
ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time

Systems

Jarek Nieplocha1 and Bryan Carpenter2

1Pacific Northwest National Laboratory, Richland, WA 99352
<j_nieplocha@pnl.gov>

2Northeastern Parallel Architecture Center, Syracuse University
<dbc@npac.syr.edu>

Abstract. This paper introduces a new portable communication library called
ARMCI. ARMCI provides one-sided communication capabilities for distributed
array libraries and compiler run-time systems. It supports remote memory copy,
accumulate, and synchronization operations optimized for non-contiguous data
transfers including strided and generalized UNIX I/O vector interfaces. The
library has been employed in the Global Arrays shared memory programming
toolkit and Adlib, a Parallel Compiler Run-time Consortium run-time system.

1 Introduction
A portable lightweight remote memory copy is useful in parallel distributed-array

libraries and compiler run-time systems. This functionality allows any process of a
MIMD program executing in a distributed memory environment to copy data between
local and remote memory. In contrast to the message-passing model used
predominantly in these environments, remote memory copy does not require the
explicit cooperation of the remote process whose memory is accessed. By decoupling
synchronization between the process that needs the data and the process that owns the
data from the actual data transfer, implementation of parallel algorithms that operate
on distributed and irregular data structures can be greatly simplified and performance
improved. In distributed array libraries, remote memory copy can be used for several
purposes, including implementation of the object-based shared memory programming
environment of Global Arrays [1] or ABC++ [2], and optimized implementation of
collective operations on sections of distributed multidimensional arrays, like those in
the PCRC Adlib run-time system [3] or the P++ [4] object oriented class library.

In scientific computing, distributed array libraries communicate sections or
fragments of sparse or dense multidimensional arrays. With remote memory copy
APIs (application programming interfaces) supporting only contiguous data, array
sections are typically decomposed into contiguous blocks of data and transferred in
multiple communication operations. This approach is quite inefficient on systems with
high latency networks, as the communication subsystem would handle each
contiguous portion of the data as a separate network message. The communication
startup costs are incurred multiple times rather than just once. The problem is

attributable to an inadequate API, which does not pass enough information about the
intended data transfer and layout of user data to the communication subsystem. In
principle, if a more descriptive communication interface is used, there are many ways
communication libraries could optimize performance. For example: 1) minimize the
number of underlying network packets by packing distinct blocks of data into as few
packets as possible, 2) minimize the number of interrupts in interrupt-driven message-
delivery systems, and 3) take advantage of any available shared memory optimizations
(prefetching, poststoring, bulk data transfer) on shared memory systems. We illustrate
the performance implication of communication interfaces with an example.

Consider a get operation that transfers a 2x100 section of a 10x300 Fortran array
of double precision numbers on the IBM SP. The native remote memory copy
operation LAPI_Get supports only contiguous data transfers [5,6]. Therefore, 100 calls
are required to transfer data in 16-byte chunks. With 90µS latency for the first column
and 30µS for the next ones (pipelining), the transfer rate is 0.5MB/s. For the same
amount of contiguous data, the rate is 30MB/s. If the application used a
communication interface supporting strided data layout, a communication library
could send one LAPI active message specifying entire request. At the remote end the
AM handler could copy data into a contiguous buffer and send all data in a single
network packet. The data would then be copied to the destination. The achieved rate is
9MB/s. We argue that platform-specific optimizations such as these should be made
available through a portable communication library, rather than being reproduced in
each distributed array library or run-time system that requires strided memory copy.

In this paper, we describe design, implementation and experience with the
ARMCI (Aggregate Remote Memory Copy Interface), a new portable remote memory
copy library we have been developing for optimized communication in the context of
distributed arrays. ARMCI aims to be fully portable and compatible with message-
passing libraries such as MPI or PVM. Unlike most existing similar facilities, such as
Cray SHMEM [7] or IBM LAPI [6], it focuses on the noncontiguous data transfers.
ARMCI offers a simpler and lower-level model of one-sided communication than
MPI-2 [8] (no epochs, windows, datatypes, Fortran-77 API, rather complicated
progress rules, etc.) and targets a different user audience. In particular, ARMCI is
meant to be used primarily by library implementors rather than application developers.
Examples of libraries that ARMCI is aimed at include Global Arrays, P++/Overture
[4,9], and the PCRC Adlib run-time system. We will discuss applications of ARMCI in
Global Arrays and Adlib as particular examples. Performance benefits from using
ARMCI are presented by comparing its performance to that of the native remote
memory copy operation on the IBM SP.

2 ARMCI Model and Implementation

2.1 ARMCI Operations

ARMCI supports three classes of operations:

• data transfer operations including put, get and accumulate,
• synchronization operations—local and global fence and atomic read-modify-write,

and

• utility operations for allocation and deallocation of memory (as a convenience to
the user) and error handling.

The currently supported operations are listed in Table 1.

The data transfer operations are available with two noncontiguous data formats:

1. Generalized I/O vector. This is the most general format intended for multiple sets
of equally-sized data segments, moved between arbitrary local and remote memory
locations. It extends the format used in the UNIX readv/writev operations by mini-
mizing storage requirements in cases when multiple data segments have the same
size. For example, operations that would map well to this format include scatter
and gather. The format would also allow to transfer a triangular section of a 2-D ar-
ray in one operation.

typedef struct {
 void *src_ptr_ar;
 void *dst_ptr_ar;
 int bytes;
 int ptr_ar_len;

} armci_giov_t;
For example, with the generalized I/O vector format a put operation that copies

data to the process(or) proc memory has the following interface:

int ARMCI_PutV(armci_giov_t dscr_arr[], int len, int proc)

Table 1: ARMCI operations

Operation Comment

ARMCI_Put, ARMCI_PutV, ARMCI_PutS contiguous, vector and strided versions of put

ARMCI_Get, ARMCI_GetV, ARMCI_GetS contiguous, vector and strided versions of get

ARMCI_Acc, ARMCI_AccV, ARMCI_AccS contiguous, vector and strided versions of
atomic accumulate

ARMCI_Fence blocks until outstanding operations targeting
specified process complete

ARMCI_AllFence blocks until all outstanding operations issued
by calling process complete

ARMCI_Rmw atomic read-modify-write

ARMCI_Malloc memory allocator, returns array of addresses
for memory allocated by all processes

ARMCI_Free frees memory allocated by ARMCI_Malloc

ARMCI_Poll polling operation, not required for progress

The first argument is an array of size arr_len. Each array element specifies a set of
equally-sized segments of data copied from the local memory to the memory at the
remote process(or) proc.

2. Strided. This format is an optimization of the generalized I/O vector format for
sections of dense multidimensional arrays. Instead of including addresses for all
the segments, it specifies for source and destination only the address of the first
segment in the set. The addresses of the other segments are computed using the
stride information:
void *src_ptr;
void *dst_ptr;
int stride_levels;
int src_stride_arr[stride_levels];
int dst_stride_arr[stride_levels];
int count[stride_levels+1];
For example, with the strided format a put operation that copies data to the

process(or) proc memory has the following interface:
 int ARMCI_PutS(src_ptr, src_stride_ar, dst_ptr,

dst_stride_ar, count, stride_levels, proc)

The first argument is an array of size arr_len. Each array element specifies a set of
equally-sized segments of data to be copied from the local memory to the memory at
the remote process(or) proc, see Figure 2.

For contiguous data, put and get operations are available as simple macros on top
of their strided counterparts.

Figure 1: Descriptor array for generalized I/O vector format. Each array element describes
transfer of a set of equally-sized (bytes) blocks of data.

bytes
src

ptr
arr

ay

dst_
ptr_

arr
ay

ptr_
arr

ay_len

descriptor array

source destination

2.2 Atomic Operations

At present time, ARMCI offers two atomic operations: accumulate and read-
modify-write.

Accumulate is an important operation in many scientific codes. It combines local
and remote data atomically x= x+a*y. For double precision data types, it can be
thought of as an atomic version the BLAS DAXPY subroutine with x array located in
remote memory. Unlike MPI_Accumulate in MPI-2, the ARMCI accumulate preserves
the scale argument a available in DAXPY. For applications that need scaling, it has
performance advantages on many modern microprocessors, where thanks to the
multiply-and-add operation for floating point datatypes, the scaled addition is executed
in the same time as addition operation alone. The ARMCI accumulate is available for
integer, double precision, complex and double complex datatypes.

ARMCI_Rmw is another atomic operation in the library. It can be used to
implement synchronization operations or as a shared counter in simple dynamic load
balancing applications. The operation updates atomically a remote integral variable
according to the specified operator and returns the old value. There are two operators
available: fetch-and-increment and swap.

2.3 Progress and ordering

It is important for a communication library such as ARMCI to have
straightforward and uniform progress rules on all supported platforms. They simplify
development and performance analysis of applications and free the user from dealing
with ambiguities of platform-specific implementations. On all platforms, the ARMCI
operations are truly one-sided and complete regardless of the actions taken by the
remote process(or). In particular, there is no need for remote process to make
occasional communication calls or poll in order to assure that communication calls
issued by other processes(ors) to this process(or) can complete. Although, for

src_ptr

dst_ptr
count[0]

count[1]

ds
t_

st
rid

e_
ar

r[
0]

sr
c_

st
rid

e_
ar

r[
0]

Figure 2: Strided format for 2-dimensional array sections (assuming Fortran layout)

stride_levels = 1

source array destination array

performance reasons, polling can be helpful (can avoid the cost of interrupt
processing), it is not necessary to assure progress [10].

The ARMCI operations are ordered (complete in order they were issued) when
referencing the same remote process(or). Operations issued to different processors can
complete in an arbitrary order. Ordering simplifies the programming model and is
required in many applications in computational chemistry (for example). Some
systems allow ordering of otherwise unordered operations by providing a fence
operation that blocks the calling process until the outstanding operation completes, so
the next operation issued does not overtake it. This approach usually accomplishes
more than applications might desire, and could have a negative performance impact on
platforms where the copy operations are otherwise ordered. Usually, ordering can be
accomplished with a lower overhead by using platform-specific means inside the
communication library, rather than by a fence operation at the application level.

In ARMCI, when a put or accumulate operation completes, the data has been
copied out of the calling process(or) memory but has not necessarily arrived to its
destination. This is a local completion. A global completion of the outstanding put
operations can be achieved by calling ARMCI_Fence or ARMCI_AllFence.
ARMCI_Fence blocks the calling processor until all put operations issued to a specified
remote process(or) complete at the destination. ARMCI_AllFence does the same for all
outstanding put operations issued by the calling process(or), regardless of the
destination.

2.4 Portability and implementation considerations

The ARMCI model specification does not describe or assume any particular
implementation model (for example, threads). One of the primary design goals was to
allow wide portability of the library. Another one was to allow an implementation to
exploit the most efficient mechanisms available on a given platform, which might
involve active messages [11], native put/get, shared memory, and/or threads.

For example, depending on whatever solution delivers the best performance,
ARMCI accumulate might or might not be implemented using the “owner computes”
rule. In particular, this rule is used on IBM SP where accumulate is executed inside the
Active Message handler on the processor that owns the remote data whereas on the
Cray T3E the requesting processor performs the calculations (by locking memory,
copying data, accumulating, putting updated data back and unlocking) without
interrupting the data owner.

On shared memory systems, ARMCI operations currently require the remote data
to be located in shared memory. This restriction greatly simplifies the implementation
and improves the performance by allowing the library to use simply an optimized
memory copy rather than other more costly mechanisms for moving data between
separate address spaces. This is acceptable in the distributed arrays libraries we
considered since they are responsible for the memory allocation and can easily use
ARMCI_Malloc (or other mechanisms such as using mmap, shmget, etc. directly)
rather than the local memory allocation. However, the requirement can be lifted in
future versions of ARMCI if compelling reasons are identified.

At present time, the library is implemented on top of existing native
communication interfaces on:

• distributed-memory systems such as Cray T3E and IBM SP,

• shared memory systems such as SGI Origin and Cray J90, and Unix and Windows
NT workstations.

On distributed-memory platforms, ARMCI uses the native remote memory copy
(SHMEM on Cray T3E and LAPI on IBM SP). In addition, on IBM SP LAPI active
messages and threads are employed to optimize performance of noncontiguous data
transfers for all but very small and very large messages. As an example, in Figure 3 we
demonstrate the implementation of the strided get operation on the IBM SP.
Implementations of strided put and accumulate are somewhat more complex due to the
additional level of latency optimization for short active messages and mutual exclusion
in accumulate. The implementation of vector operations is close to that of their strided

small section
or

single/large

Y

Wait until data arrives

Wait until previous store operations
to the same location complete

Send AM request to target,
include address of buffer b0

Wait for data to arrive into

N

Strided copy data from the

AM header handler returns

TARGET PROCESSOR

ORIGIN PROCESSOR

Figure 3: Implementation of the ARMCI strided get operation on the IBM SP

Strided remote memory copy
using multiple nonblocking
LAPI_Get

(LAPI_Waitcntr)

(LAPI_Waitcntr)

Acquire local buffer b0

(LAPI_Amsend)

the buffer (LAPI_Waitcntr)

buffer into the user location

columns

address of completion handler
function and saves request info

strided copy data from the
specified data source location
into the temporary buffer b1
(AM completion handler)

send data from buffer b1 to
buffer b0 at origin processor

thread t1

thread t2

(LAPI_Put)

Packetize request to match
the buffer size

counterparts on the IBM SP. Mutual exclusion necessary to implement atomic
operations is implemented with the Pthread mutexes on the IBM SP and the atomic
swap on the Cray T3E.

The ARMCI ports on shared memory systems are based on the shared memory
operations (Unicos shared memory on the Cray J90, System V on other Unix systems,
and memory mapped files on Windows NT) and optimized remote memory copies for
noncontiguous data transfers. On most of the platforms, the best performance of the
memory copy is achieved with Fortran-77 compiler. Many implementations of the
memcpy or bcopy operations in the standard C library are far from optimal even for
well aligned contiguous data. Mutual exclusion is implemented using vendor-specific
locks (on SGI, HP, Cray- J90), System V semaphores (Unix) or thread mutexes (NT).

The near-future porting plans for ARMCI include clusters of workstations, and
Fujitsu distributed memory supercomputer on top of the Fujitsu MPlib low-level
communication interface.

2.5 Performance

We demonstrate performance benefits of ARMCI by comparing it to performance
of the native remote memory copy on the IBM SP in two contexts: 1) copying sections
of 2-D arrays from remote to local memory and 2) gather operation for multiple
double-precision elements. In both cases, we run the tests on four processors with
processor 0 alternating its multiple requests between the other three processors which
were sleeping at that time. This assured that the incoming requests were processed in
the interrupt mode (worse case scenario). We performed these tests on a 512-node IBM
SP at PNNL. The machine uses the 120MHz Power2 Super processor and 512MB
main memory on each uniprocessor node, and the IBM high performance switch (with
the TB-3 adapter).

In the first benchmark, we transferred square sections of 2-dimensional arrays of
double precision numbers from remote to local memory (get operation) and varied the
array section dimension from 1 to 512. The array section was transferred using either a
strided ARMCI_GetS operation or multiple LAPI_Get operations that transferred
contiguous blocks of data - columns in the array section. The latter implementation
uses nonblocking LAPI_Get operation which allows to issue requests for all columns
in the section and then wait for all of them to complete. Had we used the blocking
operation waiting for data in each column to arrive before issuing another get call the
performance would have been much worse. Even with this optimization, Figure 4
shows that the ARMCI strided get operation has very significant performance
advantages over the native contiguous get operation when transferring array sections.
There are two exceptions where the performances of the both approaches are identical:
• for small array sections where to ARMCI_GetS uses LAPI_Get before swithing to

the Active Message (AM) protocol to optimize latency, and
• very large array sections where ARMCI_GetS switches again from the Active

Message to LAPI_Get protocol to optimize bandwidth when the cost of the two
extra memory copies makes the AM protocol less competitive, see Figure 3.
In Figure 5, performances of the gather operation for double precision elements

is presented. In particular, the gather operation in this test fetches every third element

of an array on a remote processor. For comparison, the operation is implemented on
top an the ARMCI vector get operation, ARMCI_GetV, and multiple native get
operations. In this case too we used nonblocking LAPI_Get followed by a single wait
operation to improve performance of this implementation. Despite this optimization,
the performance of ARMCI is by far better for all but very small requests for which the
performances of the both approaches are identical. For small requests ARMCI_GetV is
implemented using multiple nonblocking LAPI_Get operations up to the point where
the Active Message based protocol becomes more competitive. This protocol is very
similar to that for the strided get shown in Figure 3. The performance of gather
implemented on top of the nonblocking native get operation can be explained by the
pipelining effect [5] for multiple requests in LAPI. Only the first get request issued to a
particular remote processor is processed in the interrupt mode, the following ones are
received when processing has not been completed. Regardless of pipelining, only eight
bytes of user data is send in each LAPI_Get message (single network packet) whereas
in case of ARMCI_GetV all network packets sent by LAPI_Put inside AM handler are
filled with user data. With the 1024-byte packets in the IBM SP network, the network
utilization and performance of the gather operation on top of the native get operation
are far from optimal.

3 Experience with ARMCI

3.1 Global Arrays

The Global Arrays (GA) [1] toolkit provides a shared-memory programming
model in the context of 2-dimensional distributed arrays. GA has been the primary
programming model for numerous applications, some as big as 500,000 lines of code,
in quantum chemistry, molecular dynamics, financial calculations and other areas. As
part of the DoE-2000 Advanced Computational Testing and Simulation (ACTS)

0
100

1 10 100 1000
ba

nd
w

id
th

 [M
B

/s
]

contiguous get ARMCI_GetS

0

10

20

30

40

50

60

70

0 200 400 600

dimension

ba
nd

w
id

th
 [M

B
/s

]

0

10

20

30

40

50

60

70

1 10 100 1000

dimension

ba
nd

w
id

th
 [M

B
/s

]

Figure 4: The log-linear (left) and linear-linear (right) graphs represent bandwidth for contigu-
ous get operation and ARMCI strided get when moving square section of 2-D array.

toolkit, GA is being extended to support higher dimensional-arrays. The toolkit was
originally implemented directly on top of system-specific communication mechanisms
(NX hrecv, MPL rcvncall, SHMEM, SGI arena, etc.). The original one-sided
communication engine of GA had been closely tailored to the two-dimensional array
semantics supported by the toolkit. This specificity hampered extensibility of the GA
implementation. It became clear that a separation of the communication layer from the
distributed array infrastructure is a much better approach. This was accomplished by
restructuring the GA toolkit to use ARMCI hence making the GA implementation
itself fully platform independent. ARMCI matches the GA model well and allows GA
to support the arbitrary dimensional arrays efficiently. The overhead introduced by
using an additional software layer (ARMCI) is small; for example on the Cray T3E
ga_get latency has increased by less than 0.5µS when comparing to the original
implementation of GA.

3.2 Adlib

The Adlib library was completed in the Parallel Compiler Runtime Consortium
project [12]. It is a high-level runtime library designed to support translation of data-
parallel languages [3]. Initial emphasis was on High Performance Fortran, and two
experimental HPF translators used the library to manage their communications
[13,14]. Currently the library is being used in the HPspmd project at NPAC [15]. It
incorporates a built-in representation of a distributed array, and a library of
communication and arithmetic operations acting on these arrays. The array model is a
more general than GA, supporting general HPF-like distribution formats, and arbitrary
regular sections. The existing Adlib communication library emphasizes collective
communication rather than one-sided communication.

0.01

1

1 00

1 1 0 1 00 1 000 1 0000 1 00000

contiguous get ARMCI_GetV

0.01

0.1

1

10

100

1 10 100 1000 10000 10000
0

elements

ba
nd

w
id

th
 [M

B
/s

]

0
2
4

6
8

10
12

14
16
18

1 10 100 1000 10000 10000
0

elements

ba
nd

w
id

th
 [M

B
/s

]

Figure 5: The log-log (left) and linear-log (right) graphs represent bandwidth in gather opera-
tion for double precision numbers as a function of the number of elements when implemented
with contiguous get operation and the ARMCI vector get.

100000 100000

The kernel Adlib library is implemented directly on top of MPI. We are
reimplementing parts of the collective communication library on top of ARMCI and
expect to see improved performance on shared memory platforms. The layout
information must now be accompanied by a locally-held table of pointers containing
base addresses at which array segments are stored in each peer process (in message-
passing implementations, only the local segment address is needed). Adlib is
implemented in C++, and for now the extra fields are added by using inheritance with
the kernel distributed array descriptor class (DAD) as base class. A representative
selection of the Adlib communication schedule classes were reimplemented in terms
of ARMCI. These included the Remap class, which implements copying of regular
sections between distributed arrays, the Gather class, which implements copying of a
whole array to a destination array indirectly subscripted by some other distributed
arrays, and a few related classes.

The benchmark presented here is based on the remap operation. The particular
example chosen abstracts the communication in the array assignment of the following
HPF fragment

 real a(n, n), b(n, n)
!hpf$ distribute a(block, *) onto p
!hpf$ distribute b(*, block) onto p
 a = b

The source array is distributed in its first dimension and the destination array is
distributed in its second dimension, so the assignment involves a data redistribution
requiring an all-to-all communication. In practice the benchmark was coded directly in
C++ (rather than Fortran) and run on four processors of the SGI Power Challenge. The
timings for old and new versions are given in Figure 6. The initial implementation of

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

array extent N

tim
e

[m
ili

se
co

nd
s]

MPI ARMCI

Figure 6: Timings for original MPI vs new ARMCI implementation of remap. The operation
is a particular redistribution of an N by N array.

the operation on top of ARMCI version already shows a modest but significant 20%
improvement over MPI for large arrays. For small arrays the MPI version was actually
slightly faster due to extra barrier synchronizations still used in the initial ARMCI
implementation of remap (for now these synchronizations were implemented naively
in terms of message-passing). The MPI implementation is MPICH using the shared
memory device, so the underlying transport is the the same in both cases.

In addition to improved performance of collective operations on shared memory
platforms, adopting ARMCI as a component of the Adlib implementation will enable
the next release of the library to incorporate one-sided get and put operations as part of
its API—a notable gap in the existing functionality. In a slightly orthogonal but
complementary development, we have produced an PCRC version of GA that
internally uses a PCRC/Adlib array descriptor to maintain the global array distribution
parameters. This provides a GA style programming model, but uses the Adlib array
descriptor internally. The modularity of the GA implementation, enhanced by the
introduction of the ARMCI layer, made changing the internal array descriptor a
relatively straightforward task. An immediate benefit is that direct calls to the
optimized Adlib collective communication library will be possible from the modified
GA. This work was undertaken as part of an effort towards converging the two
libraries.

4 Relation to Other Work
ARMCI differs from other systems in several key aspects. Unlike facilities that

primarily support remote memory copies with contiguous data (for example SHMEM,
LAPI, or the Active Message run-time-system for Split-C (which includes put/get
operations) [16] it attempts to optimize noncontiguous data transfers, such as those
involving sections of multidimensional arrays, and generalized scatter/gather
operations. The Cray SHMEM library [7] available on the Cray and SGI platforms,
and on clusters of PCs through HPVM [17], supports only put/get operations for
contiguous data and scatter/gather operations for the basic datatype elements.

The Virtual Interface Architecture (VIA) [18] is a recent network architecture and
interface standard that is relevant to ARMCI as a possible implementation target. VIA
offers support for noncontiguous data transfers. However, its scatter/gather Remote
Direct Memory Access (RDMA) operations can transfer data only between a
noncontiguous locations in local memory and a contiguous remote memory area. For
transfer of data between sections of local and remote multidimensional arrays, the VIA
would require an additional copy to and from an intermediate contiguous buffer, which
obviously has impact on the performance. This is unnecessary in ARMCI. ARMCI and
VIA offer similar ordering of communication operations.

The MPI-2 one-sided communication specifications include remote memory copy
operations such as put and get [8]. Noncontiguous data transfers are fully supported
through the MPI derived data types. There are two models of one-sided
communication in MPI-2: “active-target” and “passive-target”. The MPI-2 one-sided
communication and in particular its “active-target” version have been derived from
message-passing, and its semantics include rather restrictive (for a remote memory
copy) progress rules closer to MPI-1 than to existing remote memory copy interfaces

like Cray SHMEM, IBM LAPI or Fujitsu MPlib. A version of MPI-2 one-sided
communication called “passive-target” offers more relaxed progress rules and a
simpler to use model than “active-target”. However, it also introduces potential
performance penalties by requiring locking before access to the remote memory
(“window”) and forbidding concurrent accesses to non-overlapping locations in a
“window”. ARMCI does not have similar restrictions and offers a simpler
programming model than MPI-2. This makes it more appropriate for libraries and tools
supporting some application domains, including computational chemistry.

5 Conclusions and Future Work

We introduced a new portable communication library targeting parallel distributed
array libraries and compiler run-time systems. By supporting communication
interfaces for noncontiguous data transfers ARMCI offers potential performance
advantage over other existing systems for communication patterns used in many
scientific applications. We presented its performance for the strided get and gather -
type data transfers on the IBM SP where the ARMCI implementation outperformed by
a large margin the native remote memory copy operations. ARMCI already
demonstrated its value: we employed ARMCI to implement Global Arrays library and
its new higher-dimensional array capabilities, and used it to optimize collective
communication in the Adlib run-time system. The porting and tuning efforts will be
continued. The future ports will include networks of workstations and other scalable
systems. In addition, future extensions of the existing functionality will include
nonblocking interfaces to get operations and new operations such as locks.

Acknowledgments
This work was supported through the U.S. Department of Energy by the

Mathematical, Information, and Computational Science Division the Office of
Computational and Technology Research DOE 2000 ACTS project, and used the
Molecular Science Computing Facility in the Environmental Molecular Sciences
Laboratory at the Pacific Northwest National Laboratory (PNNL). PNNL is operated
by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-
AC06-76RLO 1830.

References
1. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform

memory access programming model for high-performance computers. J. Super-
computing, 10:197–220, 1996.

2. F.C. Eigler, W. Farell, S. D. Pullara, and G. V. Wilson, ABC++, in Parallel Pro-
gramming using C++, G. Wilson and P. Lu, editors, 1996.

3. B. Carpenter, G. Zhang and Y. Wen, NPAC PCRC Runtime Kernel Definition,
http://www.npac.syr.edu/projects/pcrc/kernel.html, 1997.

4. D. Quinlan and R. Parsons. A++/P++ array classes for architecture independent
fnite difference computations. In Proceedings of the Second Annual Object-Ori-
ented Numerics Conference, April 1994.

5. G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison , R. K. Govindaraju, K. Gild-
ea, P. DiNicola, and C. Bender, Performance and experience with LAPI: a new
high-performance communication library for the IBM RS/6000 SP. Proceedings of
the International Parallel Processing Symposium IPPS’98, pages 260-266, 1998.

6. IBM Corp., book chapter “Understanding and Using the Communications Low-
Level Application Programming Interface (LAPI)” in IBM Parallel System Sup-
port Programs for AIX Administration Guide, GC23-3897-04, 1997. (available at
http://ppdbooks.pok.ibm.com:80/cgi-bin/bookmgr/bookmgr.cmd/BOOKS/sspad230/9.1)

7. R. Barriuso, Allan Knies, SHMEM User’s Guide, Cray Research Inc, SN-2516,
1994.

8. MPI Forum. MPI-2: Extension to message passing interface, U. Tennessee, July
18, 1997.

9. F. Bassetti, D. Brown, K. Davis, W. Henshaw, D. Quinlan, OVERTURE: An Ob-
ject-Oriented Framework for High Performance Scientific Computing, Proc.
SC98: High Performance Networking and Computing, IEEE Computer Society, 1998.

10. K Langendoen and J. Romein and R. Bhoedjang and H. Bal, Integrating polling,
interrupts and thread management, Proc. Frontiers 96, pages 13-22, 1996.

11. T. von Eicken, D.E. Culler, S.C. Goldstein and K.E. Schauser, Active messages: A
mechanism for integrated communications and computation, Proc. 19th Ann. Int.
Symp. Comp. Arch., pp. 256-266, 1992.

12. Parallel Compiler Runtime Consortium, Common Runtime Support for High-Per-
formance Parallel Languages, Supercomputing `93, IEEE CS Press, 1993.

13. J. Merlin, B. Carpenter and A. Hey, SHPF: a Subset High Performance Fortran
compilation system, Fortran Journal, pp. 2-6, March, 1996.

14. G. Zhang, B. Carpenter, G. Fox, X. Li, X. Li and Y. Wen, PCRC-based HPF Com-
pilation,10th Internat. Wkshp. on Langs. and Compilers for Parallel Computing,
LNCS 1366, Springer, 1997.

15. B. Carpenter, G. Fox, D. Leskiw, X. Li, Y. Wen and G. Zhang, Language Bindings
for a Data-parallel Runtime, 3 Internat. Wkshp. on High-Level Parallel Program-
ming Models and Supportive Envs., IEEE, 1998.

16. D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von
Eicken, and K. Yelick, Parallel Programming in Split-C, Proc. Supercomputing’93,
1993.

17. A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and
J. Prusakova. High Performance Virtual Machines HPVM: Clusters with super-
computing APIs and performance. Proc. 8 SIAM Conf. Parallel Processing in Sci-
entific Computations, 1997.

18. Compaq Computer Corp., Intel Corp., Microsoft Corp., Virtual Interface Architec-
ture Specification, Dec., 1997.

