¬ÕâÀïÊý¾Ý²¢Ðн«Òâζ×ŶÔÊý×éÔªËصIJ¢·¢²Ù×÷¡£´¦Àí²¢ÐÐÖ¸²¢ÐеØÖ´Ðв»Í¬´¦Àí¹ý³Ì£¬ÔÚÕâÀï¹ý³ÌÊÇÈÎÒâ˳ÐòµÄ²Ù×÷¡£ÀýÈ磬һ¸ö×ÓÀý³ÌÊÇÒ»¸ö¹ý³Ì£¬¾ÍÏóÈÎÒâÒ»¸öÓï¾ä¿éÒ»Ñù¡£´¦Àí²¢ÐеÄÒ»¸öÔ½À´Ô½ÖØÒªµÄÐÎʽÊÇͬʱ¼ÆËãÁ½¸ö±í´ïʽ¡ª¡ªÀýÈç¹ý³Ìµ÷ÓÃÖеÄÁ½¸öʵ²Î¡£ÒѾ¿ª·¢Á˼¸¸öÖ¸¶¨´¦Àí²¢ÐеÄ;¾¶£¬´¦Àí²¢Ðеıê×¼Ò²½«³öÏÖ[3].ÕâÖÖ²¢Ðн«ÔÚÕµÄÒÔºó·¢±íÖÐÌÖÂÛ¡£ª¥
ËäÈ»´¦Àí²¢ÐÐÔÚ¼ÆËã¿ÆѧµÄÐí¶àÓ¦ÓÃÖж¼ºÜÖØÒª£¬µ«ÊÇÓÉÓÚÔÚÕâЩӦÓÃÖÐÊý×é¾³£±»Ê¹Óã¬Òò´ËÔÚ´ó¶àÓ¦ÓÃÖÐÊý¾Ý²¢ÐпÉÄܸüÓÐÓã¬ÉõÖÁÔÚһЩӦÓÃÖгÉΪ¹Ø¼üËùÔÚ¡£ËùÒÔÕâÒ»½Ú¼¯ÖÐÌÖÂÛ²¢ÐÐÊý×é²Ù×÷£¬ÖصãÔÚÓÚFortran 90ÖÐÕâÖÖ²Ù×÷µÄ·á¸»µÄ¼¯ºÏ¡£
APL¿ÉÄÜÊǵÚÒ»¸ö°ÑÊý×éµ±×÷ÍêÕûµÄÊý¾Ý¶ÔÏó¶ø²»½ö½öÊÇÒ»¸öÊý¾Ý¶ÔÏóµÄ¼òµ¥¼¯ºÏµÄ³ÌÐòÉè¼ÆÓïÑÔ. ²Ù×÷¿ÉÒÔ¶ÔÕû¸öÊý×é½øÐУ¬Èç
C¡ûA+B
ÔÚÕâÀïA£¬B£¬C¶¼¿ÉÒÔÊÇÊý×飬±ÈÈçA£¬B£¬C¿ÉÄܶ¼ÊÇ200¡Á300µÄ¶þάÊý×é¡£ÕâÑùÒ»¸ö²Ù×÷µÄº¬ÒåÊǶÔËùÓÐ200¸öiÖµºÍ300¸öjÖµ¼ÆËã Ci,j=Ai,j+Bi,j£¬ÔÚÕâÖÖÇé¿öÏ£¬¹²ÓÐ60£¬000¸öÉæ¼°Êý×éÔªËصĶÀÁ¢¼ÆËã¡£Òò´ËAPLÄ£ÐÍÊǶÔÊý×éËùÓÐÔªËصIJ¢·¢¼ÆËã¡£(¿ÉÊǺÜÉÙÓÐAPLµÄʵÏÖÀûÓÃÕâÖÖ¸ÅÄîµÄ²¢ÐÐÐÔ)¡£
³ýÁËÖ§³ÖÓëÉÏÃæËùʾµÄ¼Ó·¨²Ù×÷ÏàËƵÄÒ»°ãÊýѧ²Ù×÷£¬APL»¹¶¨ÒåÁËÆäËüÒÔÊý×éΪµ¥Î»µÄ²Ù×÷.ÕâЩ²Ù×÷°üÀ¨¹éÔ¼²Ù×÷(ÀýÈ磬+/A±íʾÇóÊý×éAµÄËùÓÐÔªËغÍ), ¹¹Ôì²Ù×÷(ÀýÈç, i4¹¹ÔìÒ»¸öËĸöÔªËصÄÏòÁ¿, ֵΪ1,2,3,4), ºÍ²éѯ²Ù×÷(ÀýÈç, Èç¹û¦ÑB·µ»ØÊý×éBµÄ״̬¡ª¡ªÒ»¸öÏòÁ¿£¬ËüµÄ´óСÊÇBµÄÖÈ£¬ËüµÄÔªËØÖµÊÇBµÄÏàӦάµÄ´óС¡ª¡ªÄÇô*/¦ÑB¼ÆËãÊý×éBÖÐÔªËصĸöÊý)¡£ËùÓÐÕâÑùµÄ²Ù×÷¿É±»ÓÃÀ´×é³É¸ü¸´ÔÓµÄÊý×éÖµ±í´ïʽ(ÀýÈ磬¶ÔÒ»¸öһάÊý×éQ£¬*/Q+i*/¦ÑQ´ÓÓÒÏò×ó¼ÆËã(ÕâÊÇAPL!)£¬²úÉúÒ»¸ö´óСΪQµÄÏòÁ¿1£¬2£¬3£¬¡£¬²¢ÓëQÏà¼Ó£¬½á¹ûÔªËØÏà³Ë£»Èç¹ûQÊÇÏòÁ¿(3£¬2£¬4)£¬ÄÇ*/Q+i*/¦µ¦ÑQ£½*/((3,2,4)+(1,2,3))=*(4,4,7)=56)¡£ÔÚÊý¾Ý²¢ÐÐ֮ǰÒýÈëAPL±äµÃÍêȫʵÓÃ( )
Fortran90µÄÊý×é²Ù×÷ʵ¼ÊÉÏÌṩÁËËùÓеÄAPLµÄÖð¸öÔªËØ(elenent-by-element)Êý¾Ý²¢ÐÐÌØÕ÷£¬²¢ÇÒÞðÆúÁËAPLµÄȱµã¡£ÕâЩ²Ù×÷ʹÓÃÀàÄâFortranµÄ±í´ïʽ¼ÆËã¹æÔò£¬ÊǶԱêÁ¿ÔËËã¡¢º¯Êý¡¢±í´ïʽµÄ×ÔÈ»À©Õ¹£¬¹éÔ¼£¬¹¹ÔìºÍ²éѯ²Ù×÷ͨ¹ýÔö¼ÓһЩ¸»ÓÐÒâÒåÃüÃûµÄÄÚ²¿º¯ÊýÀ´Ìṩ¡£ÎªÁ˱£Ö¤ÕâЩ²Ù×÷Äܹ»ÔÚµ±´ú²¢Ðд¦ÀíϵͳÉÏÓÐЧµØÖ´ÐУ¬½øÐÐÁË×ÐϸµÄ¿¼ÂÇ
Ò»°ã˵À´£¬³ýÁËÔÚÉÙÊý¼¸¸öÉÏÏÂÎÄÖбí´ïʽÏÞÖÆΪ±êÁ¿Í⣬ÈÎÒâFortran90±í´ïʽ¶¼¿ÉÒÔº¬ÓÐÊý×é²Ù×÷£¬½á¹û¿ÉÒÔÊÇÊý×éÖµ¡£Fortran77½öÔÊÐí±êÁ¿±í´ïʽ£»Fortran 90Öм¸ºõËùÓÐÕâÑùµÄ±í´ïʽ¶¼¿ÉÒÔÊÇÊý¾Ý²¢ÐÐÊý×éÖµ¡£(ÔÚ¿ØÖÆÉÏÏÂÎÄÖУ¬ÈçIFÓï¾ä¿ØÖÆÌõ¼þ(±êÁ¿Âß¼±í´ïʽ)£¬DOÑ»·Ë÷Òý±í´ïʽÖУ¬ÒÔ¼°I/O˵Ã÷·û(Èçµ¥ÔªÊý£¬ÎļþÃû£¬¿ª·ÅÓï¾ä˵Ã÷·ûµÈµÈ)ÖУ¬¶¼ÐèÒª±êÁ¿±í´ïʽ)¡£Êý×é²Ù×÷µÄÀý×ÓÈçÏÂËùʾ(±äÁ¿ÖеÄÈÎÒâÒ»¸ö»òÈ«²¿¶¼¿ÉÒÔÊÇÊý×é)£º
C£½A+B
print *, P*Q-R,S
call T3 (X,Q,Z-V)
×¢Ò⣬ÔÚÕâЩÇé¿öÖУ¬Êý×é±í´ïʽÓë±êÁ¿±í´ïʽÎÞ·¨Çø·Ö¡ª¡ªÓû§ÐèÒª´ÓÆäËüÉÏÏÂÎÄ»ñÖªÕâЩ±äÁ¿Òѱ»¶¨ÒåΪÊý×顪¡ªµ«ÊÇÿ¸ö±í´ïʽ¿ÉÄÜ´ú±íÉÏ°ÙÍò´Î²¢ÐмÆËã¡£Èç¹ûA£¬B£¬C£¬P£¬QºÍRÊǶþάÊý×飬ZºÍVÊÇһάÊý×飬ÄÇôÕâÈý¸öÓï¾ä¿ÉÒÔд³ÉÈçϵĵȼÛÐÎʽ(Ö¤Ã÷È·¶¨ÒéÁËÊý×é²Ù×÷)£º
C(:£¬:)=A(:,:)+B(:,:)
print*,P(:,:)*Q(:,:)-R(:,:),s
call T3(X,Q(:,:),Z(:_-V(:))
º¯Êý¿ÉÒÔ±»¶¨Òå³ÉÊý×éÖµ£¬Òò´Ë¿ÉÒÔ×÷ΪÊý×éÖµ±í´ïʽµÄ²Ù×÷Êý£¬ÕâÒÔ¼°ÓëÊý×éÏà¹ØµÄÄÚ²¿º¯ÊýÔÚ4.4½Ú¼ÓÒÔ˵Ã÷¡£
Òò´Ë£¬ÓÃÊý×é´úÌæ±êÁ¿×÷Ϊ²Ù×÷Êý£¬ÄÇôelement-by-elementÊý¾Ý²¢ÐеÄÊý×éÖµµÄ±í´ïʽÊDZêÁ¿±í´ïʽµÄÖ±½Ó×ÔÈ»µÄÀ©Õ¹£¯×ۺϡ£
ÕâÑù£¬Èç¹ûAºÍBÊÇ2¡Á3µÄÊý×飬ÈçÏÂËùʾ
A = | 2 3 5 | B = |5 4 1| | 1 7 4 | |2 2 3| (3)
Ôò A + B µÄ½á¹ûΪ:
A + B = |7 7 6| |3 9 7| (4)
A X BµÄ½á¹ûΪ:
A X B = |10 12 5| |2 14 12| (5)
Èç¹ûÒ»¸ö±í´ïʽÖеÄÔËËã²»Ö»Ò»¸ö£¬ÄÇôµÚÒ»¸ö×Ó±í´ï±íµÄ(¸³ÖµµÄÊý×é)½á¹ûÊǵڶþ¸öÔËËãµÄ²Ù×÷Êý£¬ÒÔ´ËÀàÍÆ. ÀýÈ磬¶ÔÓÚÉÏÊöµÄ A ºÍ B£¬ÔÚ±í´ïʽA+B¡ÁAÖÐ, B¡ÁAµÄ½á¹û±»¼Óµ½AÉÏ£¬ÕâÑùA+B¡ÁAµÄ½á¹ûÊÇ
|2 3 5| + |10 12 5| = |12 15 10| |1 7 4| |2 14 12| |3 21 16| (6)
×¢Ò⣬һ¸ö3¡Á2µÄÊý×éÓë2¡Á3µÄÊý×é²»Ò»Ö¡ª¡ªËäÈ»ËüÃÇÓÐÏàͬµÄÖȺÍÔªËظöÊý£¬µ«ÏàӦάµÄ´óС²»Í¬¡ª¡ªÒò´ËÕâÑùÁ½ÉÏÊý×é²»ÄÜ×÷Ϊͬһ¸öÊý×éÔËËãµÄ²Ù×÷Êý£¬Õâ¸ö»ù±¾µÄÒ»ÖÂÐÔ¹æÔòµÄΨһÀýÍâÊDzÙ×÷ÊýÖеÄÒ»¸öÊDZêÁ¿£¬ÔÚÕâÖÖÇé¿öÏ£¬±êÁ¿±»¡°¹ã²¥¡±µ½ÓëÁíÍâÒ»¸ö²Ù×÷ÊýÏàÒ»ÖµÄÊý×éÖУ¬Õâ¸ö¹ã²¥Êý×éµÄÿ¸öÔªËØÖµÊǾÍÊDZêÁ¿µÄÖµ£¬ÀýÈ磬B£«2ÊÇÒ»¸öÓÐЧµÄÊý×é²Ù×÷(¼ÙÉèBΪǰÃ涨ÒåµÄÊý×é)£¬B£«2µÄÖµÊÇ
|5 4 1| + |2 2 2| = |7 6 3| |2 2 3| |2 2 2| |4 4 5| (7)
ÔÚÊý×é²Ù×÷ÖУ¬(¹ã²¥)±êÁ¿Í¨³£ÓÃÔÚÊý×é³õʼ»¯ºÍ»»Ëãʱ£º
A=0 ! ÉèÖà A µÄÿ¸öÔªËØֵΪ0 B=(B+1)/2 ! B µÄÿ¸öÔªËؼÓ1, È»ºó±» 2 ³ý
×îºóÕâ¸öÀý×Ó˵Ã÷ÁËFortran 90 Êý×é²Ù×÷µÄÒ»¸ö¹Ø¼ü·½Ã棺ÔÚÒ»¸öÊý×éÖµµÄ¸³ÖµÓï¾äÖУ¬ÔÚ¸³ÖµÖ®Ç°£¬ÓұߵÄÊý×éÖµÒѱ»Ëã³ö£¬·ñÔòÓұߵÄÊý×éÖµÔÚÔËËãδÍê³É֮ǰ¿ÉÄÜ»áÊܵ½Ó°Ïì(ËäÈ»ÔÚÕâ¸ö¼òµ¥µÄÀý×ÓÖв»»áÕâÑù)£¬Òò´Ë£¬Fortran 90µÄ¸ÅÄîÄ£ÐÍÊÇ£ºÏȶÔÓÒ±ßÊý×éÖµµÄËùÓÐÔªËز¢ÐмÆËã(»òÒÔÈÎÒâ˳Ðò)È»ºóÔÙ¸³Öµ£¬ÈκÎÄܱ£Ö¤ÕâÖÖÐÐΪÌØÐÔµÄʵÏÖÊÇÔÊÐíµÄ¡£
ÌåÏÖÕâÖÖ¹æÔòÖØÒªÐÔµÄÒ»¸öÀý×ÓÊÇ4.5½ÚµÄÑ¡Ö÷Ôª¹ý³Ì¡£ÔÚÕâ¸öÀý×ÓÖУ¬Ö÷ÔªÐÐÓÃÈçϵÄÊý×é²Ù×÷¼ÓÒÔ¹æ¸ñ»¯£º
G(P,:)=G(P,:)/G(P,K)
Õâ¸ö²Ù×÷ʹÓÃÒ»¸öÊý×éƬ¶ÎG(P,:);Êý×éƬ½«ÔÚ4.2½ÚÃèÊö£¬ÔÚÕâ¸öÀý×ÓÖÐG(P,:)ÊǾØÕóGµÄµÚPÐÐ(Ö÷ÔªÐÐ)£¬G(P£¬K)ÊÇÖ÷ÔªËØ(KÊÇÖ÷ÔªÁÐ)¡£¹æ¸ñ»¯²Ù×÷¶¨±êÖ÷ÔªÐУ¬Ê¹µÃÖ÷ÔªµÄÖµÊÇ1. ×¢Ò⣬Èç¹ûÕâ¸öÔªËصÄÖµÔÚÓұߵļÆËãÍê³É֮ǰÒѾ±ä³ÉÁË1£¬ÄÇôÕâÒ»ÐоÍûÓб»Êʵ±µØ¹æ¸ñ»¯(ÔÚ˳Ðò±à³ÌÖÐÕâÊÇÒ»¸öµäÐ͵ĴíÎó). Òò´Ë£¬Êý×é²Ù×÷²»Äܱ»ÈÏΪÊǶÔÊý×éÔªËصġ°Ñ»·¡±²Ù×÷£¬ÕâÖÖ"Ñ»·²Ù×÷"°µÊ¾×Å˳ÐòµÄ²Ù×÷£»Í¨³£µ±Éæ¼°µ½¸³ÖµµÄʱºò£¬°ÑÊý×é²Ù×÷µ±×÷Ñ»·¾Í»á²úÉú´íÎó½á¹û. Êý×é²Ù×÷Ó¦µ±±»¿´×÷ÊÇ»ý·Ö£¯²¢ÐмÆËã¡£
Êý×é¹¹Ôì×Ó(constructor)
Êý×éÖµ¿ÉÒÔÓÃÊý×é¹¹ÔìÆ÷À´ÏÔʽ¹¹Ô죬Èç¹ûÐèÒªµÄºÏ³ÉÊý×éάÊý´óÓÚ1£¬ÄÇôÓÃRESHAPEÄÚ²¿º¯ÊýÀ´¹¹Ô죻Êý×é¹¹ÔìÆ÷¹¹ÔìÒ»¸öһάÊý×é¡£Êý×é¹¹ÔìÆ÷Ö»²»¹ýÊǽá¹ûÔªËØÖµµÄÒ»¸öÁбí, Õâ¸öÁбí·â±ÕÔÚÔÚ¶¨½ç·û(/... /)ÖУ¬¸÷ÔªËØÖµÖ®¼äÓöººÅ·Ö¿ª¡£Ç°ÊöµÄAPLÀý×Ó¿ÉÒÔÓÃFortran 90µÄÊý×é¹¹ÔìÆ÷д³É
(/1,2,3,4/)
(¾¡¹ÜÓиüÒ»°ãµÄ·½·¨À´Ö¸¶¨ÕâÑùÒ»¸ö¡°iota¡±Ë³Ðò)¡£Õâ¸öÀý×ÓÖУ¬Ã¿¸öÔªËض¼ÊÇÒ»¸ö¼òµ¥±êÁ¿³£Á¿. ͨ³££¬Êý×é¹¹ÔìÆ÷ÖеÄÈÎÒ»ÔªËØ¿ÉÒÔÊÇÈÎÒâµÄ±êÁ¿±í´ïʽ¡£È»¶øÈç¹ûËüÃÇÈ«Êdz£Á¿£¬ÄÇôÕâÑùÒ»¸ö¹¹ÔìÆ÷(¿ÉÄܽáºÏRESHAPEº¯ÊýÒ»¼ûºóÎÄ)±íʾһ¸öÊý×é³£Á¿£¬¿ÉÒÔÔÚPARAMETER¶¨ÒåÖгöÏÖ. Òò´Ë£¬Êý×é¹¹ÔìÆ÷(½áºÏRESHAPE)ÊÇFortran 90ÖбíʾÊý×é³£Á¿µÄÒ»ÖÖ·½·¨¡£
Èç¹ûÿ¸öÔªËض¼ÐëÏÔʽÁгö£¬ÄÇô¶ÔÓÚ¶¨ÒåÒ»¸ö·Ç³£´óµÄÊý×éÖµÀ´Ëµ£¬Êý×é¹¹ÔìÆ÷¾Í²»ÊÇÄÇôʵÓÃÁË¡£Òò´Ë£¬³ýÁ˱êÁ¿±í´ïʽÍ⣬Fortran 90»¹ÌṩÁËÁ½ÖÖ·½Ê½À´¶¨ÒåÁéÃô×é¹¹ÔìÆ÷µÄ±íÏ¼´Òþº¬do½á¹¹ºÍÊý×é±í´ïʽ£¬µÚÒ»ÖÖ¾ßÓÐÈçÏÂÐÎʽ
(±í´ïʽ±í£¬Ë÷Òý±äÁ¿=³õÖµ£¬ÖÕÖµ[,ÔöÁ¿])
Ë÷Òý±äÁ¿ÊÇÒ»¸ö±êÁ¿ÕûÐͱäÁ¿, ÓÃÀ´×÷Ϊµü´úË÷Òý£¬ÓëFortran 77 µÄÊäÈ룯Êä³ö˵Óï¾äÖеÄÒþº¬doÑ»··½Ê½Ò»Ñù. Êý×é¹¹ÔìÆ÷ÖÐÒþº¬do½á¹¹µÄÒ»¸ö¼òµ¥Ó¦ÓÃÊDzúÉúÈÎÒâµÄ¡°iota¡±Ë³Ðò¡£ÀýÈ磬Êý×é¹¹ÔìÆ÷
(/(k,k=1,n)/)
²úÉúÔªËØֵΪ1£¬2£¬3£¬4£¬5...nµÄÏòÁ¿£»Èç¹ûnΪ4£¬Ôò½á¹ûÊÇ(/1,2,3,4/)¡£ÔÙÀýÈ磬һ¸ö¾ßÓÐÒ»°ÙÍò¸ö1ºÍ0½»²æÐòÁеÄÏòÁ¿£¬
(/1,0,1,0,1,0,1,$\1dots$/)£¬¿ÉÓÃ(/(1,0,j=1,500000)/)À´¶¨Òå¡£Òþº¬doÑ»·½ö½öÒÔÖ¸¶¨µÄ´ÎÊýÀ´¸´ÖÆÕâ¸öÁÐ±í£¬Èç¹ûË÷Òý±äÁ¿ÊDZí´ïʽÁбíÒ»¸ö±í´ïʽµÄ²Ù×÷Êý£¬ÔòÓÃÏàÓ¦µÄË÷Òý±äÁ¿ÖµÀ´¶ÔÄÇÒ»Ïî½øÐи´ÖÆ¡£ÔÚÒþº¬do±í´ïʽÁбíÖеÄÏî¿ÉÒÔÊÇÊý×é¹¹ÔìÆ÷±¾ÉíÔÊÐíµÄÈýÖÖÐÎʽ֮һ¡ª¡ª¼´±êÁ¿±í´ïʽ£¬Òþº¬do½á¹¹£¬ºÍÊý×é±í´ïʽ¡£ÉÏÃæËù¾ÙµÄÁ½¸öÀý×ÓÔÚÒþº¬doÁбíÖнöʹÓÃÁ˼òµ¥µÄ±êÁ¿±í´ïʽ¡£
Ò»¸öÈÎÒâάÊýµÄÊý×é±í´ïʽ¿ÉÒÔ³öÏÖÔÚÊý×é¹¹ÔìÆ÷ÖС£ÀýÈ磬Èç¹ûAÊÇÒ»¸ö1000¡Á1000µÄÊý×飬ÄÇô
(/A+1.3/)
ÊÇÒ»¸öº¬ÓÐ100Íò¸öÔªËصÄÊý×é¹¹ÔìÆ÷£¬Ã¿¸öÔªËØÖµ±ÈÏàÓ¦µÄÊý×éAµÄÔªËØÖµ´ó1.3¡£A£«1.3µÄËùÓÐÔªËØ°´ÕÕÓëFortranÏàËƵġ°ÒÔÁÐΪÖ÷¡±µÄ˳Ðò±»·Åµ½Êý×é¹¹ÔìÆ÷ÖУ¬¼´Ò»ÁнÓÒ»ÁеØÔËÐÐÍêµÚһά£¬È»ºóÔÙÔËÐеڶþά£¬ÕâÑù(/A+1.3/)µÈ¼ÛÓÚ
(/((a(j,k)+1.3,j=1,1000/)£¬K£½1£¬1000)/)
Òþº¬do½á¹¹¿ÉÒÔÓÃÀ´ÊµÏÖ²»Í¬ÓÃ˳Ðò. ÀýÈ磬Èç¹ûÐèÒªA+1.3µÄÖð¸öÐÐÏòÁ¿£¬¶ø²»ÊÇÁÐÏòÁ¿£¬ÔòÏÂÊöÊý×é¹¹ÔìÆ÷¿ÉÒÔʵÏÖ£º
(/((A(j,k)+1.2,K=1,1000),j=1,1000)/)
×îºó£¬RESHAPEÄÚ²¿º¯ÊýµÄ¼òµ¥ÐÎʽ¿ÉÒÔÓÃÀ´½«(һά)Êý×é¹¹ÔìÆ÷µÄ½á¹ûÖض¨ÐÎΪÐèÒªµÄÐÎ×´. ÕâÖÖ¼òµ¥¶¨ÒåÐÎʽΪ
RESHAPE (Êý×é¹¹ÔìÆ÷£¬ÐÎ×´ÏòÁ¿)
ÕâÀïÐÎ×´ÏòÁ¿µÄÿ¸öÔªËØ´ú±íËùÐèÒªµÄÊý×éÐÎ×´µÄÿһά£¬ÔªËصÄÖµ´ú±í¸ÃάµÄÔªËظöÊý¡£ÀýÈ磬 ¿ÉÓÃÈçÏÂÐÎʽÀ´¶¨ÒåÒ»¸öÃûΪ Ident_1000µÄ1000¡Á1000µÄʵÐ͵¥Î»¾ØÕó
real, parameter :: Indent_1000= &
RESHAPE((/1.0,(0.0,K=1,1000),J=1,999)1.0/),(/1000,1000/))
Òò¶ø£¬¶ÔÓÚ¹¹ÔìÊý×éÖµ(°üÀ¨Êý×é³£Á¿)À´Ëµ, Êý×é¹¹ÔìÆ÷½áºÏRESHAPEÄÚ²¿º¯ÊýÊÇÒ»¸ö¼«ÆäÓÐÁ¦µÄ¹¤¾ß¡£
ÆÁ±ÎÊý×鸳ֵ
Ò»¸ö¡°ÆÁ±Î(mask)¡±ÊÇÒ»¸öÂß¼ÀàÐ͵ÄÊý×é¡£Ò»¸öÆÁ±ÎÊý×é²Ù×÷ÊÇÕâÑùµÄÒ»¸ö²Ù×÷£¬ÔÚÕâ¸ö²Ù×÷ÖУ¬ÓÃÓë²Ù×÷½á¹ûÏàÒ»ÖµÄÆÁ±ÎÀ´Ö¸Ã÷Ö»Óв¢ÐÐÔªËزÙ×÷µÄÒ»¸ö×Ó¼¯±»Ö´ÐС£ÕâÖÖ¹¦ÄÜÔÚһЩÄÚ²¿º¯ÊýÖкÍÊý×鸳ֵÖж¼ÊÇ¿ÉÓõġ£ÔÚºóÒ»ÖÖÇé¿öÏ£¬Êý×éµÄ¸³ÖµÊÇÔÚWHEREÓï¾äµÄÆÁ±ÎÂë¿ØÖÆÏÂÖ´ÐУ¬Ò»°ãÐÎʽΪ£º
WHERE(ÆÁ±ÎÂë) Êý×鸳ֵÓï¾ä
WHEREÆÁ±ÖÂë±ØÐëÓ븳ֵÓï¾ä×ó±ßµÄÊý×é(Ó븳ֵºÅÓұߵıí´ïʽÏàÒ»ÖÂ)ÏàÒ»Ö¡£µ±ÆÁ±ÎÂëµÄÔªËØֵΪÕæ(.TRUE.)ʱ£¬²Å¶ÔÏàÓ¦µÄÔªËØÖ´Ðи³Öµ²Ù×÷£¬·ñÔòΪ¼Ù(.FALSE.)ʱ£¬²»Ö´Ðи³Öµ²Ù×÷£¬Ê¹ÓÃÆÁ±ÎÊý×鸳ֵµÄµäÐÍÀý×ÓÊÇ£º
WHERE(C.gt.0) A=B/C
ÔÚÕâ¸öÀý×ÓÖУ¬¶ÔÓÚÊý×éCÖÐÄÇЩֵΪ0(»ò¸ºÊý)µÄÔªËØ£¬²»½øÐгý²Ù×÷ºÍ¸³Öµ²Ù×÷. ¸ù¾ÝÒ»ÖÂÐÔÔÔò£¬Êý×éA£¬BºÍC¶¼ÏàÈÝ£¬Òò´Ë(Êý×éÖµ)Âß¼±í´ïʽC.gt.0ÊÇÒ»¸öÓëÕâЩÊý×éÏàÒ»ÖµÄÆÁ±ÎÂ롣ͨ³££¬ÏóËù¾ÙµÄÀý×ÓÒ»Ñù£¬Ò»¸öWHEREÆÁ±ÎÊÇÒ»¸öÉæ¼°Ò»¸ö»ò¶à¸ö¸³Öµ²Ù×÷ÊýµÄÂß¼±í´ïʽ¡£
Ò»¸öÆÁ±ÎÂë¿ÉÒÔ¿ØÖƶà¸ö¸³ÖµÓï¾ä£¬ÕâÖÖÇé¿öÏÂWHEREÊÇÒ»¸öÓï¾ä¿éµÄÐÎʽ£º
WHERE(ÆÁ±ÎÂë) Êý×鸳ֵ1 Êý×鸳ֵ2 ... END WHERE
ÓÃÕâÖÖ·½·¨¿É½«ÈÎÒâ¶à¸öÊý×鸳ֵ·ÅÔÚÒ»Æð; µ±È»£¬ËüÃǶ¼±ØÐëÓëÆÁ±ÎÂëÏàÒ»ÖÂ.
ÉÏÃæËùÊöµÄWHEREÐÎʽʹ¸³ÖµÓï¾ä×ó±ßµÄÊý×éÖеÄһЩԪËØδ±»¸³Öµ¡£WHEREµÄ¿éÐÎʽµÄÒ»¸öÀ©Õ¹£¬ELSEWHERE²Ù×÷£¬ÔÊÐíÔÚÆÁ±ÎÂëΪ¼Ù(.FALSE.)ʱ£¬½«×ó±ßÏàÓ¦µÄÊý×éÔªËظ³Öµ£¬ÕâÖÖÐÎʽ¶¨ÒåΪ£º
WHERE(ÆÁ±ÎÂë) Êý×鸳ֵ1 Êý×鸳ֵ2 .... ELSEWHERE Êý×鸳ֵn+1 .... END WHERE
ÕâÖÖÐÎʽµÄ¼òµ¥Àý×ÓÊÇ£º
WHERE(c.gt.0) H=B/C ELSEWHERE H=B/C END WHERE
ÕâÀïµ±Êý×éCÖÐÔªËØֵСÓÚ»òµÈÓÚÁãʱ£¬½«Êý×éBµÄÏàÓ¦ÔªËØÖµ¸³¸øHÖеĶÔÓ¦ÔªËØ¡£ÕâÊÇWHEREµÄÒ»¸öÖØÒªÐÎʽ£¬ÒòΪËü²úÉúÁËÒ»¸öÍêÈ«¶¨ÒåµÄÊý×éH£¬Õâ¸öÊý×é¿ÉÔÚºóÐøÊý×é²Ù×÷ÖÐʹÓá£Èç¹ûûÓÐELSEWHEREÓï¾ä£¬ÄÇôÊý×éH¿ÉÄÜδ±»ÍêÈ«ÒâÒ壬ÕâÑùËü¾Í²»ÄÜÔÚÆäËüÊý×é±í´ïʽÖÐʹÓá£
ÐéÄâÐÎ×´µÄÑƲΣº
Fortran77ÖÐÔÊÐí(ÎÞϱê)Êý×éÃû³öÏÖµÄÒ»¸öµØ·½ÊÇ×÷Ϊ¹ý³Ì²ÎÊý³öÏÖ¡£ÔÚ Fortran 77 µÄ¾ÖÏÞÐÔµÄÊý×é¸ÅÄîÏÂ, Õâ¶ÔÓÚÏò¹ý³Ì´«µÝÊý×é¶ÔÏóÊÇ×ã¹»µÄ. µ«ÊÇ£¬ÓÉÓÚÒ»¸öFortran 77Êý×é×ÜÊÇÕ¼ÓÃÒ»¿éÁ¬ÐøµÄ´æÖüÇø£¬ËùÒÔÖ»Ð轫Õâ¸ö´æÖüÇøµÄλÖô«¸ø¹ý³Ì£¬¹ý³Ì¿ÉÒÔ°ÑËüµ±Îª¾ßÓÐÏàͬÐÎ×´µÄÒ»¸ö(Á¬Ðø)Êý×éµÄλÖ㬻ò²»Í¬ÐÎ×´µÄÒ»¸öÊý×é, ÉõÖÁÊǵ±×÷Ò»¸ö±êÁ¿¡£È»¶øÕâ¶ÔÓÚÊý×éÊÇÍêÈ«¶ÀÁ¢µÄ¶ÔÏ󣬲ÉÓÃÒ»ÖÂÐÔ¹æÔòÒÔ¼°Êý×é¶ÔÏó²»±ØÕ¼ÓÃÁ¬Ðø¿Õ¼ä(±ÈÈç¾ßÓÐÐí¶àÊý×éƬ¶Î¡ª¡ª¼û4.2½Ú)µÄFortran 90ÓïÑÔÀ´Ëµ£¬Õâ¾ÍÏԵò»×ã¹»ÁË¡£
ÔÚFortran 90ÖУ¬ÈÎÒâÊý×é±í´ïʽ¶¼¿ÉÓÃÀ´×÷Ϊ¹ý³Ìµ÷ÓõÄʵ²Î£¬±»µ÷Óùý³Ì±ØÐëÊʵ±µØ½«ÕâЩ²ÎÊý´¦ÀíΪÊý×éÖµ¶ÔÏó£¬Èç¹û½ö½ö´«µÝÒ»¸ö¼òµ¥µÄλÖòÎÊý£¬¾Í²»Ò»¶¨ÄÜ´¦ÀíµÃµ±¡£ÐéÄâÐÎ×´µÄÑƲνâ¾öÁËÕâ¸öÎÊÌâ¡£ÕâЩÑƲε÷½Ú´«µÝµÄÊý×é¡°ÃèÊöÐÅÏ¢¡±£¬ÃèÊöÐÅÏ¢³ýÁË°üÀ¨Êý×éµÄλÖÃÍ⣬»¹°üÀ¨Êý×éµÄÆäËüÐÅÏ¢¡£ÕâЩ¸½¼ÓµÄÐÅÏ¢°üÀ¨±»´«µÝµÄÊý×é¶ÔÏóµÄÖÈ(άÊý)£¬Ã¿¸öÔªËصÄÀàÐͺʹóС£¬Ã¿Ò»Î¬ÔªËصĸöÊýÒÔ¼°Ã¿Ò»Î¬µÄ¡°¿ç¾à¡±£»¿ç¾à±íʾͬһάµÄÔªËؼäµÄ¾àÀ룬Òò´Ë˵Ã÷Á˺ÍÏàÁ¬Î»ÖõÄÆ«ÒÆ. ËùÒÔ£¬¿É½«ÈÎÒâÒ»¸öÊý×é±í´ïʽ´«µÝ¸øÐéÄâÐÎ×´µÄÑƲΡ£(Ò²¿É´«µÝ¸øÒ»¸ö¡°ÀÏʽ¡±µÄÑƲΣ¬µ«Äǽ«¿ÉÄܵ¼Ö°º¹óµÄÏÖ³¡ºóµÄÁ¬ÐøÁÙʱ´æÖüÇøµÄ´æÈëºÍÌáÈ¡)¡£
Ò»¸öÐéÄâÐÎ×´µÄÑƲÎÓÃðºÅ¶¨Òåÿһά£¬ÈçÏÂÀýËùʾ£¬TÊDZêÁ¿£¬UÊÇÒ»¸ö¶þάÐéÄâÐÎ×´µÄÊý×飬VÊÇÒ»¸öһάÐéÄâÐÎ×´µÄÊý×é¡£
SUBROUTINE CALC 3(T£¬U£¬V) REAL T£¬U(:,:),V(:) ... END SUBROUTINE CALC3
µ÷ÓÃCALC3ʱ£¬ÈÎÒâ¶þάÊý×é±í´ïʽ(ʵÐÍ)¿É±»´«µÝ¸øU£¬ÈÎÒâһάÊý×é±í´ïʽ¿É±»´«µÝ¸øV£»Ïà·´£¬Ò»¸ö¶þάʵÐÍÊý×é±ØÐë´«µÝ¸øU£¬Ò»¸öһάʵÐÍÊý×é±ØÐë´«µÝ¸øV¡£UºÍVµÄ¶¨ÒåÖеÄðºÅ¸æËßCALC3½ÓÊÕÓɵ÷ÓóÌÐòÌṩµÄÃèÊöÐÅÏ¢¡£È»ºóUºÍV¾ÍÕýÈ·µØ±íʾÁËʵ²Î±íÖÐÏàÓ¦µÄÊý×é¶ÔÏ󣬲¢ÇÒ¿ÉÔÚCALC3¹ý³ÌÌåµÄÊý×é±í´ïʽÖÐʹÓá£Èç¹ûCALCSÊǵ÷ÓóÌÐòµÄÒ»¸öÄÚ²¿¹ý³Ì£¬»òÊDZ»µ÷ÓóÌÐòʹÓõÄÄ£¿éÖеÄÒ»¸öÄ£¿é¹ý³Ì£¬ÄÇôÐéÄâÐÎ×´µÄÑƲÎÓëÏàӦʵ²ÎÖ®¼äµÄÊʵ±ÁªÏµ½«±»Í¸Ã÷µØʵÏÖ¡£µ«ÊÇ, Èç¹ûCALC3ÊÇÒ»¸öÍⲿ¹ý³Ì£¬ÄÇôÊǵ÷ÓóÌÐòÖбØÐëΪCALC3Ìṩһ¸ö½Ó¿Ú¿é£¬ÕâÑùËü²ÅÄÜÖªµÀÐéÄâÐÎ×´µÄÑƲÎÊǽÓÊÕÕߣ¬´Ó¶ø´«µÝÓÐЧµÄÃèÊöÐÅÏ¢£»·ñÔòµ÷ÓóÌÐò²»Äܼٶ¨ÑƲÎÊÇÐéÄâÐÎ×´µÄ£¬Òò´Ë±ØÐëÌṩһ¸öÁ¬ÐøµÄʵ²Î£¬±ØÒªµÄ»°Ð轫Êý×é¾Û¼¯»òÌáÈ¡¡£CALC3µÄÒ»¸öÊʵ±½Ó¿Ú¿éΪ£º
INTERFACE SUBROUTINE CALC 3(T£¬U£¬V) REAL T£¬U(:,:),V(:) END SUBROUTINE CALC3 END INTERFACE
º¬ÓжàÓÚÒ»¸öÔªËصÄÊý×éµÄÒ»²¿·Ö½ÐÒ»¸öÊý×éƬ¶Î¡£ÔںܶàÇé¿öÏÂÒ»¸öÊý×é²Ù×÷Ö»ÐèÔÚÒ»¸öÊý×éƬ¶Î¶ø²»ÊÇÕû¸öÊý×éÉϽøÐÐ. Ç°ÃæËù¾ÙµÄ½«Ò»¸ö¾ØÕóµÄÖ÷ÔªÐйæ¸ñ»¯µÄÀý×Ó¾ÍÊÇÒ»¸öµäÐÍ¡£ÔÚÕâ¸öÀý×ÓÖУ¬¼ÆËãֻǣÉæµ½¾ØÕóµÄÒ»Ðжø²»ÊÇÕû¸öÊý×é. ÔÚÕâÖÖÇé¿öÏ£¬Êý×éƬ¶ÎÊǶþάÊý×éÖеÄÒ»ÐУ»Ò»°ãµØ£¬Ò»¸öÊý×éµÄÈÎÒâÖ±ÏßÐ͵Ä×Ó¼¯¶¼ÄÜ×÷Ϊһ¸öÊý×éƬ¶Î£¬Òò´Ë¿ÉÒÔ×÷Ϊһ¸ö¶ÔÏóÔÚÊý×é²Ù×÷ÖÐʹÓÃ. Ò»¸öÊý×éƬ¶Î¿ÉÒÔÊÇÈÎÒâάÊý£¬Õâ¸öά²»³¬¹ý¶¨Òå¸ÃƬ¶ÎµÄÊý×éµÄάÊý¡£
Ò»¸ö±êÁ¿Êý×éÔªËØ£¬ºÜ×ÔÈ»µØÓÉÊý×éÃûºÍÿһάµÄÒ»¸öϱêÖµÀ´Ö¸¶¨¡£ËüµÄÒ»°ãÐÎʽÊÇÎÒÃÇÒѾÊìÖªµÄ:
Êý×éÃû(ϱê1£¬Ï±ê2£¬Ï±ê3£¬¡¡)
ÕâÀïϱê¸öÊýÊÇÊý×éµÄάÊý£¬Ã¿¸öϱêÊÇÒ»¸ö±êÁ¿µÄÕûÐͱí´ïʽ£¬»òÕß¾ÍÊÇÒ»¸ö±êÁ¿Ï±ꡣһ¸öÊý×éƬ¶ÎÊÇͨ¹ýÓÃÖÁÉÙÒ»¸ö¡°Æ¬¶Îϱꡱ´úÌæ±êÁ¿Ï±êÀ´¶¨Òå¡£Ò»¸öƬ¶ÎϱêÊÇһϵÁдú±íÄÇһάµÄ±êÁ¿Ï±êÖµ£¬Òò´Ë£¬Ò»¸öƬ¶Îϱê¿É±»ÈÏΪÊÇ(»ò¹¹Ôì³É)Ò»¸öϱêÖµµÄһάÊý×飬½Ð×öÏòÁ¿Ï±ꡣÈç¹û(½öµ±)Ò»¸ö±êÁ¿Ï±êÓÉÒ»¸öÏòÁ¿Ï±ê´úÌ棬ÄÇô½á¹ûÊÇÒ»¸öһάÊý×éƬ¶Î£»Èç¹ûÁ½¸ö±êÁ¿Ï±걻ÏòÁ¿Ï±ê´úÌ棬Ôò½á¹ûÊÇÒ»¸ö¶þάÊý×éƬ¶Î£¬µÈµÈ¡£Ò»¸öÊý×éƬ¶ÎµÄάÊýÓëËüËù¾ßÓеÄÏòÁ¿Ï±ê¸öÊýÏàµÈ¡£
ÏÖÔÚ¾Ù¸öÀý×Ó£¬¿¼ÂÇÈçÏÂËùʾµÄ´óСΪ5¡Á6µÄÊý×éQ£¬QµÄÈý¸öƬ¶ÎÓôÖÌå×Ö±íʾ:Õû¸öµÚ¶þÁÐ(Ò»¸öһάƬ¶Î)£¬×ÓÒÉϽǵÄ2¡Á2¾ØÕó(Ò»¸ö¶þάƬ¶Î)£¬µÚÎåÐеĺó°ë²¿·Ö(Ò»¸öһάƬ¶Î)¡£
Q=[13 11 25 2 1 9 ] |9 3 31 14 52 27 | |16 45 54 36 15 20 | (8) |7 20 18 19 8 19 | [37 56 54 66 77 90 ]
Q((/1,2,3,4,5/),2) = (/11,3,45,20,56) ! µÚ¶þÁÐ Q((/1,2/),(/5,6/)) = |1 9 | ! ÓÒÉÏ½Ç |52 27 | Q(5,(/4,5,6/)) = (/66,77,90/) ! µÚÎåÐеÄ×îºóÒ»²¿·Ö
×¢ÒâÕâЩÀý×ÓÖеÄËùÓÐÏòÁ¿Ï±궼ÄÜд³ÉÒþº¬do½á¹¹µÄÐÎʽ£º
Q((/(k,k = 1,5)/,2) ! µÚ¶þÁÐ Q((/(k,k = 1,2)/),(/(k,k = 5,6)/)) ! ÓÒÉÏ½Ç Q(5,(/(k,k = 4,6)/)) ! µÚÎåÐеÄ×îºóÒ»²¿·Ö
Òþº¬doÐÎʽ¸üÒ×À©³ä£¬¶øÇÒ£¬¶ÔÓÚ´óµÄƬ¶Î£¬Ëü±ÈÏÔʽÁбí¸ü½ô´Õ. Òþº¬do½á¹¹¶Ô¿Õ¼ä¹æÔòµ«·ÇÁ¬ÐøµÄÏòÁ¿Ï±êÒ²ºÜÓÐÓá£ÀýÈ磺
Q((/k,k=1,5,2)/),2)=Q((/1,3,5/),2)=(/11,45,56/)
Òþº¬doÐÎʽÈç´Ë³£Óã¬Òò´Ë¶ÔÓÚË÷Òýdo¿ØÖÆÈýÔª×飬ÓÖÌṩÁËÒ»ÖÖ¸ü¿É¶ÁµÄ¼òд±íʾ·¨£¬½Ð×ö¡°ÈýÔª×éϱꡱ¡£
Ò»¸öÈýÔª×éϱêÖ»ÊÇÓöººÅ´úÌæðºÅ½«Òþº¬doµÄ¿ØÖÆÖµ·Ö¿ª£¬×îºóÒ»¸ö¿ØÖÆÖµ(ÔöÁ¿»ò²½³¤)ÊÇ¿ÉÑ¡µÄ¡£Òò´Ë£¬ÉÏÃæËĸöÀý×ÓÓÃÈýÔª×é¼ò¼Ç·¨¿ÉÒÔд³É¸üÇå³þµÄÐÎʽ£º
Q(1:5,2) ! µÚ¶þÁÐ Q(1:2,5:6) ! ÓÒÉÏ½Ç Q(5,4:6) ! µÚÎåÐеÄ×îºóÒ»²¿·Ö Q(1:5:2,2) ! µÚ¶þÐеÄËùÓÐÆäËüÔªËØ
¸ü½øÒ»²½µÄ¼ò»¯ÐÎʽÊÇ£¬Èç¹ûÈýÔª×éµÄµÚÒ»¸öÖµ±»Ê¡ÂÔ£¬ÔòÄÇһάµÄϽçΪ¼Ù¶¨Öµ; Èç¹ûµÚ¶þ¸öÖµ±»Ê¡ÂÔ£¬ÔòÄÇһάµÄÉϽçΪ¼Ù¶¨Öµ¡£ÕâÑù£¬±íʾÕâËĸöƬ¶ÎµÄ×î½ô´ÕµÄ·½·¨ÊÇ£º
Q(:,2) ! µÚ¶þÁÐ Q(:2,5:) ! ÓÒÉÏ½Ç Q(5,4:) ! µÚÎåÐеÄ×îºóÒ»²¿·Ö Q(::2,2) ! µÚ¶þÐеÄËùÓÐÆäËüÔªËØ
Q(:,:)ÊÇÒ»¸öƬ¶Î£¬Êµ¼ÊÉÏÊÇÕû¸öÊý×éQ£¬Õâ½âÊÍÁ˱¾½ÚÇ°ÃæËù¾ÙµÄÒ»¸öÀý×Ó¡£(×¢ÒâQ(:,:)Ò²¾ßÓÐÐéÄâÐÎ×´µÄÑƲζ¨ÒåÐÎʽ£»µ«ÊÇÔÚÕâÀï²»´æÔÚ¶þÒåÐÔ£¬ÒòΪÈç¹ûÕâÖÖ¼ò¼Ç·¨ÔÚÒ»¸öÊý×é±í´ïʽÖгöÏÖ£¬Ëü×ÜÊÇ´ú±íÒ»¸öÊý×éƬ¶Ï)
ËäÈ»ÉÏÃæÀý×ÓʹÓÃÁËÊý×é¹¹ÔìÆ÷£¬µ«ÊÇÔٻص½ÏòÁ¿Ï±êµÄ¸üÒ»°ãÐÎʽ£¬ËüÔÊÐíʹÓÃÈκÎһάÊý×é±í´ïʽ¡£Î¨Ò»µÄÒªÇóÊÇÏòÁ¿Ï±êµÄÿһ¸öÔªËØÖµ¶ÔÄÇһάÀ´ËµÓ¦¸ÃÊÇÒ»¸öÓÐЧϱêÖµ¡£ÏòÁ¿Ï±êµÄÆÕͨÐÎʽÊÇÒ»¸öһάÕûÐÍÊý×éÃû(»òƬ¶Î)£¬ÆäÔªËØÖµÏÈÇ°Òѱ»½¨Á¢¡£ÕâÖÖÐÎʽ¶ÔÓÚ¼ä½Ó·ÃÎʼ«ÆäÓÐÓã¬ÀýÈç¶Ô±í¸ñÄÚ²¿µÄË÷Òý£»±í¸ñÔªËØ¿ÉÒÔͨ¹ýÓÃÒ»¸ö°üº¬ÏëÒªµÄ±í¸ñË÷ÒýÖµµÄÊý×é¸ø±í¸ñÊý×é¼ÓÉÏϱêÀ´¼ìË÷(»òÉèÖÃ)¡£
×îºóÁ½¸öÀý×Ó½«½áÊø¶ÔÊý×éƬ¶ÎµÄ½éÉÜ. ΪÁËÃ÷È·Æð¼û£¬ÓÖÓõ½ÁËÊý×é¹¹ÔìÆ÷£¬µ«Êµ¼ÊÉϸü¿ÉÄÜÓõ½µÄÊǸü¼ò½àµÄһάÊý×éÃû»òƬ¶Î£¬Ê×ÏÈ£¬Ò»¸öÊý×éƬ¶Ï²»Ò»¶¨ºÍÉÏÃæµÄÀý×ÓÒ»ÑùÈÝÒ×ÓÃͼÐαíÊö³öÀ´. ¶ÔÉÏÀýÖж¨ÒåµÄÊý×éQ, Ƭ¶Î
Q((/2,5,3/),(/6,4/))
Ëü´ú±í×éƬ¶Î
[Q2,6, Q2,4] [27 14] |Q5,6, Q5,4| = |90 66| (9) [Q3,6, Q3,4] [20 36]
Õâ¸öƬ¶Î¿ÉÔÚÈÎÒâÒ»¸öÊý×é±í´ïʽÖÐʹÓã¬Ôڸñí´ïʽÖУ¬3¡Á2µÄÊý×é¶ÔÏóÊÇÓÐЧµÄ. ËüÒ²¿ÉÒÔ³öÏÖÔÚÊý×鸳ֵÓï¾äµÄ×ó±ß£¬ÕâʱÓұ߱í´ïʽ½á¹ûµÄµÚ(1£¬1)¸öÔªËØÖµ±»¸³¸øQ2,6£¬ÓұߵÚ(3£¬2)¸öÔªËØÖµ±»¸³¸øQ3,4£¬ÒÔ´ËÀàÍÆ¡£
Ò»¸öÏòÁ¿Ï±ê°üº¬µÄÔªËظöÊý¿ÉÒÔ´óÓÚÄǸöÊý×éÖÐÄǸöάµÄ´óС£¬ÕâÖÖÇé¿öÏ£¬ÓÉÓÚËùÓÐÖµ±ØÐëÔÚÊý×éάÊý·¶Î§ÄÚ£¬ËùÒÔÓÐÖظ´Öµ¡£Êµ¼ÊÉÏ£¬¼ÈʹÏòÁ¿µÄ´óС±ÈÊý×éάÊýСһ¸öÏòÁ¿Ï±êµÄϱêÖµÒ²¿ÉÖظ´(ΨһµÄÒªÇóÊÇϱêÖµ±ØÐëÔÚ·¶Î§Ö®ÄÚ). ÕâÁ½ÖÖÇé¿öÔÚÏÂÀýÖж¼½«ËµÃ÷£¬Õâ¸öÀý×Ó´ÓQµÄÔªËØÖж¨ÒåÁËÒ»¸ö7¡Á4µÄƬ¶Î¡£
| Q4,1 Q4,4 Q4,4 Q4,3 | | Q1,1 Q1,4 Q1,4 Q1,3 | | Q2,1 Q2,4 Q2,4 Q2,3 | Q((/4,1,2,3,4,2,5/),(/1,4,4,3)) = | Q3,1 Q3,4 Q3,4 Q3,3 | | Q4,1 Q4,4 Q4,4 Q4,3 | | Q2,1 Q2,4 Q2,4 Q2,3 | | Q5,1 Q5,4 Q5,4 Q5,3 |
×¢Ò⣬Õâ¸öƬ¶ÎµÄµÚÒ»ÐÐÓëµÚÎåÐÐÏàͬ£¬µÚÈýÐÐÓëµÚÁùÐÐÏàͬ¡£Òò´ËÔÚÕâ¸öÊý×éƬ¶ÎÖÐQµÄÐí¶àÔªËسöÏÖÁ½´Î£¬Q2,4ºÍQ4,4³öÏÖËĴΡ£ÔÚÊý×é±í´ïʽÖУ¬¾ßÓжà´Î³öÏֵĸø¶¨¸¸Êý×éÔªËصÄÊý×éƬ¶ÎÊÇÍêÈ«ºÏ·¨µÄ£¬µ«ÕâÑùµÄÊý×éƬ¶ÎÒ»¶¨²»ÄܳöÏÖÔÚÊý×鸳ֵ¾äµÄ×ó±ß¡£
Fortran 90ÓÐÈýÖÖ²»Í¬µÄ¶¯Ì¬Êý×é¡£ÕâÈýÖÖÊý×鶼ÔÊÐíÔÚÔËÐÐʱ´´½¨£¬Æä´óСÓɼÆËã(»òÊäÈë)Öµ¾ö¶¨¡£ÕâÈýÖÖ¶¯Ì¬Êý×éΪ£º
×Ô¶¯Êý×é
×Ô¶¯Êý×éÊǾֲ¿Êý×飬ËüµÄ´óСÒÀÀµÓÚÓëÑƲÎÏàÁªµÄÖµ¡£×Ô¶¯Êý×éÔÚ½øÈë¹ý³Ìʱ×Ô¶¯´´½¨(·ÖÅä)£¬ÔÚÍ˳ö¹ý³Ìʱ×Ô¶¯ÊÍ·Å¡£×Ô¶¯Êý×éµÄ´óСËæ¹ý³ÌµÄ¼¤»îµã²»Í¬¶ø²»Í¬£¬ÈçÏÂÊÇ×Ô¶¯Êý×éµÄÒ»¸öÀý×Ó£º
function F18(A,N)
integer N ! Ò»¸ö±êÁ¿ real A(:,:) ! Ò»¸ö¼Ù¶¨ÐÎ×´µÄÊý×é real F18(size(A,1)) ! º¯Êý½á¹û±¾ÉíÊÇÒ»¸ö¶¯Ì¬Êý×é
complex Local_1(N, 2*N+3) ! Local_1ÊÇÒ»¸ö×Ô¶¯Êý×é ! Æä´óСÒÔ N Ϊ»ù´¡
real Local_2(size(A,1),size(A,2)) ! Local_2ÊÇÒ»¸ö×Ô¶¯Êý×é ! Æä´óСÓëAÍêÈ«Ïàͬ
real Local_3(4*size(A,2)) ! Local_3ÊÇÒ»¸öһάÊý×é ! Æä´óСÊÇA µÄµÚ¶þάµÄ4±¶
..
end function F18
×¢ÒâÄÚ²¿²éÑ°º¯ÊýÔÚ¶¨Òå×Ô¶¯Êý×éÖеÄÖØÒª×÷ÓÃ, ÀýÈçSIZE(Ëü·µ»ØÔÚÖ¸¶¨µÄάÖвÎÊýÊý×éµÄ´óС)¡£Fortran 90ÌṩÁ˺ܶàÔÊÐíÔÚ¶¨ÒåÖгöÏֵIJéÑ°º¯Êý¡£Êý×é½çÏ޺ʹóС£¬×Ö·û´®³¤¶ÈÒÔ¼°ÀàÐÍkindÖµ£¬¶¼¿ÉÒÔÓÃÉæ¼°ÕâЩ²éѯº¯ÊýµÄ±í´ïʽÀ´Ö¸¶¨¡£´ÖÂÔµØ˵£¬Ò»¸öÖ¸¶¨±í´ïʽµ±±»µ÷ÓÃʱÊÇÒ»¸ö±êÁ¿ÕûÐͱí´ïʽ£¬ËüµÄ²Ù×÷ÊýÖµÔÚ½øÈë¹ý³ÌÈë¿ÚʱÊÇ¿ÉÈ·¶¨µÄ¡£ÕâÑùµÄ²Ù×÷Êý°üÀ¨³£Êý£¬Ö¸ÏòÄÚ²¿¹ý³ÌµÄÒýÓã¬ÒÔ¼°Í¨¹ýÑƲΡ¢Ä£¿é¡¢commonºÍ(ÔÚÄ£¿éºÍÄÚ²¿¹ý³ÌµÄÇé¿öÏÂ)ËÞÖ÷¹ý³Ì(host procedure)¿ÉÒÔ·ÃÎʵıäÁ¿¡£
¿É·ÖÅäÊý×é
¿É·ÖÅäÊý×éÊÇÄÇЩÓÃALLOATABLEÃ÷È·¶¨ÒåµÄÊý×é¡£Ò»¸ö¿É·ÖÅäÊý×é¿ÉÒÔ¶ÔÒ»¸ö¹ý³ÌÊǾֲ¿µÄ£¬»òÕß¿ÉÒÔ·ÅÔÚÒ»¸öÄ£¿éÖУ¬´Ó¶ø¶ÔÓ¦ÓóÌÐòµÄËùÓйý³ÌÀ´Ëµ¶¼ÊÇÈ«¾ÖµÄ¡£Ò»¸ö¿É·ÖÅäµÄÊý×éÓÉÓï¾äALLOCATEÃ÷È·¶¨Ò壬ÓÉÓï¾äDEALLOCATEÏÔʽÊÍ·Å£¬»òÕßÈç¹ûËüÊÇûÓÐÖ¸Ã÷SAVEµÄ¾Ö²¿Êý×飬¿ÉÔÚ¹ý³ÌµÄ³ö¿Ú×Ô¶¯ÊÍ·Å¡£(Èç¹ûÖ¸Ã÷ÁËSAVE£¬ÄÇô¾Ö²¿¿É·ÖÅäÊý×é¿ÉÔÚ¹ý³ÌµÄÒ»¸öÖ´ÐкÍÏÂÒ»¸öÖ´ÐÐÖ®¼äÒ»Ö±´æÔÚ¡ª¡ªÕâЩÊý×é±ØÐëÓÃDEALLOCATEÓï¾äÏÔʽÊÍ·Å)¡£Ò»¸öÈ«¾Ö¿É·ÖÅäÊý×éÔÚËü±»ÏÔʽÊÍ·Å֮ǰһֱ´æÔÚ£¬Ëü¿ÉÒÔÔÚ·ÖÅä¸ÃÊý×éµÄ¹ý³ÌÒÔÍâµÄ¹ý³ÌÖгöÏÖ¡£µ±Êý×é´óСÒÀÀµÓÚ¼ÆËãÖµ¶ø²»ÊÇÑƲλòÄ£¿é£¬¹«¹²ÌåÒÔ¼°Ö÷¹ý³ÌµÄ±äÁ¿Ê±£¬Ê¹ÓÿɷÖÅä(»òÖ¸Õë)Êý×飬һ¸ö¿É·ÖÅäÊý×éµÄ·ÖÅä״̬(·ÖÅä»òδ·ÖÅä)¿ÉÓÃALLOCATEDÄÚ²¿º¯ÊýÀ´²âÊÔ¡£ÈçÏÂÊÇ¿É·ÖÅäÊý×éµÄÀý×Ó¡£
Àý×Ó
subroutine Peach
use Recipe ! ·ÃÎÊÈ«¾Ö¿É·ÖÅäÊý×é Jam.
real, allocable :: Pie(:,:) ! Pie ÊÇÒ»¸ö 2-ά¿É·ÖÅäÊý×é ... allocate (Pie(N,2*N)) ! ·ÖÅäÒ»¸ö¾Ö²¿¿É·ÖÅäÊý×é
if (.not.allocated(Jam)) allocate (Jam(4*M)) ! Èç¹ûÒ»¸öÈ«¾Ö¿É·ÖÅäÊý×黹ûÓзÖÅä ! Ôò·ÖÅäËü .......deallocate(Pie) .... end subroutine Peach
module Recipe ! Jam ÊÇÒ»¸öÈ«¾Ö¿É·ÖÅäÊý×é, Ëü¿ÉÒÔ real, allocable :: Jam(:) ! ÔÚÈκιý³ÌÖÐʹÓøÃÄ£¿é·ÖÅäºÍÊÍ·Å ... end module Recipe
×¢Òâ¿É·ÖÅäÊý×éµÄ½çÏ޵Ķ¨ÒåÖ»ÊÇðºÅ¡£±íʾÕâЩֵ½«ÔÚÒÔºó·ÖÅäʱÌṩ¡£ÕâʹµÃ¿É·ÖÅäÊý×éµÄ¶¨Òå¿´ÆðÀ´ºÃÏóÓëÐéÄâÐÎ×´ÑƲεĶ¨ÒåÀàËÆ£¬´ó¸ÅÊÇÒòΪËüÃÇÔÚάµÄ´óСµÄ¡°ÑÓ³Ù¡±ÌØÐÔÔÚ¸ÅÄîÉÏÏàËÆ¡£
Ö¸ÕëÊý×é
Ö¸ÕëÊý×éÒ²ÓÃALLOCATEÓï¾äÃ÷È·¶¨Ò壬²¢ÇÒÓÐÈÎÒâ¿É¼ÆËãµÄ´óСÒÔ¼°ÓÃDELOCATEÓï¾äÏÔʽÊÍ·Å, ÕâÒ»µãÓë¿É·ÖÅäÊý×éÀàËÆ¡£ÔÚµÚÒ»½ÚµÄ"Ö¸Õë"С½ÚÖиø³öÁËÖ¸ÕëÊý×éµÄÀý×Ó¡£ÕâЩÀý×ÓҲ˵Ã÷ÁËÄ¿±êÊý×éºÍÖ¸Õ븳ֵµÄʹÓ㬺óÕß²»ÄÜʹÓÿɷÖÅäÊý×é¡£Ö¸ÕëÊý×éµÄÁíÍâµÄ¼òµ¥Àý×Ó¾ÍÊÇÔÚÇ°ÃæËù¾ÙµÄ¿É·ÖÅäÊý×éµÄÀý×ÓÖаѡ°allocatable¡±Óá°pointer¡±À´´úÌæ¡£
ÁíÍ⣬ָÕëÊý×é¿É±»ÓÃÀ´×÷Ϊ(¡°Ö¸Ïò¡±)ÆäËûÊý×éºÍÊý×éƬ¶ÎµÄÌæ»»Èë¿Ú£»ÓÃÖ¸Õ븳ֵÓï¾äÀ´½¨Á¢ÕâÑùµÄÌæ»»Èë¿Ú£¬ÓëÖ¸ÕëÏàÁªÄ¿±ê(µ±ÕâÖÖÌæ»»Èë¿Ú±»µ÷ÓÃʱ)¿ÉÒÔÊÇÆäËüÏÔʽ·ÖÅäµÄÊý×飬»òÕßÊÇÃ÷È·Ö¸¶¨ÎªÖ¸ÕëÔÊÐíÄ¿±êµÄ¾²Ì¬»ò×Ô¶¯Êý×é¡£Ò»¸öÖ¸ÕëÊý×éµÄÏàÁª×´Ì¬¿ÉÓÃASSOCIATEDÄÚ²¿º¯ÊýÀ´²âÊÔ¡£×îºó£¬Ö¸ÕëÊý×é¿ÉÒÔÊÇÑƲκͽṹ³É·Ö(structure components)£¬ÕâÁ½ÖÖÇé¿ö¶Ô¿É·ÖÅäÊý×éÀ´Ëµ¶¼²»ÔÊÐí. ¸ø¶¨Íâ±íÉÏÏàËƵĿɷÖÅäÊý×éºÍÖ¸ÕëÊý×飬ÕâÁ½ÖÖ¶¯Ì¬Êý×éµÄ¸ù±¾Çø±ðÊÇʲô? ʲôʱÆÚÓÿɷÖÅäÊý×é¶ø²»ÓÃÖ¸ÕëÊý×é? Ö¸ÕëÊý×é°üº¬ÁË¿É·ÖÅäÊý×éµÄËùÓй¦ÄÜ£¬´ÓÕâÒ»µãÀ´¿´£¬¾¡¹ÜÓÀÔ¶²»ÐèÒª¿É·ÖÅäÊý×顪¡ªÖ¸ÕëÊý×é¾Í×ã¹»ÁË£¬µ«Ö¸ÕëÊý×éÓÐÒ»¸öЧÂÊÎÊÌâ¡£¾¡¹ÜÖ¸ÕëÊý×é±ØÐë×ÜÊÇÖ¸ÏòÃ÷È·µÄÄ¿±ê£¬Ö»ÓÐÕâÑù²ÅʹÓÅ»¯±äµÃ¿ÉÐУ¬¿ÉÊÇÖ¸Õ븳ֵʹָÕëÊý×éµÄÓÅ»¯±È¿É·ÖÅäÊý×éÀ§ÄѵöࡣÓÉÓÚ¿É·ÖÅäÊý×éµÄ¸ü¶àµÄÏÞÖÆÌØÐԺ͹¦ÄÜ£¬ËüÃDZÈÖ¸ÕëÊý×é¸ü¼òµ¥¡¢¸üÓÐЧ¡£
Òò´Ë, µ±ËùÓеÄÐèÇóÊÇÊý×é¼òµ¥µÄ¶¯Ì¬·ÖÅäºÍÊÍ·Å, ¶øÇÒʹÓÃ×Ô¶¯Êý×éÊDz»¹»µÄ, ÔòʹÓÿɷÖÅäÊý×é. ÕâÖÖÇé¿öµÄÒ»¸ö³£¼ûµÄÀý×ÓÊǵ±Ò»¸ö"¹¤×÷Êý×é"µÄ´óСȡ¾öÓÚÒ»´Î¾Ö²¿¼ÆËãµÄ½á¹ûµÄʱºò. ÁíÒ»·½Ãæ, Èç¹ûËã·¨µ÷ÓÃÒ»¸ö¶¯Ì¬Ìæ»»(alias), ÀýÈçÒ»¸öËÞÖ÷Êý×é(host array)µÄ"Òƶ¯"²¿·Ö, Ôò¿ÉÄÜÐèҪʹÓÃÒ»¸öÖ¸ÕëÊý×é.
Fortran 90º¯ÊýµÄ·µ»Ø½á¹û¿ÉÒÔÊǸ³ÖµÊý×é¡£ºÜ¶àÄÚ²¿º¯Êý×ÜÊÇ·µ»ØÊý×éÖµ, ´ó¶àÊý±¾Õ÷º¯Êý¿ÉÒÔ·µ»ØÊý×éÖµ¡£ÁíÍ⣬Óû§Ð´µÄº¯ÊýÒ²¿ÉÒÔ·µ»ØÊý×éÖµ¡£·µ»ØÊý×éÖµµÄº¯ÊýÌṩÁ½¸ö(Ïà¹Ø)¾Þ´óºÃ´¦¡£µÚÒ»£¬·µ»Ø¸³ÖµÊý×éµÄº¯Êý¿ÉÒÔÔÚÊý×鸳ֵ±í´ïʽÖÐÓÃ×÷²Ù×÷Êý, ÔÊÐíÒÔ×î×ÔÈ»µÄÐÎʽ±íʾÊý×é²¢ÐмÆËã¡£µÚ¶þ£¬ÕâʹµÃÓÃÊý×éÖµ×Ó±í´ïʽÀ´¹¹³É¿É²¢ÐÐÇóÖµµÄ¼ÆËã¸ü·½±ã¡£Òò´Ë·µ»Ø¸³ÖµÊý×éµÄº¯ÊýΪ½«Êý¾Ý²¢ÐÐÓë´¦Àí²¢ÐÐÓÃ×ÔÈ»µÄ·½Ê½½áºÏÆðÀ´ÌṩÁ˸ü¶àµÄ»ú»á¡£
ÀýÈ磬gºÍuÊÇÁ½¸ö´óµÄÏ໥һÖµĶþάÊý×飬g+cshift(u,1,2)-cshift(u,-1,2)ÊÇÒ»¸ö±í´ïʽ£¬ÀàËÆÕâÑùµÄ±í´ïʽÔÚµØÕðÄ£ÐͼÆËãÖо³£³öÏÖ(CSHIFTÊÇÒ»¸öÄÚ²¿º¯Êý£¬Ëü°´µÚ¶þ¸ö²ÎÊýËùÖ¸¶¨µÄ´ÎÊý£¬Ñ»·Òƶ¯µÚÒ»¸ö²ÎÊý(Ò»¸öÊý×é)ÖÐÓɵÚÈý¸ö²ÎÊýÖ¸¶¨µÄÄÇһά)¡£Ò»µ©¿¼Âǵ½Êý¾Ý²¢ÐУ¬ÇÒÌṩ¸ø±àÒëÆ÷²¢ÐмÆËãÈκÎ×Ó±í´ïʽµÄ»ú»á, ÔòÕâ¸ö±í´ïʽ·Ç³£Çå³þµØ±íʾÁ˼ÆËãÌØÕ÷¡£ÕâÒ²ÐíÓÈÆäÇ¡µ±£¬ÀýÈ磬Èç¹ûg±¾ÉíÊǸöº¯ÊýÒýÓã¬ÄÇô²¢ÐмÆËã×Ó±í´ïʽcshift(u,1,23)-chift(u,-1,2)µÄÖµºÍ g µÄÖµÒ²Ðí»á¸üÓÐÀû¡£
·µ»Ø¸³ÖµÊý×éµÄÄÚ²¿º¯ÊýÓÐÁ½À࣬һÀà½Ð×÷¡°±ä»»(transformational)¡±º¯Êý£¬Ò»Àà½Ð×ö¡°»ù±¾(elemental)¡±º¯Êý¡£Ò»¸ö±ä»»º¯Êý½ÓÊÕÒ»¸öÊäÈëÊý×飬²úÉúÒ»¸ö²»Í¬µÄÊý×é×÷Ϊ½á¹û--Ëü½«ÊäÈëÊý×顰ת»»¡±³ÉÆäËüÐÎʽ£¬ÉõÖÁ¿ÉÄÜÊDz»Í¬ÐÎ×´µÄÊý×飬»òÕßÊDZêÁ¿¡£(±ä»»º¯ÊýÉõÖÁÄܽ«±êÁ¿×ª»»³ÉÊý×é)¡£CSHIFTÊDZ任º¯ÊýµÄÒ»¸ö¼òµ¥Àý×Ó£¬Æä½á¹ûÓë(µÚÒ»¸ö)²ÎÊýÏàÒ»Ö¡£ÄÚ²¿º¯ÊýMATMUL(¾ØÕóÏà³Ë)Ò²ÊDZ任º¯ÊýµÄÒ»¸öÀý×Ó£¬Ëü·µ»ØÒ»¸öÓë(ÈÎÒ»¸ö)²ÎÊýÐÎ×´²»Í¬µÄÊý×é½á¹û¡£¹éÔ¼º¯Êý£¬SUM£¬PRODUCT£¬COUNT£¬µÈµÈ¶¼ÊDZ任º¯ÊýµÄÀý×Ó£¬ËüÃǽ«Êý×é²ÎÊý¹éÔ¼³É±êÁ¿½á¹û¡£Fortran 90µÄÊý×é±ä»»ÄÚ²¿º¯Êý(¹²42¸ö)Èç±í4ËùÁУº
±ä»»ÄÚ²¿º¯Êý | ˵Ã÷ |
»·¾³²éѯº¯Êý(9) | ¼û 3.5 ½Ú |
Êý×麯Êý(21) | ¼ûÏÂÎÄ |
ASSOCIATED | ¼ìÑéÖ¸ÕëµÄÏàÁ¬×´Ì¬ |
BIT-SIZE | Ò»¸öÕûÐÍÊýÖÐλµÄ¸öÊý |
DOT-PRODUCT | Á½¸öÏòÁ¿µÄÊýѧµã»ý |
KIND | ¼û3.1½ÚºÍ3.2½Ú |
LEN | ×Ö·û´®µÄ³¤¶È |
MATMUL | Êýѧ¾ØÕó³Ë»ý |
PRESENT | ¼ìÑé¿ÉÑ¡²ÎÊýµÄ´æÔÚ |
REPEAT | ¸´ÖÆÒ»¸ö×Ö·û´® |
SELECTED_INT_KIND | ¼û3.1½ÚºÍ3.2½Ú |
SELECTED_REAL_KIND | ¼û3.1½ÚºÍ3.2½Ú |
TRIM | ÒÆ×ß´®ÖеĽáβ¿Õ°×·û |
TRANSFER | ½«Î»Ä£Ê½×ª»»Îª²»Í¬ÀàÐÍ |
»ù±¾ÄÚ²¿º¯Êý¶àÊýÊÇÓñêÁ¿ÑƲζ¨ÒåµÄ. ÕâЩº¯Êý¿ÉÓÃÊý×éʵ²Îµ÷Ó㬷µ»ØÒ»¸öÓëʵ²ÎÏàÒ»ÖµĽá¹ûÊý×é¡£½á¹ûÊý×éµÄÿ¸öÔªËØÖµ¾ÍÊÇÈç¹ûº¯ÊýÓÃʵ²ÎµÄÏàÓ¦(±êÁ¿)ÔªËØÀ´µ÷ÓÃʱËù»ñµÃµÄÖµ¡£Òò´ËÒ»¸ö»ù±¾º¯Êý±»×Ô¶¯(»òÔÚ¸ÅÄîÉϲ¢ÐеØ)Ó¦Óõ½Êµ²ÎµÄÿ¸öÔªËØÖС£ÈÎÒâÒ»¸öÆÕͨµÄ¼ÆËãÄÚ²¿º¯Êý¿É±»Ö±½Óµ÷Óã¬ÀýÈ磬ÔÚ
COS(X)
ÖУ¬X¿ÉÒÔÊDZêÁ¿£¬ÕâʱCOSº¯Êý·µ»ØÒ»¸ö±êÁ¿½á¹û; »òÕßXÊÇÒ»¸öÊý×é(ÈÎÒâά)£¬´ËʱCOSº¯Êý·µ»ØÒ»¸öÓëXÏàÒ»ÖµÄÊý×éÖµ½á¹û£¬Èç¹û°ÑÇ°ÃæËù¾ÙµÄÀàËƵØÕðÄ£Ð͵ÄÀý×ÓÐÞ¸ÄΪ
exp(g)+cshift9u,1,2)-chsift(u,-1,2)
ÄÇô±í´ïʽÖеÄÿһÏî³ÉΪһ¸öÄÚ²¿º¯Êýµ÷Ó㬸ú¯Êý·µ»ØÓë g ºÍ u ÏàÒ»ÖµĽá¹û. µÚÒ»ÏîÊÇ»ù±¾µ÷Óã¬ÆäËûÁ½ÏîÊDZ任µ÷Óá£Fortran 90µÄËùÓÐÕâ108¸öÄÚ²¿º¯ÊýÖУ¬³ýÁËÉÏÃæËùÁеÄ42¸ö±ä»»º¯ÊýÍ⣬¶¼¿ÉÖ±½Óµ÷Óá£
×¢Ò⣬»ù±¾º¯Êýµ÷Óÿɱ»ÈÏΪÊÇһЩ¶ÀÁ¢µÄ±êÁ¿º¯Êýµ÷Óã¬Ò»¸ö±ä»»º¯Êýµ÷Óñ»ÈÏΪÊÇÔÚÍêÕû¶ÀÁ¢µÄ"integral selfcontained"¼ÆËãÖУ¬¡°È«²¿Ò»Æð, ͬʱ¡±½»¸¶½á¹û¡£
Fortran 90ÌṩÁË21¸öÄÚ²¿Êý×麯Êý£¬ÆäÖÐÓÐЩº¯Êý(ÈçSIZE)ÊÇÓÃÀ´²éѯÊý×éÌØÐԵģ¬ÆäËûº¯Êý»òÕßÊÇÓÃÀ´¹¹ÔìÊý×飬»òÕßÓÃÀ´´ÓÊý×éÖÐÌáÈ¡ÐÅÏ¢¡£ÕâЩº¯Êý¶¼ÊDZ任º¯Êý£¬Èç±í5ËùÁС£
Êý×éÄÚ²¿º¯Êý | ˵Ã÷ |
ALL | µ±ËùÓÐÔªËØֵΪÕæʱ, ÆäֵΪÕæ |
ANY | µ±ÓÐÒ»¸öÔªËØֵΪÕæʱ, ÆäֵΪÕæ |
ALLOCATED | ¼ìÑéÊý×éÊÇ·ñ±»·ÖÅä |
COUNT | ֵΪÕæµÄÔªËصĸöÊý |
CSHIFT | Ñ»·Òƶ¯Êý×éµÄijһά |
EOSHIFT | "ȥβ(end-off)"Òƶ¯Êý×éµÄijһά |
LBOUND | Êý×éϽç |
MAXLOC | Êý×é×î´óÔªËصÄλÖà |
MAXVAL | Êý×é×î´óÔªËصÄÖµ |
MERGE | ÔÚÆÁ±ÎÂë¿ØÖÆÏÂ, ºÏ²¢Á½¸öÊý×é |
MINLOC | Êý×é×îСԪËصÄλÖà |
MINVAL | Êý×é×îСԪËصÄÖµ |
PACK | ÔÚÆÁ±ÎÂë¿ØÖÆÏÂ, °ÑÒ»¸öÊý×éÊÕ¼¯µ½Ò»¸öÏòÁ¿ÖÐ |
PRODUCT | Êý×éËùÓÐÔªËصij˻ý |
SHAPE | Êý×éÐÎ×´ |
SIZE | Õû¸öÊý×éµÄ´óС |
SPREAD | ͨ¹ýÔö¼ÓһάÀ´À©Õ¹Ò»¸öÊý×é |
SUM | Êý×éËùÓÐÔªËØµÄºÍ |
TRANSPOSE | Ò»¸ö¶þάÊý×éµÄ¾ØÕóתÖà |
UBOUND | Êý×éÉϽç |
UNPACK | ÔÚÆÁ±ÎÂëµÄ¿ØÖÆÏÂ, ½«Ò»¸öÏòÁ¿·ÖÉ¢µ½Ò»¸öÊý×éÖÐ |
Óû§¿ÉÒÔ×Ô¼º¶¨Òå·µ»Ø¸³ÖµÊý×éµÄº¯Êý£¬ËùÓÐÕâÑùµÄº¯Êý¶¼ÊDZ任º¯Êý. Ç°Ò»½ÚËù(21)¾ÙµÄÀý×ÓÖУ¬º¯ÊýF18ÊÇÓö¨Òå·µ»ØÊý×éÖʵĺ¯ÊýµÄÒ»¸öÀý×Ó¡£ÔÚÕâÖÖÇé¿öÏ£¬·µ»ØµÄÊý×éÐÎ×´£¬ÓɲÎÊý(ÈçÊý×é²ÎÊýµÄÐÎ×´ÌØÐÔ)¶¯Ì¬¾ö¶¨£»ÕâÒ²ÐíÊÇ·µ»ØÊý×éÖµµÄº¯ÊýµÄ×îÓÐÓõÄÐÎʽ¡£Í¬Ñù¼û4.5½ÚÖеÄÀý×Ó¡£
×¢Ò⣬º¯Êý½á¹ûÓÃÒ»°ã¶¨ÒåÓï¾äÀ´¶¨ÒåΪ¸³ÖµÊý×飬¾ÍºÃÏóº¯ÊýÃûÊÇÒ»¸öÆÕͨ±äÁ¿(ºÍËüÔÚº¯ÊýÌåÄÚ)Ò»Ñù. ËäÈ»×Ô¶¯Êý×éÒ²ÐíÊÇÓû§¶¨Òå·µ»Ø¸³ÖµÊý×麯ÊýµÄ×îÓÐÓÃÐÎʽ£¬µ«ÊÇÆäËûÐÎʽµÄÊý×éÒ²ÊÇÓÐЧµÄ: ÈçÈ·¶¨ÐÎ×´µÄÊý×飬¿É·ÖÅäÊý×飬ָÕëÊý×é¡£ÕâЩº¯ÊýÒ²¿ÉÔÚ¹ý³ÌÖж¨ÒåºÍʹÓ㬾ÍÏóº¯ÊýÃûÊÇÁíÍâÒ»¸ö±äÁ¿Ò»Ñù. Ö÷ÒªµÄ¸½¼ÓÒªÇóÊÇÊý×éÖµÔÚ´Óº¯ÊýµÄÒ»¸öÖ´Ðзµ»Ø֮ǰ±ØÐ뱻ȫ¶¨Òå¡£ÁíÒ»·½Ã棬·µ»Ø¸³ÖµÊý×éµÄº¯ÊýµÄ½Ó¿ÚÔÚʹÓøú¯ÊýµÄµØ·½±ØÐëÏÔʾ˵Ã÷£¬ÕâÑùµ÷ÓóÌÐò²ÅÄÜÖªµÀËüÔÚ´¦ÀíÒ»¸ö·µ»Ø¸³ÖµÊý×éµÄº¯Êý¡£
ÎÒÃÇÓÃÒ»¸ö·µ»Ø¸³ÖµÊý×麯ÊýµÄ¼òµ¥Àý×ÓÀ´½áÊø±¾½Ú. ¼ÙÉèÒ»¸öÊý×é±í´ïʽÖÐÐèÒªÒ»¸öº¬ÓÐn¸öÔªËصÄһάÊý×éµÄ²¿·ÖºÍ¡ª¡ªÒ²¾ÍÊÇ˵£¬ÐèÒªµÄµÚk¸öÖµÊÇsum(p(1:k))¡£Ò»¸ö·µ»Ø¸³ÖµÊý×éµÄº¯Êý¶ÔÓÚ½»¸¶ËùÐ輯ºÏµÄÖµÊDZȽÏÀíÏëµÄ(¾¡¹ÜÔÚÕâ¸ö¼òµ¥Àý×ÓÖУ¬ÔÚ±í´ïʽÖÐʹÓÃÊý×é¹¹ÔìÆ÷µÄЧ¹ûºÍµ÷Óú¯ÊýPartial-sumsµÄЧ¹û¼¸ºõÒ»Ñù)£º
function Partial_sums(P) real P(:) ! ¼Ù¶¨ÐÎ×´µÄÑÆÔªÊý×é real Partial_sums(size({)) ! Òª·µ»ØµÄ²¿·ÖºÍ integer k
Partial_sumns = (/(sum(P(1:k),k=1,size(P))/)
! ÔÚ¹¦ÄÜÉÏ, ËüµÈ¼ÛÓÚ: ! do k=1, size(P) ! Partial_sums(k) = sum(P(1:k)) ! end do ! µ«ÊÇ, do Ñ»·ÓÃÀ´ËµÃ÷Ò»¸ö´®ÐͼÆËã, ! ¶ø²»ÊDz¢ÐмÆËã
end function Partial_sums
ÏÂÃæµÄ¸ü¸´ÔÓµÄÊý¾Ý²¢ÐмÆËãµÄÀý×ÓÒ²ÓÃÓû§¶¨ÒåµÄ·µ»Ø¸³ÖµÊý×éµÄº¯ÊýÀ´½»¸¶½á¹û¡£
ΪÁË˵Ã÷Êý¾Ý²¢ÐеÄʵ¼ÊÓ¦Óã¬Õâ¸öÀý×ÓÌá³öÁ½ÖÖÐÎʽµÄ´«Í³¸ß˹ÏûÔªËã·¨À´½â¾öÏßÐÔ·½³Ì×é¡£Ö®ËùÒÔÑ¡ÔñÕâ¸öÌØÊâµÄÀý×Ó£¬ÊÇÒòΪÎÒÃÇÆÕ±éÊìϤ¸ß˹ÏûÔª£¬ÕâÑù¾Í¿ÉÒÔ½«´ó²¿·Ö×¢ÒâÁ¦¼¯ÖÐÓÚÊý¾Ý²¢Ðм¼Êõ£¬¶ø¾¡¿ÉµÃÉٵؽ«×¢ÒâÁ¦·ÖÉ¢µ½¶ÔÕâ¸öÎÊÌâµÄÊìϤÉÏ¡£Õâ¸öÀý×ÓµÄÒ»ÖÖÐÎʽ½Ð×ö¼òµ¥¸ß˹ÏûÈ¥·¨(Simple_Gauss), ÑØמØÕóµÄÖ÷¶Ô½ÇÏß(ÔÚÏÂÃæµÄ³ÌÐò´úÂëÖгÆΪGrid »òÕß G)ÏòÏÂÏûÖ÷Ôª£»ÁíÒ»ÖÖÐÎʽ½Ð×öÖ÷Ôª¸ß˹·¨(Pivot-Gauss)£¬ÊµÏÖ¸ü¸´ÔÓµ«¸ü½¡×³µÄ¸ß˹×î´óÖ÷ÔªÏûÈ¥²ßÂÔ¡£
Simple-GaussºÍPivot-Gauss¶¼ÓÐÁ½ÖÖ°æ±¾¡ª¡ªÒ»¸ö±êÁ¿Ë³Ðò°æ±¾ºÍÒ»¸öÊý¾Ý²¢Ðа汾¡£ÈçÀýËùʾ£¬Êý¾Ý²¢Ðа汾Äܹ»±àÒëºÍÔËÐУ»Ë³Ðò°æ±¾ÔÚÐÐÊ×Óá°!!¡±×¢Ã÷ΪעÊÍ¡£Èç¹û°ÑÕâЩעÊÍ·ûÈ¥µô£¬°ÑÒÔ¡°!!!!¡±½áβµÄÐÐ×¢Ê͵ô£¬ÔòÕâ¸ö˳Ðò°æ±¾¿ÉÒÔ±àÒëºÍÔËÐС£
˳Ðò°æ±¾²»°üÀ¨Êý×é²Ù×÷(³ýÁ˶ÔGµÄ³õʼ»¯Íâ)£¬ÒÔËùÊìϤµÄ±êÁ¿doÑ»·¶Ô¾ØÕó²Ù×÷ΪÌØÕ÷¡£¶ÔÕâЩѻ·µÄÊý¾Ý²¢Ðа汾µÄÌæ»»½ôËæÆäºó£¬ÒÔ±ã˳Ðò°æ±¾ºÍ²¢Ðа汾ÄÜ·½±ãµØ½øÐбȽÏ. ΪÁËʹ±È½Ï¸üÈÝÒ׸üÓÐÓ㬴ÓÕâЩÀý×ÓÖÐÈ¥µôÁËһЩ(²»Ì«¶à)×ÔÓÉÐÔ. ͬÑù£¬ÎªÁËʹÕâÖֱȽϸüÈÝÒ×Щ£¬¶ÔÕû¸ö¾ØÕó°´Ö÷Ôª½øÐÐÁ˹éÔ¼, ¶ø²»Êǽö¶ÔÄÇЩÐèÒª¹éÔ¼µÄÁУ¬ÕâÑùÿ¸öËã·¨µÄÿ¸ö°æ±¾Éæ¼°µÄ²Ù×÷´óÔ¼ÊÇʵ¼ÊÐèÒªµÄ(±êÁ¿ÔªËØ)²Ù×÷µÄ¶þ±¶£»ÕâЩËã·¨¿ÉÒÔºÜÈÝÒ׵ؽøÐе÷Õû, À´ÏàÓ¦µØÏÞÖƲÙ×÷µÄ¸öÊý, ²»¹ýÕâÒªËðʧһЩËã·¨µÄÇåÎúÐÔ¡£
¶ÔÕâЩËã·¨µÄÒ»¸ö·ÖÎö±íÃ÷, ¼òµ¥¸ß˹ÏûÈ¥Ëã·¨µÄ˳Ðò°æ±¾´óÔ¼ÓÐ4N3+7N2+9N+1¸ö±êÁ¿²Ù×÷£¬²¢Ðа汾ÔÚ10¸ö²¢ÐвÙ×÷ÖдóÔ¼ÓÐ5N3+8N2+4N+1¸ö±êÁ¿²Ù×÷. Ö÷Ôª¸ß˹·¨µÄ˳Ðò°æ±¾´óÔ¼ÓÐN4+7N3+4N2+5N+1¸ö±êÁ¿²Ù×÷£¬²¢Ðа汾ÔÚLnN+14¸ö²¢ÐвÙ×÷ÖдóÔ¼ÓÐ(lnN)N4+8N3+9N2+5N+1¸ö±êÁ¿²Ù×÷¡£¶ÔÏ൱´óµÄNÖµ£¬Æä½á¹û×ܽáÔÚ±í6ÖÐ. ±íµÄ×îºóÒ»ÁÐ(ÀíÏ뻯µØ)¼ÙÉèÒ»¸öÊý¾Ý²¢ÐвÙ×÷ÓëÒ»¸ö±êÁ¿²Ù×÷ʱ¼äÏàµÈ¡£
±êÁ¿²Ù×÷¸öÊý | ²¢ÐвÙ×÷¸öÊý | Ö´ÐÐʱ¼ä | |
¼òµ¥¸ß˹·½·¨, ˳Ðò | 4N3 | - | 4N3 |
Ö÷Ôª¸ß˹·¨, ˳Ðò | (N+7)N3 | - | (N+7)N3 |
¼òµ¥¸ß˹·½·¨, ²¢ÐÐ | 5N3 | 10 | 10 |
Ö÷Ôª¸ß˹·¨, ²¢ÐÐ | (NlnN+8)N3 | lnN + 14 | lnN + 14 |
Òò´Ë£¬Á½ÖÖËã·¨µÄ²¢Ðа汾°üº¬µÄ±êÁ¿ÔËË㶼±È˳Ðò°æ±¾¶à£¬µ«Ïà±È¶øÑÔÆä²¢ÐвÙ×÷È´Ï൱ÉÙ¡£¾Í±êÁ¿²Ù×÷¶øÑÔ£¬Ò»¸ö²¢ÐвÙ×÷µÄÓÐЧºÄ·ÑÄ¿Ç°Ëæϵͳ²»Í¬¶ø²»Í¬£¬µ«Ç÷ÊÆ¿´ÆðÀ´ºÃÏóÊDZƽü±êÁ¿²Ù×÷ºÄ·Ñ¡£´ÓÕâЩ·½ÃæÀ´¿´£¬¸ß˹ÏûÔª·¨µÄÊý¾Ý²¢Ðа汾µÄÈ·¸ü¾ßÎüÒýÁ¦¡£
×îºó£¬ÔÚ¼òµ¥¸ß˹·¨ºÍÖ÷Ôª¸ß˹·¨µÄ»ù±¾¹éÔ¼²Ù×÷Öж¼Ê¹ÓÃÁËFortran 90µÄÒ»¸öÄÚ²¿º¯ÊýSPREAD¡£ SPREADº¯Êý¸´ÖÆ(¹ã²¥)Ò»¸ö±êÁ¿µ½Ò»¸öһάÊý×éÖУ¬»ò½«Ò»¸ö n άÊý×鸴ÖƵ½Ò»¸ön+1άÊý×éÖС£ÕâÀïʹÓõÄÊDZêÁ¿µ½Ò»Î¬Êý×éµÄÐÎʽ£¬¾ÍÊǽ«±êÁ¿²Ù×÷G(i,j)=G(i,L)*G(L,j)ת»¯³ÉÒ»¸ö¶ÔÊý×éGµÄÕû¸öÊý×é²Ù×÷¡£ÔÚÕâ¸ö±í´ïʽÖУ¬ÔÚ¶ÔiºÍjµÄÑ»·ÖÐLÊÇ¡°³£Á¿¡±£¬Òò´Ë±ØÐ뽫Ëü¹ã²¥ÒÔÌîÂúÊý×飬´Ó¶ø¿ÉÒÔ¶ÔÕû¸öÊý×é²Ù×÷¡£Àí½âÕâÒ»µãÊÇÀí½âÕâ¸öËã·¨µÄÊý¾Ý²¢Ðа汾µÄ¹Ø¼ü, Ò²ÊÇ×îÀ§ÄѵIJ¿·Ö¡£SPREADº¯ÊýÓÐÈý¸ö²ÎÊý£ºµÚÒ»¸öÊDZêÁ¿»ò±»¹ã²¥µÄÊý×飬µÚ¶þ¸öÊÇ·¢Éú¹ã²¥µÄάÊý(Èç¹û¹ã²¥Ò»¸ö±êÁ¿£¬Ôò±ØÐëΪ1)£¬µÚÈý¸öÊǸ´ÖƵĸöÊý(ÔÚÕâЩÀýÖÐÊÇN»òN£«1)ª¤
function Simple.Gauss(Grid) ! ¸ß˹ÏûÔª - ·Ç×î´óÖ÷Ôª real ::¡¡Grid(:,:) ! Òª¹éÔ¼µÄ¾ØÕó real :: Simple_Gauss(size(Grid,1)) ! ·µ»Ø½á¹ûÏòÁ¿ real :: G(size(Grid,1), size(Grid,2)) ! G ÊÇÒ»¸ö¾Ö²¿¹¤×÷ÏòÁ¿ logical :: Not_pivot_row(size(Grid,1), size(Grid,2 )) ! Ö÷ÔªÐÐÆÁ±Î if (size(Grid,2).ne.size(Grid,1)+1 stop \"bad Grid shape\" N = size(Grid,1) G = Grid ! ÔÚG ÉϲÙ×÷, ¶ø²»ÊÇGridÉÏ
do L=1,N ! G(L,L) ÊÇÏÂÒ»¸öÖ÷ÔªÔªËØ
if (abs(G(L,L)).lt.1E-4) stop \"zero encounterd in pivot\" !! G_pivot = G(L,L) !! !! do j=1,N+1 !! Ö÷ÔªÐйæ¸ñ»¯ !! (G(L,j) = G(L,j)/G_pivot !! !! enddo !! G(L,1) = G(L,1)/G(L,L) !!!! Êý¾Ý²¢Ðа汾
!! do i = 1,N !! !! do j = 1, n+1 !! !! if ( i.ne.L.and.j.ne.L ) then !! È»ºóÓøÃÖ÷Ôª¹éÔ¼¾ØÕó !! G(i,j) = G(i,j) - G(i,L)*G(L,j) !! !! end if !! !! end do !! !! end do !! Not_pivot_row = .true.; Not_pivot_row(L,:) = .false.
where ( NOt_pivot_row) & !!!! Êý¾Ý²¢Ðа汾 G = G - G(:,spread(L,1,N+1))*G(spread(L,1,N),:) !!!! Êý¾Ý²¢Ðа汾
end do ! ¶ÔËùÓÐÖ÷ÔªÖظ´
!! do i = 1, N !! ×îºó£¬ ÌáÈ¡½á¹ûÏòÁ¿ÐÎʽ !! Simple_Gauss(i) = G(i, N+1) !! !! end do !! G µÄ×îºóÒ»ÁÐ Simple_Gauss = G(:, N+1) !!!! Êý¾Ý²¢Ðа汾
end function Simple_Gauss
function Pivot_Gauss(Grid) ! ¸ß˹ÏûÔª£¬ ×î´óÖ÷Ôª real :: Grid(:,:) ! Òª¹éÔ¼µÄ¾ØÕó real :: Pivot_Gauss(size(Grid,1)) ! ·µ»Ø½á¹ûÏòÁ¿ real :: G(size(Grid,size(Grid,2)) ! G ÊÇÒ»¸ö¾Ö²¿¹¤×÷Êý×é integer :: P(size(Grid,1),2) ! P ÊÇÒ»¸öÖ÷ÔªÊý×é logical :: Not_pivot_row(size(Grid,1),size(Grid,2)) ! Ö»ÆÁ±Îµ±Ç°Ö÷ÔªÐÐ logical :: Not_pivot_row(size(Grid,1),size(Grid,1)) ! ÆÁ±ÎËùÓÐÒÔÇ°µÄÖ÷ÔªÐкÍÁÐ if (size(Grid,2).ne.size(Grid,1)+1) stop \"bad Grid shape\" N = size(Grid,1) G = Grid ! Work on G, not Grid.
do L = 1, N !! L ÊÇÏÂÒ»¸öÖ÷ÔªÊý
!! G_pivot = -1 !! !! do i = 1,N !! Ê×ÏÈ£¬ Ñ°ÕÒÏÂÒ»¸öÖ÷Ôª !! Inner_pivot_search : & !! !! do j=1,N !! !! do k=1,L-1 !! !! if(i.eq.P(k,1).or.j.eq.P(k,2)) cycle Inner_pivot_search !! end do !! Ìø¹ýÕâ¸öÔªËØ£» ËüÔÚÇ°Ò»¸öÖ÷ÔªÐлòÁÐÖÐ !! if (abs(G(i,j)).gt.G_pivot) then !! !! G_pivot = abs(G(i,j)) !! !! P(L,1) = i !! !! P(L,2) = j !! !! end if !! !! end do Inner_pivot_search !! !! end do !! Not_pivot_rows_or_cols = .true. !!!! Êý¾Ý²¢Ðа汾 Not_pivot_rows_cr_cols(P(1:L-1,1),:) = .false. !!!! Êý¾Ý²¢Ðа汾 Not_pivot_rows_or_cols(:,P(1:L-1,2)) = .false. !!!! Êý¾Ý²¢Ðа汾 P(L,:) = maxloc(abs(G(:,1:N)),mask=Not_pivot_rows_or_cols) !!!! Êý¾Ý²¢Ðа汾 if (abs(G(P(L,1),P(L,2))).lt.1E-4) stop \"ill-conditioned matrix\"
!! G_pivot = G(P(L,1),P(L,2)) !! !! do j=1,N+1 !! È»ºó¹æ¸ñ»¯Ö÷ÔªÐÐ, !! G(P(L,1),j) = g(P(L,1),j)/G_pivot !! ½¨Á¢Ö÷ÔªÐбêʶ !! end do !! G(P(L,1),:) = G(P(L,1),:)/G(P(L,1),P(L,2)) !!!! Êý¾Ý²¢Ðа汾
!! do i = 1,N !! È»ºóÓÃÕâ¸öÖ÷ÔªÔªËعéÔ¼¾ØÕó !! do j = 1,N +1 !! !! if ( i.ne.P(L,1).and.j.ne.P(L,2)) then !! !! G(i,j) = G(i,j)-G(i,P(L,2))*G(P(L,1),j) !! !! end if !! !! end do !! !! end do !! Not_pivot_rov = .trur.: Not_pivot_row(P(L,1),:) = .false. !!!! Êý¾Ý²¢Ðа汾 where ( Not_pivot_row ) & !!!! Êý¾Ý²¢Ðа汾 G = G-G(:,spread(P(L,2),1,N+1))*G(spread(P(L,1),1,N),:) !!!! Êý¾Ý²¢Ðа汾
end do ! ¶ÔËùÓÐÖ÷ÔªÖظ´
!! do i=1,N !! ×îºó£¬ ´Ó G µÄ×îºóÒ»ÁÐÖлָ´½âÏòÁ¿ !! Pivot_Gauss(P(i,2)) = G(P(i,1),N+1) !! !! end do !! Pivot_Gauss(P(:,2)) = G(P(:,1),N=1) !!!! Êý¾Ý²¢Ðа汾
end function Pivot_Gauss
[1] Fortran 90 Handbook, Adams, Brainerd, Martin, Smith, Wagener, McGraw-Hill, 1992
[2] Programming Language Fortran, ANSI standard X3.198-1992
[3] DRAFT - Process Parallelism Standard, ANSI committee X3H5
Copyright: NPACT | ![]() |