
C. Project Description

C.1 Motivation of the proposed work

It is generally accepted that data parallel programming has a vital role in high-perform-
ance scienti�c computing. The basic implementation issues related to this paradigm are well
understood. But the choice of high-level programming environment remains uncertain. Five
years ago the High Performance Fortran Forum published the �rst standardized de�nition
of a language for data parallel programming [19, 30]. In the intervening period considerable
progress has been made in HPF compiler technology, and the HPF language de�nition has
been extended and revised in response to demands of compiler-writers and end-users [20].
Yet it seems to be the case that most programmers developing parallel applications|or
environments for parallel application development|do not code in HPF. The slow uptake
of HPF can be attributed in part to immaturity in the current generation of compilers.
But there is the suspicion that many programmers are actually more comfortable with the
lower-level Single Program Multiple Data (SPMD) programming style, perhaps because
the e�ect of executing an SPMD program is more controllable, and the process of tuning
for e�ciency is more intuitive. (Partially, no doubt, this reects a status quo where expert
programmers build parallel programs and less experienced programmers merely use them.)

SPMD programming has been very successful. There are countless applications written
in the most basic SPMD style, using direct message-passing through MPI [21] or similar low-
level packages. Many higher-level parallel programming environments and libraries assume
the SPMD style as their basic model. Examples include ScaLAPACK [4], PetSc [2], DAGH
[36], Kelp [18, 31], the Global Array Toolkit [34] and NWChem [3, 28]. While there remains
a prejudice that HPF is best suited for problems with very regular data structures and
regular data access patterns, SPMD frameworks like DAGH and Kelp have been designed to
deal directly with irregularly distributed data, and other libraries like CHAOS/PARTI [16,
37] and Global Arrays support unstructured access to distributed arrays. These successes
aside, the library-based SPMD approach to data-parallel programming certainly lacks the
uniformity and elegance of HPF. All the environments referred to above have some idea
of a distributed array, but they all describe those arrays di�erently. Compared with HPF,
creating distributed arrays and accessing their local and remote elements is clumsy and
error-prone. Because the arrays are managed entirely in libraries, the compiler o�ers little
support and no safety net of compile-time checking.

The proposed work will investigate a class of programming languages that borrow cer-
tain ideas, various run-time technologies, and some compilation techniques from HPF, but
relinquish some of its basic tenets, in particular: that the programmer should write in a
language with (logically) a single global thread of control, that the compiler should deter-
mine automatically which processor executes individual computations in a program, and
that the compiler should automatically insert communications if an individual computation
involves accesses is to array element held outside the local processor.

If these foundational assumptions are removed from the HPF model, does anything
useful remain? In fact, yes. What will be retained is an explicitly SPMD programming model

C-1

complemented by syntax for representing distributed arrays, syntax for expressing that
certain computations are localized to certain processors, and syntax for expressing concisely
a distributed form of the parallel loop. The claim is that these are just the features needed
to make calls to various data-parallel libraries, including application-oriented libraries and
high-level libraries for communication, about as convenient as, say, making a call to an
array transformational intrinsic function in Fortran 90. We hope to illustrate that, besides
their advantages as a framework for library usage, the resulting programming languages can
conveniently express various practical data-parallel algorithms. The resulting framework
may also have better prospects for dealing e�ectively with irregular problems than is the
case for HPF.

This proposal brings together several important research areas including parallel com-
pilers, data parallel SPMD libraries and object oriented programming models. We research
combinations of these ideas which achieve high performance with an approach that implies
more work for the programmer than envisaged in systems such as HPF, but can more
clearly be implemented in a robust fashion on a range of languages. Explicitly we are com-
bining our research on the use of Java and Web technologies with the high performance
SPMD libraries and some of the compiler techniques developed as part of HPF research.
Java has many features that suggest it could be a very attractive language for scienti�c
and engineering or what we now term \Grande" applications. Clearly Java needs many
improvements both to the language and the support environment to achieve the required
linkage of high performance with expressivity. This cannot be guaranteed but we have
helped set in motion a community activity involving academia, government and industry
(including IBM, Intel, Microsoft, Oracle, Sun and perhaps most importantly James Gosling
from Javasoft) which is designed to both address language changes and the establishment
of standards for numerical libraries and distributed scienti�c objects. The Java environ-
ment is still malleable and we are optimistic that this e�ort will be succesful and Java will
emerge as a premier language for large scale computation. Our research will be aimed at
multi-language programming paradigms but our new implementations will focus on Java
exploiting existing high performance C++ and Fortran libraries. Our collaborater Profes-
sor Xiaoming Li from Peking University will be developing the Fortran and C++ aspects
of this general high level SPMD environment. We can consider our work from either of
two points of view; bringing the power of Java to a data parallel SPMD environment or
alternatively researching the expression of data parallelism within Java. Note that we are
adopting a more modest approach than a full scale data parallel compiler like HPF; we
believe this is an appropriate approach to Java where the situation is changing rapidly and
one needs to be very exible.

We should stress what we are not doing! Many of the discussions of Java at the recent
\Grande" workshops [23{25] have focussed on its use in distributed object and mobile or
Web client based computing. In fact our group also is looking into this for composing
large scale distributed systems. However in this proposal, we are addressing \hard-core"
science and engineering computations where data parallelism and the highest performance
are viewed as critical.

The work proposed in this project continues research conducted in the the Parallel Com-
piler Runtime Consortium (PCRC) project [14]. PCRC was a DARPA-supported project
involving Rice, Maryland, Austin, Indiana, CSC, Rochester and Florida, with NPAC as

C-2

prime contractor. Achievements included construction of an experimental HPF compila-
tion system [42], delivery of the NPAC PCRC runtime kernel (Adlib) [11] and early work
on the design and implementation of HPJava [10].

C.2 Objective and expected signi�cance

Our system aims to support a programming model that is a exible hybrid of the data-
parallel, language-oriented, HPF style, and the established and popular, library-oriented,
SPMD style. We refer to this model as HPspmd.

Primary goals of the current project include

1. Providing a small set of syntax extensions to various base languages (including Java,
Fortran, and C++). These syntax extensions add distributed arrays as language
primitives, and introduce a few new control constructs, such as the distributed loop.

2. Providing bindings from the extended languages to various communication and arith-
metic libraries. These may include libraries modelled on, or simply new interfaces
to, some subset of Adlib, CHAOS, Global Arrays, MPI, DAGH, ScaLAPACK, etc.
Supporting the libraries for irregular communication will be an important goal.

3. Testing and evaluating HPJava and the HPspmd model in general on large scale
applications.

A major thrust of the proposed work will be on researching compiler (or preprocessor)
support for our extended languages, and development of exemplar interfaces from the new
languages to a subset of the libraries mentioned above. The research aspects of the proposed
work involve investigation of compiler optimizations and safety checks peculiar to the new
languages, extensions to the basic language model to improve support of irregular problems,
and design of attractive class-library bindings for the various SPMD environments involved
in the project.

The next four subsections overview the language extensions we are investigating, the
libraries we will study, issues concerning low-level MPI programming in the proposed en-
vironment, and the parallel machine model.

C.2.1 HPspmd language extensions

We aim to provide a exible hybrid of the data parallel and low-level SPMD approaches.
To this end HPF-like distributed arrays appear as language primitives. A design decision
is made that all access to non-local array elements should go through library functions|for
example, calls to a collective communication library, or simply get and put functions for
access to remote blocks of a distributed array. This puts an extra onus on the programmer;
but making communication explicit encourages the programmer to write algorithms that
exploit locality, and simpli�es the task of the compiler writer.

For the newcomer to HPF, one of its advantages lies in the fact that the e�ect of a par-
ticular operation is logically identical to its e�ect in the corresponding sequential program.
This means that, assuming the programmer understands conventional Fortran, it is very

C-3

easy for him or her to understand the behaviour of a program at the level of what values
are held in program variables, and the �nal results of procedures and programs. Unfortu-
nately, the ease of understanding this \value semantics" of a program is counterbalanced by
the di�culty in knowing exactly how the compiler translated the program. Understanding
the performance of an HPF program may require the programmer to have very detailed
knowledge of how arrays are distributed over processor memories, and what strategy the
compiler adopts for distributing computations across processors.

The language model we discuss has various similarities to the HPF model, but the HPF-
style semantic equivalence between the data-parallel program and a sequential program is
abandoned in favour of a literal equivalence between the data-parallel program and an
SPMD program. Because understanding an SPMD program is presumably more di�cult
than understanding a sequential program, our language may be slightly harder to learn
and use than HPF. But understanding performance of programs should be much easier.

The distributed arrays of the new languages will be kept strictly separate from ordinary
arrays. They are a di�erent kind of object, not type-compatible with ordinary arrays. An
important property of the languages we describe is that if a section of program text looks
like program text from the unenhanced base language (Java or Fortran 90 for example), it
is translated exactly as for the base language|as local sequential code. Only statements
involving the extended syntax behave specially. This makes preprocessor-based implemen-
tation of the new languages very straightforward, allows sequential library code to be called
directly, and gives the programmer good control over the generated code|he or she can
be con�dent no unexpected overhead have been introduced in code that looks like ordinary
Fortran (for example).

In the baseline language we adopt a distributed array model semantically equivalent to
to the HPF data model in terms of how elements are stored, the options for distribution
and alignment, and facilities for describing regular sections of arrays. Distributed arrays
may be subscripted with global subscripts, as in HPF. But a subscripting operation must
not imply access to an element on a di�erent processor. We will sometimes be refer to
this restriction as the SPMD constraint. To simplify the task of the programmer, who
must ensure an accessed element is held locally, the languages will typically add distributed

control constructs. These play a role something like the ON HOME directives of HPF 2.0 and
earlier data parallel languages [29]. A further special control construct will facilitate access
to all elements in the locally held section of a particular array (or group of aligned arrays).
This is the distributed loop or overall construct.

Java, Fortran and C++ versions. A Java instantiation (HPJava) of the HPspmd
language model outlined above has been described in [9, 10]. A brief review is given in
section C.4.1. HPJava is a superset of the Java language that adds prede�ned classes and
some additional syntax for dealing with distributed arrays. It also adds three new control
constructs, including the overall distributed loop, which is used to traverse local elements
of distributed arrays.

In [7] we have outlined possible syntax extensions to Fortran to provide similar se-
mantics to HPJava. As emphasized previously, a distinguishing property of the proposed
system, compared to HPF, is that it includes ordinary Fortran as a strict subset, and ordi-

nary Fortran constructs are unchanged by the translator. The proposed system would not

C-4

attempt to exploit parallelism even in constructs such as the array syntax of Fortran 90 or
the FORALL statement of Fortran 95, because those constructs operate on the standard
sequential arrays of the language. This policy drastically simpli�es the translator, and gives
the programmer much �ner control over the generated code.

So far as C++ is concerned, a working prototype of our language model exists in the
form of the ad++ interface to Adlib [5, 12]. This extends C++ only by class libraries and
macros. In C++ we can use features like operator-overloading, templates, reference-valued
functions, and macros to e�ectively prototype new language constructs. But the current
ad++ is very ine�cient (and the concrete syntax is quite clumsy) compared with what
could be achieved with a purpose-built compiler or preprocessor.

In the proposed work, research into optimizing compilers and preprocessor for HPspmd
versions of Fortran and C++ will be led by our collaborater Professor Xiaoming Li from
Peking University.

General translation issues. The language extensions described earlier were devised
partly to provide a convenient interface to a distributed-array library developed in the
Parallel Compiler Runtime Consortium (PCRC) project [14].

Compared with HPF, translation of the HPspmd languages is very straightforward. The
HPJava compiler, for example, is being implemented initially as a translator to ordinary
Java, through a compiler construction framework developed in the PCRC project. The
distributed arrays of the extended language appear in the emitted code as a pair|an
ordinary Java array of local elements and a Distributed Array Descriptor object (DAD). In
the initial implementation, details of the distribution format, including non-trivial details of
global-to-local translation of the subscripts, are managed in the runtime library. Even with
these overheads, acceptable performance is achievable, because in useful parallel algorithms
most work on distributed arrays occurs inside overall constructs with large ranges. In
normal usage, the formulae for address translation can be linearized inside these constructs,
and the cost of runtime calls handling non-trivial aspects of address translation (including
array bounds checking) can be amortized in the startup overheads of the loop. These
compiler optimizations will be important in the base level translator. If array accesses
are genuinely irregular, the necessary subscripting cannot usually be directly expressed in
our language; subscripts cannot be computed randomly in parallel loops without violating
the SPMD restriction that accesses be local. This is not necessarily a shortcoming: it
forces explicit use of an appropriate library package for handling irregular accesses (such
as CHAOS, see section C.2.2).

The basic HPJava translator will be available by the start date of the proposed work.
In �gure C.1 we give benchmark results for HPJava examples manually converted to Java,
following the translation scheme outlined above. The examples are essentially the ones
described in section C.4.1. The parallel programs are executed on 4 sparc-sun-solaris2.5.1
using MPICH and the Java JIT compiler in JDK 1.2Beta2, through a JNI interface to
Adlib for collective communications. In both cases arrays are 1024 by 1024. For Jacobi
iteration, the timing is for about 90 iterations. Timings are compared with sequential Java
and C++ versions of the code (horizontal lines). Note that poor scaling in the Cholesky
case is attributable to the poor performance of MPICH on this platform not overheads of
HPJava. Scaling will be much improved by using SunHPC MPI.

C-5

The single-processor HPJava performance is better than sequential Java, because the
pure Java version was coded in the natural way, using two-dimensional arrays|quite ine�-
cient in Java. The HPJava translation scheme linearizes arrays. (We remark that in recent
workshops James Gosling has stated that this is his preferred approach to adding general-
ized array-like structure in Java.) Although absolute performance is still somewhat lower
than C++, Java performance has improved dramatically over the last year, and we expect
to see further gains. Parity between Java and C or Fortran no longer seems an unrealistic
expectation. In fact, even if the performance of Java does not rapidly approach that of C
and Fortran, Java remains an excellent research platform for the general language model
we espouse. It combines strong support for dynamic and object-oriented programming in
a relatively simple language, for which preprocessors for extended versions of the language
(\little languages") are a straightforward proposition.

0

10

20

30

40

50

60

70

1 2 3 4

T
im

e
(i

n
se

c)

Numer of processors

Jacobi iteration

Java

HPJava

C++

0

10

20

30

40

50

1 2 3 4

T
im

e
(i

n
se

c)

Number of processors

Choleski decomposition

Java

HPJava

C++

Figure C.1: Preliminary HPJava performance

C.2.2 Integration of high-level libraries, regular and irregular

Libraries are at the heart of the HPspmd model. From one point of view, the language
extensions are simply a framework for invoking libraries that operate on distributed arrays.
The base language model was originally motivated by work on HPF runtime libraries carried
out in the Parallel Compiler RuntimeConsortium (PCRC) project [14] led by Syracuse (and
earlier related work by one of us [12]).

Hence an essential component of the proposed work is to de�ne a series of bindings
from our languages to established SPMD libraries and environments. Because our lan-
guage model is explicitly SPMD, such bindings are a more straightforward proposition
than in HPF, where one typically has to pass some extrinsic interface barrier before invok-
ing SPMD-style functions.

Various issues must be addressed in interfacing to multiple libaries. For example, low-
level communication or scheduling mechanisms used by the di�erent libraries may be in-
compatible. As a practical matter these incompatibilities must be addressed, but the main
thrust of the proposed research is at the level of designing compatible interfaces, rather
than solving interference problems in speci�c implementations.

We will group the existing SPMD libraries for data parallel programming into three

C-6

classes, loosely based on the complexity of design issues involved in integrating them into
our language framework.

In the �rst class we have libraries like ScaLAPACK [4] and PetSc [2] where the pri-
mary focus is similar to conventional numerical libraries|providing implementations of
standard matrix algorithms, say, but operating on elements in regularly distributed arrays.
We believe that designing HPspmd interfaces to this kind of package will be relatively
straightforward

ScaLAPACK for example, provides linear algebra routines for distributed-memory com-
puters. These routines operate on distributed arrays|in particular, distributed matrices.
The distribution formats supported are restricted to two-dimensional block-cyclic distribu-
tion for dense matrices and one-dimensional block distribution for narrow-band matrices.
Since both these distribution formats are supported by HPspmd (it supports all HPF-
compatible distribution formats), using ScaLAPACK routines from the HPspmd framework
should present no fundamental di�culties. Problems can only arise if the caller attempts
to pass in matrix with a distribution format unsupported by the ScaLAPACK routines.
The interface code between HPspmd and ScaLAPACK (which converts between array de-
scriptors) must either ag a runtime error in this case, or remap the argument array (using,
for example, the remap primitive of Adlib [11]).

In the second class we place libraries conceived primarily as underlying support for
general parallel programs with regular distributed arrays. They emphasize high-level com-
munication primitives for particular styles of programming, rather than speci�c numerical
algorithms. These libraries include rutimes libraries for HPF-like languages, such as Adlib
and Multiblock Parti [1], and the Global Array toolkit [34].

Adlib is a runtime library was initially designed to support HPF translation. It provides
communication primitives similar to Multiblock PARTI, plus all Fortran 90 transforma-
tional intrinsics for arithmetic on distributed arrays. It also provides some gather/scatter
operations for irregular access.

The array descriptor of Adlib supports the full HPF 1.0 distributed array model|
including all standard distribution formats, all alignment options including replicated align-
ment, and a facility to map an array to an arbitrary subgroup of the set of active processors.
The runtime array descriptor of the HPspmd languages will be an enhanced version of the
Adlib descriptor (with a few extra features, such as support for the GENBLOCK distribution
format of HPF 2.0 [20]). The Adlib collective communication library will provide initial
library support for regular applications in HPspmd.

The Global Array (GA) toolkit, developed at Paci�c Northwest National Lab, provides
an e�cient and portable \shared-memory" programming interface for distributed-memory
computers. Each process in a MIMD parallel program can asynchronously access logical
blocks of distributed arrays, without need for explicit cooperation by other processes (\one-
sided communication"). This model has been popular and successful. GA is a foundation
of the NWChem [3, 28] computational chemistry package.

The existing interface to Global Arrays only supports two-dimensional arrays with gen-
eral block distribution format. Distributed arrays are created by calls to Fortran functions
which return integer handles to an array descriptor. The authors of the package are cur-
rently investigating generalization to support multi-dimensional arrays, with more general
distribution format. They have already expressed interest in making their library accessible

C-7

through the kind of language extensions for distributed arrays described in this proposal.
Besides providing a much more tractable interface for creation of multidimensional dis-

tributed arrays, our syntax extensions will provide a more convenient interface to primitives
such as ga get, which copies a patch of a global array to a local array. Advantages over
the existing API include the fact is that the interface can be made uniform for all ranks
of arrays, and various sorts of checking can subsumed by the general mechanisms for array
section creation, leading to improved safety and compile-time analysis.

Regular problems (such as the linear algebra examples in section C.4.1) previous section)
are an important subset of parallel applications, but of course they are far from exclusive.
Many important problems involve data structures too irregular to express purely through
HPF-style distributed arrays.

Our third class of libraries therefore includes libraries designed to support irregular
problems. These include CHAOS [16, 37] and DAGH [36].

We anticipate that irregular problems will still bene�t from regular data-parallel lan-
guage extensions (because, at some level they usually resort to representations involving
regular arrays). But lower level SPMD programming, facilitated by specialized class li-
braries, are likely to take a more dominant role when dealing with irregular problems.

The CHAOS/PARTI runtime support library provides primitives for e�ciently han-
dling irregular problems on distributed memory computers. The complete library includes
partitioners to choose optimized mapping on arrays to processors, functions to remap in-
put arrays to meet the optimized partitioning, and functions which optimize interprocessor
communications. After data is repartitioned (if necessary) CHAOS programs involve two
characteristic phases. The inspector phase analyses data access patterns in the main loop,
and generates a schedule of optimized optimized communication calls. The executor phase
involves executing a loop essentially similar to the loop of the original sequential program.

How best to capture this complexity in a convenient HPspmd interface will be a subject
of research in the proposed work. A baseline approach (in HPJava, for example) is to handle
the translation tables, schedules, etc of CHAOS as ordinary Java objects, constructed and
accessed in explicit library calls. Presumbly the initial values for the data and indirection
arrays will be provided as normal HPspmd distributed arrays. The simplest assumption is
that the CHAOS preprocessing phases yield new arrays: the indirection arrays may well
be left as HPspmd distributed arrays, but the data arrays may be reduced to ordinary
Java arrays holding local elements (in low-level SPMD style). Then, with no extensions
to the currently proposed HPJava language, the parallel loops of the executor phase can
be expressed using overall constructs. More advanced schemes may incorporate irregular
maps into generalized array descriptor [13, 17, 20]. Extensions to the HPspmd language
model may be indicated.

DAGH (Distributed Adaptive Grid Hierarchy) was developed at Texas, Austin as a com-
putational toolkit for several projects including the Binary Black Hole NSF Grand Chal-
lenge Project. It provides the framework to solve systems of partial di�erential equations
using adaptive mesh re�nement methods. The computations can be executed sequentially
or in parallel according to the speci�cation of the user. In the parallel case DAGH takes
over communication, updating ghost regions on the boundaries of component grids.

Conceivably the HPspmd distributed array descriptor could be generalized to directly
represent a DAGH grid hierarchy. This is probably unrealistic. DAGH implements a

C-8

non-trivial storage scheme for its grid hierarchy, based on space-�lling curves. It seems
unlikely that the details of such a structure can be sensibly handled by a compiler. A more
straightforward possibility is to represent the individual grid functions (on the component
regular meshes of the hierachy) as essentially standard HPspmd distributed arrays. Since
DAGH is supposed to maintain storage for these functions in Fortran-compatible fashion,
it should be practical to create an HPspmd array descriptor for them. The hierarchy itself
would be represented as a Java object from a library-de�ned class. This is a crude outline
of a particular scenario. Devising practical and convenient HPspmd bindings for DAGH
and similar application-oriented libraries is a research topic in the proposed work.

C.2.3 Java MPI linkage

In HPF, with its global-thread-of-control model, a proper interface to the underlying
message-passing platform is only practical through the extrinsic procedure mechanism. In
HPspmd it is possible to access the MPI interface directly. In Fortran and C++ bind-
ings of HPspmd probably the only major issue arising is access to the local elements of
distributed arrays as standard sequential Fortran or C++ arrays, which can be passed to
the standard MPI functions. Inquiry functions on distributed arrays return the sequential
arrays as pointers or handles (depending on the language instantiation).

We have already implemented a Java language binding for MPI, version 1.1 [6, 8]. Our
current approach is a relatively direct transcription of standard MPI bindings, but Java
object serialization introduces new possibilities for passing compound objects. Similar
projects on Java MPI bindings are in progress elsewhere [15, 27].

C.2.4 Integration of thread-based single Java VM and multi-VM

data parallel

Our language model is primarily aimed at distributed memory computers, including net-
works of workstations or PCs. Clearly the Java version of HPspmd also holds special
promise in the domain of metacomputing|targeting heterogeneous systems. At the other
extreme, the same model can be straightforwardly implemented on symmetric multiproc-
essors|using threads within a single Java virtual machine. The most naive approach is to
directly simulate the SPMD model in this environment with a �xed set of threads. Further
possibilities arise if a few restrictions on variable usage are added to the language model.
The main program can execute as a single thread, with multiple threads forked only when
an overall construct is encountered. These issues will be investigated further.

C.3 General plan of work

Work at NPAC will initially focus on the Java binding of the HPspmd language model
(HPJava). The basic HPJava translator will be available for further development and
initial experiments with applications. This version of HPJava will rely heavily on run-
time library functions for basic operations such as subscript translation (incorporating

C-9

only essential optimizations on distributed loops). Initially the only communication library
available will be Adlib.

One thread in the proposed work will be to produce an optimized version of the initial
HPJava translator. For example, static information will be exploited to inline and simplify
calls to the runtime library wherever possible. Runtime checks on multi-dimensional array-
bound violations and adherence to the \SPMD constraint" (requiring that accesses be
local) will be eliminated where possible. Ultimately it would be desirable to produce a true
compiler (rather than source-to-source translator) for HPJava. This will not be a primary
goal in the proposed work, which emphasizes rapid implementation of, and experimentation
with, novel language ideas, driven by application and library requirements.

A second major thread will be design and limited implementation of HPspmd inter-
faces to libraries described in section C.2.2 (and MPI). This work will be coupled with the
development of suitable demonstrator applications that exploit the libraries. Initial exam-
ples will be taken from the HPFA kernels maintained at NPAC [38], converted to use the
Adlib library. The proposal includes support for application scientists familiar with DAGH
and the binary black hole problem, and GA and computational chemistry. Fast Multipole
and its associated irregular MPI-based library for earthquake problems is another area of
current interest at NPAC.

This application work, and in particular the requirements of the library bindings, is
expected to drive the third thread: further development of the base HPspmd language
model, especially in regard of supporting \irregular" problems.

The fourth major thread will involve taking the HPspmd ideas and embedding them in
more conventional scienti�c programming languages: Fortran and C++. The main design
and implementation work here will be carried out by our collaborators from the University
of Peking, led by Professor Xiaoming Li. Professor Li has collaborated closely with NPAC
over several years, and worked at NPAC for two years during the PCRC project, leading
our HPF compiler e�ort.

C.3.1 Three year workplan

Year one: In the �rst year we will be studying and implementing optimizations in the
basic HPJava translator. Our early experiments give us con�dence that the basic HPJava
translation scheme can give good performance, with minimal overheads, for problems in-
volving large arrays. But there is considerable scope for improving performance on smaller
problem sets, especially in reducing run-time overheads associated with subscript conver-
sion. Also in this year an interface will be made between HPJava and the Global Arrays
toolkit, at least for some set of platforms. Application e�orts will concentrate on a �-
nite di�erence problem derived from the theory of Black Holes. Study of requirements for
irregular problems will be an important activity.

Year two: The requirements identi�ed in the �rst year's activity will feed into imple-
mentation of class library interfaces for irregular problems. This will include CHAOS-like
support for irregular access to arrays, and DAGH-like support for adaptive meshes. Fast
multipoles will be one focussed example of a more complex problem tackled as an applica-
tion in this phase. We will look at some representative computation chemistry problems

C-10

using the GA binding developed in year one. Any extensions to the basic HPspmd lan-
guage model indicated by experiences with irregular applications and libraries will be imple-
mented. Work on optimization and compile-time checking of the translator will continue,
to produce the robust system needed by the application programmers.

Year three: Emphasis will be on integration. By this stage we will have bindings to
several libraries operating on various platforms. We also expect to have compilers for
Fortran and C++ versions of the HPspmd languages, developed by our collaborators in
China. In so far as practical we must ensure that bindings to di�erent libraries interoperate
without interference, and document any problems. The software developed in the project
will be placed in the public domain.

C.3.2 Collaborations

As explained above the project involves an important collaboration with Peking University.
This will require mutual visits and continuation of ongoing electronic collaboration. NPAC
already have substantial sharing of software with the Peking group, exempli�ed by our
HPF front end [32] and the f2j Fortran to Java translator [22], where the software was
built in China but used in NPAC activities, who provided design expertise.

Some input into this project is expected from work supported by Sun Microsystems.
They are providing funding for a project led by NPAC to investigate Java for large scale
computing. This work will support students at Syracuse, Indiana and Illinois. It will look
at Java for NCSA Alliance Grand Challenges.

C.4 Related work

C.4.1 Applicant's related work

HPJava. HPJava [9, 10] is an instance of the HPsmpd language model. HPJava extends
the base Java language by adding prede�ned classes and some additional syntax for dealing
with distributed arrays, and three new control constructs.

As explained in the previous section, the underlying distributed array model is equiva-
lent to the HPF array model. As a matter of detail, distributed array mapping is described
in terms of a slightly di�erent set of basic concepts. HPF describes the decomposition of
an array through alignment to some template, which is in turn distributed over a processor

arrangement. The analogous concepts in our parametrization of the distributed array are
the distributed range (or simply range) and the process group (or simply group). A dis-
tributed range is akin a single dimension of an HPF template|it de�nes a map from an
integer global subscript range into a particular dimension of a process group. A process

group is equivalent to an HPF processor arrangement, or to a certain subset of such an
arrangement. Switching from templates to ranges and groups is a change of parametriza-
tion only. In itself it does not change the set of allowed ways to decompose an array. The
new primitives �t better with our distributed control constructs, and correspond more di-
rectly to components of our run-time array descriptor. Ranges and groups are treated as
proper objects in the extended language. They are values that can be stored in variables

C-11

Procs1 p = new Procs1(NP) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[,#]] a = new float [[N, x]] ;

float [[]] b = new float [[N]] ; // buffer

Location l ;

Index m ;

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x [k]) {

float d = Math.sqrt(a [k, l]) ;

a [k, l] = d ;

for(int s = k + 1 ; s < N ; s++)

a [s, l] /= d ;

}

Adlib.remap(b [[k + 1 :]], a [[k + 1 : , k]]);

over(m = x | k + 1 :)

for(int i = x.idx(m) ; i < N ; i++)

a [i, m] -= b [i] * b [x.idx(m)] ;

}

at(l = x [N - 1])

a [N - 1, l] = Math.sqrt(a [N - 1, l]) ;

}

Figure C.2: Choleski decomposition.

or passed to procedures. The group and ranges describing a particular distributed array
are accessible through inquiry functions.

To motivate the discussion of HPJava, we will refer to �gure C.2, which gives a parallel
implementation of Choleski decomposition in the extended language. In pseudocode, the
sequential algorithm is

For k = 1 to n� 1

lkk = a
1=2
kk

For s = k + 1 to n
lsk = ask=lkk

For j = k + 1 to n
For i = j to n

aij = aij � likljk
lnn = a1=2nn

The parallel version has been selected to introduce essentially all the new language exten-
sions in HPJava.

In HPJava a base class Group describes a general group of processes. It has subclasses

C-12

Procs1, Procs2, . . . , that represent one-dimensional process grids, two-dimensional process
grids, and so on. In the example p is de�ned as a one-dimensional grid of extent NP. The
on construct in the example acts like a conditional, excluding processors outside the group
p. A distributed range, base class Range, de�nes a range of integer global subscripts, and
speci�es how they are mapped into a process grid dimension. In the example, the range
x is initalized to a cyclically distributed range of extent N. CyclicRange is one of several
subclasses of Range that de�ne di�erent distribution formats.

Now a and b are declared to be distributed arrays. In HPJava the type-signatures and
constructors of distributed arrays use double brackets to distinguish them from ordinary
Java arrays. If a particular dimension of an array has a distributed range, the corresponding
slot in the type signature of the array should include a # symbol. Because b has no range
distributed over the active process group (p) it is de�ned to be replicated across this group.
The mapping of a and b is equivalent to the HPF declarations

!HPF$ PROCESSORS p(np)

!HPF$ TEMPLATE t(n)

!HPF$ DISTRIBUTE t(CYCLIC) ONTO p

REAL a(n, n), b(n)

!HPF$ ALIGN a(i, *) WITH t(i)

!HPF$ ALIGN b(*) WITH t(*)

with range x taking over the role of the one-dimensional template t.
Subscripting operations on distributed arrays are subject to a strict restriction. An

access to an array element such as a [s, k] is legal, but only if the local process holds the
element in question. The language provides syntax to alleviate the inconvenience of this
restriction. The idea of a location is introduced. It can be viewed as an abstract element,
or \slot", of a distributed range. Any location is mapped to a particular slice of a process
grid. Locations are used to parametrize a new distributed control construct called the at

construct. This works like on, except that its body is executed only on processes that hold
the speci�ed location. Locations can also be used directly as array subscripts, in place on
integers (locations used as array subscripts must be elements of the corresponding ranges
of the array). The array access above can be safely written in the context

Location l = x [k] ;

at(l)

... a [s, l] ...

(the �rst dimension of a is sequential, so we don't have to worry about the SPMD constraint
for subscript s). In the main example, this syntax is used to ensure that the �rst block of
code inside the loop only executes on the processor holding column k.

The example involves one communication operation. This is taken from the Adlib
library: the function remap copies the elements of one distributed array or section to another
of the same shape. The two arrays can have any, unrelated decompositions. Because b

has replicated mapping, remap copies identical values to all processors|ie it implements
a broadcast of the values in the array section a [[k + 1 : , k]]. The syntax for array
sections in HPJava is almost identical to the syntax of sections in Fortran 90. Subscript
triplets work in the same way as in Fortran 90.

C-13

Procs2 p = new Procs2(NP, NP) ;

on(p) {

Range x = new BlockRange(N, p.dim(0), 1) ; // ghost width 1

Range y = new BlockRange(N, p.dim(1), 1) ; // ghost width 1

float [[#,#]] u = new float [[x, y]] ;

int [] widths = {1, 1} ; // Widths updated by `writeHalo'

// ... some code to initialise `u'

for(int iter = 0 ; iter < NITER ; iter++) {

for(int parity = 0 ; parity < 2 ; parity++) {

Adlib.writeHalo(u, widths) ;

Index i, j ;

over(i = x | 1 : N - 2)

over(j = y | 1 + (x.idx(i) + parity) % 2 : N - 2 : 2)

u [i, j] = 0.25 * (u [i - 1, j] + u [i + 1, j] +

u [i, j - 1] + u [i, j + 1]) ;

}

}

}

Figure C.3: Red-black iteration.

The last and most important distributed control construct in the language is called
over. It is used to access all locally held locations in a particular range, and can therefore
be used to access all locally held elements of arrays parametrized by that range. The over

construct implements a distributed parallel loop. Its parameter is a member of the special
class Index which is a subclass of Location. The idx member of Range can be used inside
parallel loops to yield arithmetic expressions that depend on global index values. In the
example the over construct is used to iterate over all columns of the matrix to the right of
column k.

As promised, the Choleski example has introduced essentially all the important language
ideas in HPJava. Further extensions are minor, or consist in adding new subclasses of Range
or Group, rather than syntax extensions. Figure C.3 gives a parallel implementation of red-
black relaxation in the same language. To support this important stencil-update paradigm,
ghost regions are allowed on distributed arrays [26]. In our case the width of these regions is
speci�ed in a special form of the BlockRange constructor. The ghost regions are explicitly
brought up to date using the library function writeHalo.

Note that the new range constructor and writeHalo function are library features (re-
spectively from the base HPJava runtime and the Adlib communication library), not new
language extensions. One new piece of syntax is involved: the addition and subtraction
operators are overloaded so that integer o�sets can be added or subtracted to locations,
yielding new, shifted, locations. This kind of shifted access only works if the subscripted
array has suitable ghost extensions.

C-14

Adlib. The Adlib runtime library was initially designed to support HPF translation.
Early development took place in the shpf [33] project at Southampton, UK. Subsequently
the library was redesigned and reimplemented at Syracuse during in the PCRC project,
and delivered as the NPAC PCRC runtime kernel [11]. It has been used as a foundation of
two experimental HPF compilation systems [33, 42], (one in Europe and one at Syracuse),
and is currently being used as a basis of the HPJava translator.

The Adlib kernel is C++ class library, built on MPI. Fortran, C++ and Java inter-
faces are available or under development. It provides communication primitives similar
to Multiblock PARTI, plus the Fortran 90 transformational intrinsics for arithmetic on
distributed arrays. It also provides some collective gather/scatter operations for irregular
access. Benchmarks reported in [42] suggested Adlib provides superior performance to the
then-current version of the commercial PGI HPF compiler.

The array descriptor of Adlib supports the full HPF 1.0 distributed array model|
including all standard distribution formats, all alignment options including replicated align-
ment. The runtime array descriptor of the HPspmd languages will be an enhanced version
of the Adlib descriptor. The Adlib collective communication library will provide initial
library support for regular applications in HPspmd.

C.4.2 Related languages

F- - [35] is an extended Fortran dialect for SPMD programming. The approach is quite
di�erent to the one proposed here. In F- -, array subscripting is local by default, or involves
a combination of local subscripts and explicit process ids. There is no analogue of global
subscripts, or HPF-like distribution formats. In F- - the logical model of communication is
built into the language|remote memory access with intrinsics for synchronization|where
we follow the philosophy of providing communication through separate libraries. While F- -
and our approach share an underlying programming model, we believe that our framework
o�ers greater opportunities for exploiting established library technologies.

Spar [40] is a Java-based language for array-parallel programming. Like our language
it introduces multi-dimensional arrays, array sections, and a parallel loop. There are some
similarities in syntax, but semantically Spar is very di�erent to HPJava. Spar expresses
parallelism but not explicit data placement or communication|in this sense it is a higher
level language|closer to HPF.

ZPL [39] is a new programming language for scienti�c computations. Like Spar, it is an
array language. It has an idea of performing computations over a region, or set of indices.
Within a compound statement pre�xed by a region speci�er, aligned elements of arrays
distributed over the same region can be accessed. This idea has certain similarities to our
overall construct. Communication is more explicit than, say, Spar, but not as explicit as
in the language discussed in this article.

Titanium [41] is another Java-based language for high-performance computing. It pro-
vides multi-dimensional arrays and a global address space, with an SPMD programming
model. It does not provide any special support for distributed arrays, and the programming
style is quite di�erent to HPJava.

C-15

