
Translation Schemes for the HPJava Parallel

Programming Language

Bryan Carpenter, Geoffrey Fox, Han-Ku Lee, Sang Boem Lim

School of Computational Science and Information Technology,

400 Dirac Science Library,

Florida State University,

Tallahassee, Florida 32306-4120

{dbc,fox,hkl,slim}@csit.fsu.edu

July 28, 2001

Abstract

The article describes the current status of the authors’ HPJava pro-

gramming environment. HPJava is a parallel dialect of Java that imports

Fortran-like arrays—in particular the distributed arrays of High Perfor-

mance Fortran—as new data structures. The article discusses the trans-

lation scheme adopted in a recently developed translator for the HPJava

language. It also gives an overview of the language.

1 Introduction

HPJava [?] is a language for parallel programming, especially suitable for pro-
gramming massively parallel, distributed memory computers.

Several of the ideas in HPJava are lifted from the High Performance For-
tran (HPF) programming language. However the programming model of HP-
Java is “lower level” than the programming model of HPF. HPJava sits some-
where between the explicit SPMD (Single Program Multiple Data) program-
ming style—often implemented using communication libraries like MPI—and
the higher level, data-parallel model of HPF. An HPF compiler generally guar-
antees an equivalence between the parallel code it generates and a sequential
Fortran program obtained by deleting all distribution directives. An HPJava
program, on the other hand, is defined from the start to be a distributed MIMD
program, with multiple threads of control operating in different address spaces.
In this sense the HPJava programming model is “closer to the metal” than the
HPF programming model. HPJava does provide special syntax for HPF-like
distributed arrays, but the programming model may best be viewed as an in-
cremental improvement on the programming style used in many hand-coded

1

applications: explicitly parallel programs exploiting collective communication
libraries or collective arithmetic libraries.

We call this general programming model—essentially direct SPMD program-
ming supported by additional syntax for HPF-like distributed arrays—the HP-

spmd model. In general SPMD programming has been very successful. Many
high-level parallel programming environments and libraries assume the SPMD
style as their basic model. Examples include ScaLAPACK [?], DAGH [?], Kelp
[?] and the Global Array Toolkit [?]. While there remains a prejudice that
HPF is best suited for problems with rather regular data structures and reg-
ular data access patterns, SPMD frameworks like DAGH and Kelp have been
designed to deal directly with irregularly distributed data, and other libraries
like CHAOS/PARTI [?] and Global Arrays support unstructured access to dis-
tributed arrays. Presently, however, the library-based SPMD approach to data-
parallel programming lacks the uniformity and elegance that was promised by
HPF. The various environments referred to above all have some idea of a dis-
tributed array, but they all describe those arrays differently. Because the arrays
are managed entirely in libraries, the compiler offers little support and no safety
net of compile-time or compiler-generated run-time checking. The HPspmd
model is one attempt to address such shortcomings.

HPJava is a particular instantiation of this HPspmd idea. As the name
suggests, the base language in this case is the JavaTM programming language.
To some extent the choice of base language is incidental, and clearly we could
have added equivalent extensions to another language, such as Fortran itself.
But Java does seem to be a better language in various respects, and it seems
plausible that in the future more software will be available for modern object-
oriented languages like Java than for Fortran.

HPJava is a strict extension of Java. It incorporates all of Java as a subset.
Any existing Java class library can be invoked from an HPJava program without
recompilation. As explained above, HPJava adds to Java a concept of multi-
dimensional, distributed arrays, closely modelled on the arrays of HPF1. Regular
sections of distributed arrays are fully supported. The multidimensional arrays
can have any rank, and the elements of distributed arrays can have any standard
Java type, including Java class types and ordinary Java array types.

A translated and compiled HPJava program is a standard Java class file,
which will be executed by a distributed collection of Java Virtual Machines. All
externally visible attributes of an HPJava class—e.g. existence of distributed-
array-valued fields or method arguments—can be automatically reconstructed
from Java signatures stored in the class file. This makes it possible to build
libraries operating on distributed arrays, while maintaining the usual portability
and compatibility features of Java. The libraries themselves can be implemented
in HPJava, or in standard Java, or through Java Native Interface (JNI) wrappers
to code implemented in other languages. The HPJava language specification
carefully documents the mapping between distributed arrays and the standard-

1“Sequential” multi-dimensional arrays—essentially equivalent to Fortran 95 arrays—are

available as a subset of the HPJava distributed arrays.

2

Java components they translate to.
While HPJava does not incorporate HPF-like “sequential” semantics for ma-

nipulating its distributed arrays, it does add a small number of high-level fea-
tures designed to support direct programming with distributed arrays, including
a distributed looping construct called overall. To directly support lower-level
SPMD programming, it also provides a complete set of inquiry functions that
allow the local array segments in distributed arrays to be manipulated directly,
where necessary.

In the current system, syntax extensions are handled by a preprocessor that
emits an ordinary SPMD program in the base language. The HPspmd syntax
provides a relatively thin veneer on low-level SPMD programming, and the
transformations applied by the translator are correspondingly direct—little non-
trivial analysis should be needed to obtain good parallel performance. What the
language does provide is a uniform model of a distributed array. This model can
be targetted by reusable libraries for parallel communication and arithmetic.
The specific model adopted very closely follows the distributed array model
defined in the High Performance Fortran standard.

This article describes ongoing work on refinement of the HPJava language
definition, and the development of a translator for this language.

2 HPJava—an HPspmd language

HPJava extends its base language, Java, by adding some predefined classes and
some additional syntax for dealing with distributed arrays. We aim to provide a
flexible hybrid of the data parallel and low-level SPMD paradigms. To this end
HPF-like distributed arrays appear as language primitives. The distribution
strategies allowed for these arrays closely follow the strategies supported in
HPF—any dimension of an array can independently be given blockwise, cyclic,
or other distribution format2, array dimensions can have strided alignments
to dimensions other arrays, arrays as a whole can be replicated over axes of
processor arrangements, and so on.

A design decision is made that all access to non-local array elements should
go through explicit calls to library functions. These library calls must be placed
in the source HPJava program by the programmer. This requirement may be
surprising to people expecting to program in high-level parallel languages like
HPF, but it should not seem particularly unnatural to programmers presently
accustomed to writing parallel programs using MPI or other SPMD libraries.
The exact nature of the communication library used is not part of the HPJava
language design, per se. An appropriate communication library might perform
collective operations on whole distributed arrays (as illustrated in the following
examples), or it might provide some kind of get and put functions for access

2The current HPJava translator does not implement block-cyclic distribution format, and

in general the HPJava language design can’t very easily accomodate the INDIRECT mappings

present in the extended version of HPF. To our knowledge these are the only major omission

from the HPF standards.

3

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new BlockRange(M, p.dim(0)) ;

Range y = new BlockRange(N, p.dim(1)) ;

float [[-,-]] a = new float [[x, y]], b = new float [[x, y]],

c = new float [[x, y]] ;

... initialize values in ‘a’, ‘b’

overall(i = x for :)

overall(j = y for :)

c [i, j] = a [i, j] + b [i, j] ;

}

Figure 1: A parallel matrix addition.

to remote blocks of a distributed array, similar to the functions provided in the
Global Array Toolkit [?], for example.

A subscripting syntax can be used to directly access local elements of dis-
tributed arrays. A well-defined set of rules—automatically checked by the
translator—ensures that references to these elements can only be made on pro-
cessors that hold copies of the elements concerned. Alternatively one can access
local elements of a distributed array indirectly, by first extracting the locally
held block of elements, then subscripting this block as a local sequential array.

To facilitate the general scheme, the language adds three distributed control

constructs to the base language. These play a role something like the ON HOME

directives of HPF 2.0 and earlier data parallel languages [?]. One of the special
control constructs—a distributed parallel loop—facilitates traversal of locally
held elements of distributed arrays.

Mapping of distributed arrays in HPJava is described in terms of a two
special classes: Group and Range. Process group objects generalize the processor
arrangements of HPF, and distributed range objects are used in place HPF
templates. A distributed range is comparable with a single dimension of an
HPF template. The changes relative to HPF (with its processor arrangements
and multi-dimensional templates) are best be regarded as a modest change of
parametrization only: the set of mappings that can be represented is unchanged.

Figure 1 is a simple example of an HPJava program. It illustrates creation of
distributed arrays, and access to their elements. The class Procs2 is a standard
library class derived from the special base class Group, and representing a two-
dimensional grid of processes. The distributed range class BlockRange is a
library class derived from the special class Range; it denotes a range of subscripts
distributed with BLOCK distribution format. Process dimensions associated
with a grid are returned by the dim() inquiry. The on(p) construct is a new
control construct specifying that the enclosed actions are performed only by
processes in group p.

4

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new ExtBlockRange(N, p.dim(0), 1, 1) ;

Range y = new ExtBlockRange(N, p.dim(1), 1, 1) ;

float [[-,-]] u = new float [[x, y]] ;

... some code to initialise ‘u’

for(int iter = 0 ; iter < NITER ; iter++) {

Adlib.writeHalo(u) ;

overall(i = x for 1 : N - 2)

overall(j = y for 1 + (i‘ + iter) % 2 : N - 2 : 2)

u [i, j] = 0.25 * (u [i - 1, j] + u [i + 1, j] +

u [i, j - 1] + u [i, j + 1]) ;

}

}

Figure 2: Red-black iteration.

The variables a, b and c are all distributed array objects. The type signature
of an r-dimensional distributed array involves double brackets surrounding r

comma-separated slots. The constructors specify that these all have ranges x

and y—they are all M by N arrays, block-distributed over p.
A second new control construct, overall, implements a distributed parallel

loop. The symbols i and j scoped by these constructs are called distributed

indexes. The indexes iterate over all locations (selected here by the degenerate
interval “:”) of ranges x and y.

In HPJava, with a couple of exceptions noted below, the subscripts in el-
ement references must be distributed indexes. The locations associated with
these indexes must be in the range associated with the array dimension. This
restriction is a principal means of ensuring that referenced array elements are
held locally.

This general policy is relaxed slightly to simplify coding of stencil updates.
A subscript can be a shifted index. Usually this is only legal if the subscripted
array is declared with suitable ghost regions [?]. Figure 2 illustrates the use
of the standard library class ExtBlockRange to create arrays with ghost ex-
tensions (in this case, extensions of width 1 on either side of the locally held
“physical” segment). A function, writeHalo, from the communication library
Adlib updates the ghost region. If i is a distribute index, the expression i‘

(read “i-primed”) yields the integer global loop index.
Distributed arrays can be defined with some sequential dimensions. The

sequential attribute of an array dimension is flagged by an asterisk in the type
signature. As illustrated in Figure 3, element reference subscripts in sequential

5

Procs1 p = new Procs1(P) ;

on(p) {

Range x = new BlockRange(N, p.dim(0)) ;

float [[-,*]] a = new float [[x, N]], c = new float [[x, N]] ;

float [[*,-]] b = new float [[N, x]], tmp = new float [[N, x]] ;

... initialize ‘a’, ‘b’

for(int s = 0 ; s < N ; s++) {

overall(i = x for :) {

float sum = 0 ;

for(int j = 0 ; j < N ; j++)

sum += a [i, j] * b [j, i] ;

c [i, (i‘ + s) % N] = sum ;

}

// cyclically shift ‘b’ (by amount 1 in x dim)...

Adlib.cshift(tmp, b, 1, 1) ;

Adlib.copy(b, tmp) ;

}

}

Figure 3: A pipelined matrix multiplication program.

dimensions can be ordinary integer expressions.
The last major component of the basic HPJava syntax is support for Fortran-

like array sections. An array section expression has a similar syntax to a dis-
tributed array element reference, but uses double brackets. It yields a new
array contains a subset of the elements of the parent array. Those elements
can subsequently be accessed either through the parent array or through the
array section—HPJava sections behave something like array pointers in For-
tran, which can reference an arbitrary regular sections of a target array. As in
Fortran, subscripts in section expressions can be index triplets. The language
also has built-in ideas of subranges and restricted groups. These can be used
in array constructors on the same footing as the ranges and grids introduced
earlier, and they enable HPJava arrays to reproduce any mapping allowed by
the ALIGN directive of HPF.

The examples here have covered the basic syntax of HPJava. The language
itself is relatively simple. Complexities associated with varied and irregular
patterns of communication would be dealt with in libraries, which can imple-
ment many richer operations than the writeHalo and cshift functions of the
examples.

6

The examples given so far look very much like HPF data-parallel examples,
written in a different syntax. We will give one final example to emphasize the
point that the HPspmd model is not the HPF model. If we execute the following
HPJava program

Procs2 p = new Procs2(2, 3) ;

on(p) {

Dimension d = p.dim(0), e = p.dim(1) ;

System.out.println("My coordinates are (" + d.crd() +

", " + e.crd() + ")") ;

}

we could see output like:

My coordinates are (0, 2)

My coordinates are (1, 2)

My coordinates are (0, 0)

My coordinates are (1, 0)

My coordinates are (1, 1)

My coordinates are (0, 1)

There are 6 messages. Because the 6 processes are running concurrently in 6
JVMs, the order in which the messages appear is unpredictable. An HPJava
program is a MIMD program, and any appearance of collective behavior in
previous examples was the result of a particular programming style and a good
library of collective communication primitives. In general an HPJava program
can freely exploit the weakly coupled nature of the process cluster, often allowing
more efficient algorithms to be coded.

3 Miscellaneous language issues

Early versions of HPJava (see for example, [?]) adopted the position that a
distributed array should be a kind of Java object. After working with this
approach for some time, our position changed. In our current language definition
a distributed array type is not an ordinary Java reference type. It is a new kind
of reference type that does not extend Object. In practise a single distributed
array is translated to several Java objects in the emitted code.

An early motivation for this change was to avoid introducing infinitely many
different Java classes for the different distributed array types. However the
change has other advantages. Now that a distributed array type no longer
extends Object we are liberated from having to support various object-like
behaviors, that would make efficient translation of operations on distributed
arrays harder than it needs to be.

The HPJava translator only applies its transformations code in HPspmd

classes. These are classes that implement a marker interface called HPspmd.
Classes that do not implement this interface are not transformed and cannot
use the special syntax extensions of HPJava.

7

Many of the special operations in HPJava rely on the knowledge of the
currently active process group—the APG. This is a context value that will
change during the course of the program as distributed control constructs limit
control to different subsets of processors. In the current HPJava translator the
value of the APG is passed as a hidden argument to methods and constructors
of HPspmd classes (so it is handled something like the this reference in typical
object-oriented languages).

The HPJava language has a set of rules that the translator enforces to help
ensure a rational parallel program. These govern where in a program certain
constructs can legally appear, and the allowed subscripts in distributed arrays.

The value of the current active process group is used to determine whether
particular distributed control contructs and certain collective array operations
are legal at particular points in a program. So long as these basic rules are
respected, distributed control constructs can be nested freely, and generally
speaking collective operations will operate properly within the restricted APGs
in effect inside the constructs.

So far as subscripting is concerned, a characteristic rule is that distributed
array element reference in:

overall(i = x for l : u : s) {

... a[e0, . . . ,er−1,i,er+1, . . .] ...

}

is allowed if and only if

1. The expression a is invariant in the overall construct.

2. All locations in x[l:u:s] are of elements a.rng(r).

The syntax x[l:u:s] represents a subrange, and the inquiry a.rng(r) returns
the rth range of a. This rule is a statement about the overall construct as a
whole, not about the array accesses in isolation. The rule applies to any access
that appears textually inside the constructs, even if some conditional test in
the body of the construct might prevent those accesses from actually being
executed. This is important because it allows any associated run-time checking
code to be lifted outside the local loops implied by an overall.

4 Basic translation scheme

In some ways the philosophy behind our HPspmd translator is orthogonal to
the approach in writing a true compiler. There is a deliberate effort to keep
the translation scheme simple and apparent to the programmer. Aggressive
optimizations of the local code are left to the compiler (or JVM) used as a
backend. The full translation scheme is documented in the HPJava report at
[?]. This is a work in progress, and the document evolves as the translator
matures.

8

SOURCE:

T [[attr0, . . ., attrR−1]] a ;

TRANSLATION:

T [] a′
dat

;

ArrayBase a′
bas

;

DIMENSION TYPE (attr0) a′0 ;

...

DIMENSION TYPE (attrR−1) a′
R−1

;

Figure 4: Translation of a distributed-array-valued variable declaration.

4.1 Translation of distributed arrays

Figure 4 gives a schema for translating a distributed array declaration in the
source HPJava program. Here T is some Java type, a′

dat
, a′

bas
and a′

0
. . . a′

R−1

are new identifiers, typically derived from a by adding some suffixes, the strings
attrr are each either a hyphen, -, or an asterisk, *, and the “macro” DIMEN-

SION TYPE is defined as

DIMENSION TYPE (attrr) ≡ ArrayDim

if the term attrr is a hyphen, or

DIMENSION TYPE (attrr) ≡ SeqArrayDim

if the term attrr is an asterisk.
If, for example, a class in the source program has a field:

float [[-,-,*]] bar ;

the translated class may be assumed to have the five fields:

float [] bar__$DDS ;

ArrayBase bar__$bas ;

ArrayDim bar__$0 ;

ArrayDim bar__$1 ;

SeqArrayDim bar__$2 ;

In general a rank-r distributed array in the source program is converted to
2+ r variables in the translated program. The first variable is an ordinary, one-
dimensional, Java array holding local elements. A simple “struct”-like object of

9

SOURCE:

overall (i = x for elo : ehi : estp) S

TRANSLATION:

Block b = x.localBlock(T [elo], T [ehi], T
[

estp
]

) ;

Group p = ((Group) apg.clone()).restrict(x.dim()) ;

for (int l = 0 ; l < b.count ; l++) {

int sub = b.sub_bas + b.sub_stp * l ;

int glb = b.glb_bas + b.glb_stp * l ;

T [S |p]
}

where:
i is an index name in the source program,
x is a simple expression in the source program,
elo, ehi, and estp are expressions in the source,
S is a statement in the source program, and
b, p, l, sub and glb are names of new variables.

Figure 5: Translation of overall construct.

type ArrayBase contains a base offset in this array and an HPJava Group object
(the distribution group of the array). r further simple objects of type ArrayDim
each contain an integer stride in the local array and an HPJava Range object
describing the dimensions of the distributed array. The class SeqArrayDim is a
subclass of ArrayDim, specialized to parameterize sequential dimensions conve-
niently.

One thing to note is that a class file generated by compiling the translated
code will contain the generated field names. These follow a fixed prescription, so
that when a pre-compiled class file (from some library package, say) is read by
the HPJava translator, it can reconstruct the original distributed array signature
of the field from the 2 + r fields in the class file. It can then correctly check
usage of the external class. By design, the translator can always reconstruct
the HPspmd class signatures from the standard Java class file of the translated
code.

10

SOURCE:

e ≡ a [e0, . . ., eR−1]

TRANSLATION:

T [e] ≡ Tdat [a] [OFFSET(a, e0, . . . , eR−1)]

where:

The expression a is the subscripted array,
each term er is either an integer, a distributed index name,

or a shifted index expression, and
the macro OFFSET is defined in the text.

Figure 6: Translation of distributed array element access.

4.2 Translation of the overall construct

The schema in Figure 5 describes basic translation of the overall construct.
The localBlock() method on the Range class returns parameters of the locally
held block of index values associated with a range. These parameters are re-
turned in another simple “struct”-like object of class Block. Terms like T [e]
represent the translated form of expression e.

The local subscript for the index i is the value of sub. This value is used in
subscripting distributed arrays. The global index for the index i is the value of
glb. This value is used in evaluating the global index expression i‘.

Because we use the run-time inquiry function localBlock() to compute pa-
rameters of the local loop, this translation is identical for every distribution for-
mat supported by the language (block-distribution, simple-cyclic distribution,
aligned subranges, and several others). Of course there is an overhead asso-
ciated with abstracting this computation into a method call; but the method
call is made at most once at the start of each loop, and we expect that in
many cases optimizing translators will recognize repeat calls to these methods,
or recognize the distribution format and inline the computations, reducing the
overhead further.

T [S |p] means the translation of S in the context of p as active process
group.

4.3 Translating element access in distributed arrays

We only need to consider the case where the array reference is a distributed
array: the general scheme is illustrated in Figure 6. The macro OFFSET is

11

defined as

OFFSET (a, e0, . . . , eR−1) ≡

Tbas [a].base + OFFSET DIM (T0 [a] , e0)
. . .

+ OFFSET DIM (TR−1 [a] , eR−1)

There are three cases for the macro OFFSET DIM depending on whether
the subscript argument is a distributed index, a shifted index, or an integer
subscripts (in a sequential dimension). We will only illustrate the case where er

is a distributed index i. Then

OFFSET DIM (a′r, er) ≡ a′r.stride * sub

where sub is the local subscript variable for this index (see the last section).
Ultimately—as we should expect for regular access patterns—the local sub-

script computations reduce to expressions linear in the indices of local loops.
Such subscripting patterns are readily amenable to optimization by the com-
piler back-end, or, more likely, they can be further simplified by the HPspmd
translator itself.

We have only sketched three of the more important schema, leaving out de-
tails. The full translation scheme for HPJava, recorded in [?], involves perhaps
a couple of dozen such schema of varying complexity. In practice the transla-
tion phase described here is preceded by a “pre-translation” phase that simpli-
fies some complex expressions by introducing temporaries, and adds run-time
checking code for some of the rules described in section 3.

5 Status and prospects

The first fully functional version of the HPJava translator is now operational.
Over the last few weeks the system as been tested and debugged against a small
test suite of available HPJava programs. Currently most of the examples are
short, although the suite does include an 800-line Multigrid code, transcribed
from an existing Fortran 90 program. One pressing concern over the next few
months is to develop a much more substantial body of test code and applications.

As we have emphasized, HPJava includes all of standard Java as a subset.
“Translation” of the conventional Java part of the language is very easy. It is
a design feature of HPJava that the translation system handles code that looks

like base language code in exactly the same way as it would be handled by a
compiler for the base language. In our source-to-source translation strategy,
this means that standard Java statements and expressions are copied through
essentially unchanged. On the other hand the inclusion of Java means that we
do need a front-end that covers the whole of Java. The translation scheme for
HPJava depends in an important way on type information. It follows that we
need type analysis for the whole language, including the Java part. Writing

12

a full type-checker for Java is not trivial (especially since the introduction of
nested types). In practice development of the front-end, and particularly the
type-checker, has been the most time-consuming step in developing the whole
system. The HPJava translator is written in Java. The parser was developed
using the JavaCC and JTB tools.

It is too early to give detailed benchmarks. However we will give some general
arguments that lead us to believe that in the near future we can hope to obtain
effective performance using our system. For the sake of definiteness, consider
the Multigrid example referred to above. This is a good example for HPJava,
because it is an example of an algorithm that is quite complex to code “by hand”
as a parallel program, and relatively easy to code using HPJava together with the
communication library Adlib. The detailed logic of the Multigrid algorithm has
an interesting recursive structure, but the core of the computational work boils
down to red-black relaxation (Figure 2). If we can code this simple algorithm
well, we expect the whole of the solver should work reasonably well.

The general feasibility of programming this kind of algorithm on a massively
parallel, distributed memory computer is presumably not at issue. As discussed
in the previous section, the translation scheme for HPJava ultimately reduces
the overall constructs of the source program to simple for loops—much the
same as the kind of for loops one would write in a hand-coded MPI program3.
Earlier experiences, using the high-level Adlib communication library as run-
time support for research implementations of HPF, lead us to believe that this
library should not introduce unacceptable overheads. (Adlib is a C++ library
built on top of MPI. The Java binding is through JNI.) So this leaves us with
the question of whether Java will be the weak link, in terms of performance.
The answer seems to be “perhaps not”. Recent benchmarking efforts [?] indi-
cate that—at least on major commodity platforms—Java JIT performance is
approaching parity with C and even Fortran compilers. We believe that these
results will carry over to our applications.

6 Conclusion

HPJava is conceived as a parallel programming language extended from, and
fully compatible, with, Java—perhaps the most modern programming language
in widescale use at the time of writing. It imports language constructs from
Fortran 90 and High Performance Fortran that are believed to be important to
support effective scientific programming of massively parallel computers.

HPJava is an instance of what we call the HPspmd model: it is not exactly
a high-level parallel programming language in the ordinary sense, but rather a
tool to assist parallel programmers in writing SPMD code. In this respect the
closest recent language we are familiar with is probably F-- [?], but HPJava
and F-- have many obvious differences.

3More precisely, they will be much the same once the raw code, generated by the basic

translation scheme, has been cleaned up by some straightforward optimizations. This is the

step that is missing at the time of writing.

13

Parallel programming aside, HPJava is also one of several recent efforts to
put “scientific”, Fortran-like arrays into Java. At meetings of the Java Grande
Forum, for example, this has been identified as an important requirement for
wider deployment of scientific software in Java. Work at IBM over the last few
years [?, ?, ?, ?] has been particularly influential in this area, leading to a JSR
(Java Specification Request) for standardized scientific array classes. The ap-
proach taken in HPJava—using a preprocessor to break arrays into components
rather than introducing multidimensional array classes as such—is somewhat
different. For us the preprocessor approach was essentially mandated by the
proliferation of distinct distributed array types in our model. Generating the
large number of array classes that would be needed seems to be impractical.
In recent talks the IBM group have also discussed comparable approaches for
sequential multiarrays without introducing specific array classes [?].

7 Acknowledgements

This work was supported in part by the National Science Foundation Divi-
sion of Advanced Computational Infrastructure and Research, contract number
9872125.

14

