C. Project Description

C.1 Introduction

This proposal is especially concerned with enabling parallel computation, and the asso-
ciated communications, in a world dominated by Internet technologies. We will not as-
sume that parallel computation is necessarily distributed across the Internet, although of
course this is one possibility that has been widely discussed in the name of metacom-
puting. We do assume that the software and hardware technologies that will be readily
available in the immediate future—the commodity technologies—will be fine-tuned for the
Internet environment. On the hardware side these will include parallel—perhaps massively
parallel—engines designed and deployed as Internet servers. On the software side, they will
include software developed in network-aware programming languages like Java—software
engineered to survive in heterogeneous and very dynamic environments.

Over the last few years the prospect of using Java for essentially “scientific” computing
has has become increasingly realistic. Ongoing activities in the Java Grande Forum—
complemented by work in academic and industrial sectors on optimizing compilers, JITs,
language enhancements and libraries—have helped close an initial credibility gap. It is in-
creasingly accepted that Java environments will meet the performance constraints needed
to support large-scale computations and simulations. The work on improving the perfor-
mance of Java is driven largely by its industrial application as a programming language for
high-performance Internet servers. Scientific programmers will also reap the benefits.

One of the most influential developments in parallel computing over the last decade
was the publication in 1994 of the Message Passing Interface (MPI) standard [22]. The
idea of an agreed standard API for communication in parallel programs was relatively slow
in coming. As a result it benefitted from a great deal of accumulated experience from
application developers using earlier, proprietary APIs. MPI supports the Single Program
Multiple Data (SPMD) model of parallel computing, providing many modes of reliable
point-to-point communication, and a library of true collective operations. An extended
standard, MPI 2, incorporates additional features like dynamic process creation and one-
sided access to memory in remote processes.

The MPI standards specify language bindings for Fortran, C and C++. None of these
languages is especially adapted to the Internet, where downloadable and mobile code are
norms, resources (including computational resources) may be discovered and lost spon-
taneously, and fault tolerance is a crucial issue. In the proposed work we will be con-
cerned with using network-oriented languages for high-performance computing. For now
this means Java. One immediate preoccupation is with refinement of MPI-like program-
ming models and APIs for high performance programming in Java—researching ways to get
the fastest possible message passing from Java, and ways to exploit novel Java technologies
like Jini to produce richer message-passing environments. A complementary concern is
with use of Jini in a middle tier between client and MPI-based parallel services.

Java introduces implementation issues for message-passing APIs that do not occur in
conventional scientific programming languages. One area of research is how to transfer
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data between the Java program and the network while reducing overheads of the Java Na-
tive Interface. We will investigate how to apply ideas from projects like Jaguar [35] and
JaVIA [9] to MPI-like APIs. Another important issue is how to minimize the overheads
of serialization in communicating Java objects and multidimensional arrays. We will in-
tegrate ideas on efficient object serialization from the KaRMI project [29], for example,
with MPI-specific ideas we started to explore in [7]. We will be especially interested in
supporting efficient communication of the scientific Array classes supported by the Java
Grande Numerics Working Group.

Just providing efficient MPI-like APIs for Java is not enough. The programming model
must address features specific to distributed computing. MPI 1 was designed with relatively
static platforms in mind. To better support computing in volatile Internet environments,
we will need (at least) features from MPI 2 like dynamic spawning of process groups
and parallel client/server interfaces. A natural framework for dynamically discovering
new compute resources and establishing connections between running programs already
exists in Sun’s Jini project. In the proposed work, an important emphasis will be on
researching synergies between parallel message-passing programming and Jini-like systems.
One defining characteristic of distributed computing is the presence of partial failures. By
combining ideas from MPI with ideas from Jini we aim to create an environment that
encourages scalable, fault-tolerant parallel computing.

Finally we will explore uses of Jini in a middle tier for initiating parallel MPI jobs,
where parallel program may be written in Java, or some other language that uses MPI-
style message passing.

C.2 Motivation of the proposed work

C.2.1 Parallel computing and Java

To realize its full potential parallel computing will have to adapt itself to the Internet
environment by embracing current Internet technologies. Many people accept that the
Java language and accompanying technologies are likely to continue as major influences
on the development of Internet software. But the idea that Java should also be adopted
as an important language for large-scale technical computations has met some resistance.
The most serious objection has been the perceived inefficiency of the Java language when
compared with more mature languages like Fortran.

Over the last three years supporters of the Java Grande Forum have been working
actively to address some of the difficulties. The official goal of the forum has been to
develop consensus and recommendations on possible enhancements to the Java language
and associated Java standards, for large-scale (“Grande”) applications. Through a series of
ACM-supported workshops and conferences the forum has also helped stimulate research on
Java compilers and systems, and helped lay to rest some of the doubts about the potential
performance of Java systems. An interesting series of papers from IBM [24, 25, 37], for
example, confirmed that the current generation of Java virtual machines have rather poor
performance on Fortran-like, array-intensive computations, but went on to demonstrate
how to apply aggressive optimizations in Java compilers to obtain performance competitive
with Fortran. In a recent paper [26] they described a case study involving a data mining
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application that used the Java Array package supported by the Java Grande Numerics
Working Group. Using the experimental IBM HPCJ Java compiler they reported obtaining
over 90% of the performance of Fortran.

The Java Grande Forum also has a Concurrency and Applications Working Group.
This group has been looking directly at uses of Java in parallel and distributed comput-
ing. Participants have studied various approaches, and we will refer to several of these in
the following sections. The proposed will be particularly investigating issues relating to
adoption of message-passing parallel programming in Java.

C.2.2 Niches for parallel Java programs

Computers that host major Web sites will either be multiprocessors or clusters of worksta-
tions. Many are now, and this trend will presumably continue. Increasingly these servers
are programmed in Java. Since these technologies—Java and parallel computers—will co-
exist in Internet servers, this is fertile place to see roles for Java-based parallel computation
emerging. Along with all the other commericial services that will appear on the Web in the
near future we are likely to see compute-intensive ones—maybe supporting data-mining
queries using parallel algorithms or financial analysis programs involving complex simula-
tions.

Truly scalable servers are likely to be clusters rather than symmetric multiprocessors.
As a specific example, consider the Ninja vision of the future of the Internet elaborated
by researchers at UC Berkeley [32]. In their view a service should be scalable (able to sup-
port thousands of concurrent users), fault-tolerant (able to mask faults in the underlying
server hardware), and highly-available. A major concern is with mobile code for service
deployment—specialized active proxies that migrate out across the Internet to position
themselves close to client devices. But services must maintain persistent state, and the ar-
chitects of Ninja conclude that distributed, wide-area management of this state is generally
intractable. “Hard”, persistent state is maintained in a carefully-controlled environment—
the Base—engineered to provide high availability and scalability. This is assumed to be a
cluster of workstations with fast, local communication, a controlled environment, and a sin-
gle administrative domain [16]. It is not necessarily homogeneous and it is not completely
reliable, so it is not exactly a conventional parallel computer. But this is an environment
where we might expect message-passing parallel programs written in Java to appear, either
to implement specific Internet services or just because scientific programmers exploit them
on account of their availability—parallel Internet servers become commodity hardware.

A completely different place where we might see early uptake Java-based parallel com-
puting is in the classroom. Java has become an important teaching language in Universities.
For teaching parallel computing principles to students, Java is likely to be a more attractive
language than Fortran. On the basis of project descriptions given when people download
our mpiJava software, for example, we estimate that perhaps 10% of potential users are
teachers looking for classroom software. This is a not a dominant proportion, but it is
an especially influential one so far as future uptake is concerned. In this context highly
tuned implementations are not essential. An MPI-like package that is portable and can be
installed easily on available networks of PCs is probably ideal.

The last niche for we will discuss for Java message-passing is perhaps the most obvious.
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Because of its platform independence, mobility, and other associations with the Internet,
Java is a natural candidate as a language for metacomputing. We interpret this to mean
computation by parallel programs distributed across the Internet itself. Within the MPI
community there is an ongoing effort to extend MPI specifications and implementations to
support metacomputing, by allowing logical process groups to span geographically sepa-
rated clusters and supercomputers. For example, an MPI interoperability standardization
effort led by the National Institute of Standards and Technology [18] proposes a cross-
implementation protocol for MPI—Interoperable MPI or IMPI—to support heterogeneous
parallel computing. Java-based metacomputing can exploit and supplement these ongoing
MPI activities in various ways. It may be, for example, that only a parallel sub-component
of a distributed application is particularly suited to implementation in Java. If the Java
part is programmed in an MPI-like paradigm the option is open for the Java component to
interact with the non-Java, MPI-based part through the inherently parallel IMPI protocols
(rather than, say, through a serial, performance-limiting CORBA or RMI gateway).

Many authors have discussed Java approaches to metacomputing, but they have gener-
ally emphasized different aspects of Java. Charlotte [5, 6] and Javelin [10, 28] concentrate on
harvesting cycles of computers running Web browsers by downloading applets to them—
a paradigm well-suited to task-farming but not particularly appropriate for applications
that need communication between concurrent tasks. JavaParty [29, 31] and Manta [33]
support an interacting SPMD style of distributed programming, but emphasize commu-
nication through remote method invocation. They provide ways to program with remote
objects that are more transparent than the standard RMI interface, together with highly-
tuned reimplementations of RMI. This work is clearly important, but it remains uncertain
whether remote method invocation is the best model of communication for parallel comput-
ing. The message-passing model of synchronization seems a better fit to the requirements.
Although not directly relevant to our goals here, we note that even in the distributed com-
puting community there appears to be some movement towards message-passing models.
According to [36], one of the lessons of Ninja 1.0 was that RMI was not the best model for
their purposes—asynchronous typed message-passing would be better. Hewlett Packard’s
e-speak architecture [17] adopts message-passing as the underlying model of communication
with services.

C.2.3 Jini

Jiniis Sun’s Java architecture for making services available over a network. It is built on top
of the Java Remote Method Invocation (RMI) mechanism. The main additional features
are a set of protocols and basic services for “spontaneous” discovery of new services, and a
framework for detecting and handling partial failures in the distributed environment.

A Jini lookup service is typically discovered through multicast on a well-known port.
The discovered registry is a unified first point of contact for all kinds of device, service, and
client on the network. Aside from the initial act of discovery, all Jini-related operations
are built on RMI. The Jini model of discovery and lookup is distinct from the more global
concept of discovery in, say, the CORBA trading services or HP’s e-speak. The Jini version
is a lightweight protocol, especially suitable for initial binding of clients and services within
multicast range. In the Ninja framework, for example, Jini technology might fit comfortably
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at the periphery, near the end-user devices, or within the Base, addressing initial federation
of nodes, crashes of individual nodes, etc. This latter setting is particularly interesting to
us.

The ideas of Jini run deeper than the lookup services. Jini completes a vision of dis-
tributed programmaing started by RMI. In this vision partial failure is a defining character-
istic, distinguishing distributed programming from the textbook discipline of concurrent
programming [34]. The principles of concurrent programming are integrated in the Java
language and the JVM through support for threads and monitors. But mechanisms that
are appropriate within a single JVM must be replaced by more complex techniques when
multiple JVMs are federated over a network. Remote objects and RMI replace ordinary
Java objects and methods; garbage collection for recovery of memory is replaced by a
leasing model for recovery of distributed resources; the events of AWT or JavaBeans are
replaced by the distributed events of Jini; the synchronized methods of Java are mirrored
in the nested transactions of the Jini model. The interesting question arises of whether
analogous ideas can be adopted to extend conventional parallel programming models.

C.2.4 Bringing these things together

To support the parallel programmers of the future we will need Java implementations of
lightweight messaging systems akin to MPI—the single most successful model for parallel
computing. A likely physical setting is in the more or less tightly coupled (but probably
heterogeneous, multi-user) clusters of trusted workstations that we expect will host the
Web services of the future. While models of distributed programming other than message-
passing (notably Linda-based models like JavaSpaces or JavaNOW) certainly have a role,
we question whether they are the best model for SPMD computing. Most of the experience
with earlier generations of parallel computer suggests that the low-latency message-passing
model is a better fit.

These are likely to be volatile environments that demand the reliability provided by
foundations like Java and Jini. Any software must be adaptive. Availability changes as
workloads and network traffic fluctuates; nodes crash, new ones are attached and discovered
on the fly, old ones are removed. Jini is a leading Java technology for dealing with these
situations. Message-passing parallel programming is not exactly the same discipline as
concurrent programming. An interesting research question is whether one can develop is a
distributed model of parallel programming that extends the conventional MPI model in a
manner similar to the way the Jini model extends concurrent programming. At the very
least, as discussed in section C.4.3, Jini technology can be exploited to help implement the
conventional MPI model in a distributed environment.

C.3 General plan of work

There are two principal strands in the proposed work. One strand will investigate use
of Java and specifically Jin: technologies in a middle tier for initiating parallel MPT jobs.
For definiteness we refer to the architecture as JintMPI. So far as the architecture itself
is concerned the parallel program could be written in Java or some other language that
invokes an MPI-style message layer. The second strand will be researching issues related to
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Figure C.1: JiniMPI Architecture

message-passing programs written in Java (and potentially other object-oriented network
programming languages). It will study principles of reliably and efficiently implementating
associated APIs in dynamic environments like Internet servers and networks. The concrete
APIs will be derivatives of the MPJ specification from the Java Grande Message-Passing
Working Group (section C.4.2).

In principal the JiniMPI and MPJ levels are independent, but they complement each
other and are expected to be especially powerful when used together.

C.3.1 Jini-based middle tier for parallel programming

A possible JiniMPI architecture is illustrated in Figure C.1. The architecture supports
MPI-based parallel computing and also includes ideas present in systems like Condor and
Javelin. The diagram only shows the server layer (bottom) and the service layer (top).
There would also a client layer that communicates directly with “Control and Services”
module.

We assume that each workstation has a “Jini Parallel Computing Embryo”—a Jini
service that registers the availability of the workstation to run either specific or generic
applications. The Jini embryo can represent the machine—the ability to run general
applications—or particular software. The Gateway, or Control and Services module [1],
queries the Jini lookup services to find appropriate computers to run a particular MPT job.
The mechanism could be used just to be run a single job, or to set up a farm of independent
workers
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The standard Jini mechanism is applied for each chosen embryo. This effectively estab-
lishes an RMI link from the Gateway to each SPMD node. It creates a Java proxy for the
node program, which can itself be written any language (Java, Fortran, C++ etc). The
Gateway-Embryo exchange should also supply to the Gateway with any needed data (such
as specification of required parameters and how to input them) on behalf of the client layer.
This strategy separates control from data transfer. It supports Jini (registration, lookup
and invocation), services such as load balancing, and fault tolerance, in the control layer,
and MPI style data messages in a fast transport layer. The Jini embryo is only used to
initiate the process. It is not involved in the actual execution phase.

We will also investigate the implications of using a JavaSpace in the Control layer as the
basis for a management environment (this is very different from using Linda or JavaSpaces
at the execution level, so performance problems are not very relevant).

C.3.2 Research on high-performance message passing models for
Java

In the early stages of the project we will complete a reference implementation of the MPJ
specification, an MPI-inspired Java API from the Java Grande Message-Passing Working
Group (section C.4.2). Our existing mpiJava software (section C.4.1) has been one basis
for this work, but for further research a portable, pure Java version will be needed. Section
C.4.3 describes a design. One of the conclusions of the design study was that difficult
issues of reliability (and useability) in a network environment are naturally addressed in
the framework of the Jini programming model. Our initial reference implementation will
make extensive use of Jini for job initiation and handling failures. This implementation
will be a foundation for subsequent research in the project.

The current MPJ specification supports essentially MPI-1.0 functionality, with some
extensions specific to object-oriented languages (for example it has the facility to send and
receive arbitrary serializable objects). With the reference implementation in place, the
project will follow two directions

e Research into optimizations specific to the language and network context, to improve
bandwidth and latency.

e Design and pilot implementation of extensions to the basic message-passing model,
improving support for highly dynamic environments.

Associated tasks are detailed in the following two subsections.

Fast message-passing for Java

The initial reference implementation will use Java sockets as the basic transport. Later work
will research different approaches to low-level transport—including calling native MPI by
standard JNT or other methods, or using Java bindings to lower-level interfaces like VIA. It
is also likely to involve work on improving the efficiency of object serialization, or exploiting
the research of other groups on efficient object serialization.

Our earlier work on mpiJava already exploited the Java Native Interface (JNI) to call
native MPI implementations. But there are concerns with the efficiency of crossing the JNI
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barrier. For example, several of the current generation JITs have garbage collectors that do
not support pinning of objects. A consequence is that arrays are copied every time they are
passed between C and Java. More detailed criticisms of JNI can be found in [35] and [9)].
The two groups involved have described ways to go beyond standard JNI, specifically to
support efficient Java interfaces to VIA. Our research will attempt to leverage this work,
either by adapting similar techniques to make low-overhead interfaces to native MPI, or
(for suitable platforms) adopting Java VIA interfaces as a low-level transport in our Java
implementation of the message-passing API (along lines comparable with [11]). Note that
the new approaches typically assume limited changes to compiler or JVM, at least in the
garbage collector.

Another area that needs further research is specific to object-oriented languages. To
allow fast communication of object graphs between processors we need very efficient object
serialization. Important work on improving Java serialization has been described in [29].
The authors report that their UKA-Serialization can save 76% to 96% of the time needed
to serialize objects. Their work was done in the context of an optimized reimplementation
of RMI, but we can use the same software in fast MPJ implementations. We hope to
combine ideas from UKA-Serialization with the MPI-specific ideas we started to explore
in [7], to facilitate fast communication of objects in MPJ, especially for the important case
of multidimensional Java arrays (if native methods are allowed, one-dimensional arrays of
primitive elements can be communicated with no serialization at all, at least in the common
case where sender and receiver have the same number representation and endianness).

Extending the MPJ message-passing model

As noted above, the initial MPJ draft specifies functionality similar to MPI 1.1, comple-
mented by some object-oriented features.

One set of extensions to this draft will be inspired by features of the MPI 2 standard.
This standard is not yet widely implemented even for traditional languages, but it includes
features that are likely to be important in the volatile Java environments we target. Dy-
namic process creation was not part of MPI 1 but it is undoubtedly important for our
environments. An early addition to the baseline MPJ model will be operations similar to
MPI_.COMM_SPAWN and MPI_.COMM _SPAWN _MULTIPLE, which in MPI 2 start new
groups of processes and return intercommunicators connecting them to the inital group.
A related form of process creation is familar from systems like PVM. A new feature in
our research will be adoption of Jini or similar current technologies for discovery of the re-
quired computational resources. Another highly relevant feature of the MPI 2 specification
is its introduction of a parallel client /server model, by which two running parallel programs
(client and server) that do not initially share a communicator can establish a connection,
and thus operate collectively as a single parallel program for some period. This kind of
functionality is likely to be important in metacomputing applications. It introduces issues
of how the initial rendezvous between the client and server occurs. MPI 2 specifies a simple
mechanism based on entry points MPI PUBLISH NAME, MPI. LOOKUP_NAME, which
are optional in MPI implementations. Clearly a Java environment will be able to offer
much more flexible mechanisms modelled on Jini lookup.

Dynamic discovery of compute resources is one area where Jini-like ideas can help us.
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A more difficult issue for scalable computing in networked environments is how to deal
with dynamic loss of resources, due to a failure somewhere in the distributed platform. As
emphasized in Section C.2.3, the general Jini framework incorporates various mechanisms
designed to support programming in the presence of partial failure. One goal of our research
will be to explore ways to incorporate similar concepts in the parallel message-passing
context, enabling programs that are truly scalable even in the presence of partial failure.
As a simple example, suppose we provided a collective checkpointing operation that dumped
the current state of a parallel program to backing store, perhaps by serializing the replicated
objects supporting the “main program” method (this scenario begs several questions of
detail, but these can be addressed later). Invoking this collective operation at regular
intervals would go some way to improving the reliability of a parallel program, by allowing
restarts. But if a partial failure occurs during the checkpointing operation itself, the backed-
up state will be corrupted. A scalable version of the Jini transaction model may be what
is needed to rescue this kind of situation. This is one easy example, but it suggests that
we should find roles for Jini-like ideas at the level of the SPMD program. Most likely these
would be applied at the level of large, collective operations, such as global checkpointing,
forking groups of slave processes for some subtask, and so on.

C.3.3 A three year workplan

Year one: In the first year we will complete ongoing work on a Jini-based pure Java
implementation of MPJ—a message-passing environment with functionality similar to MPI
1.1. This implementation will be an important foundation for the subsequent research in
the project. To support the later research, the transport layer must be easily replacable
(similar to KaRMI, for example). This implies a layer analogous to the MPICH device level,
but we will need new features to support Java and objects. Jini will be used for discovering
compute hosts and (importantly) to ensure clean global termination in the event of failures.
To prove the design, a native MPI-based implementation of the transport layer will also
be implemented. This will complement the initial socket-based implementation, and will
use standard JNI. (Our existing mpiJava software will probably be phased out.) In this
year we will also be studying issues relating to concrete design of the JiniMPI Architecture,
using Jini technologies as a gateway to parallel computing resources.

Year two: The basic message passing model will be extended with a version of dynamic
process spawning using Jini to find resources, and a parallel client/server model, using
Jini to establish connections between running parallel programs. Suitable Java-centric
APIs will be designed. Relevant application codes from areas like parallel data-mining
will be produced. We will study ideas following on from the Jaguar and JAVIA work
at Berkeley and Cornell, and try to make use of those ideas to optimize our initial MPJ
implementation, the goal being to develop genuine high-bandwidth, low-latency message-
passing in Java. We will integrate UKA-serialization or successors, and further study MPI-
specific improvements for important cases such as multidimensional arrays. Extensions
needed to support efficient communication of the scientific Array classes supported by Java
Grande will be a prioriy. Pilot implementations of JiniMPI architecture will be developed.
We will investigate reliable checkpointing primitives for parallel programming, using Jini
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Figure C.2: Principal classes of mpiJava

transactions, or related mechanisms.

Year three: The experience of the first two years will feed into a practical model of
scalable Internet computing, combining parallel-programming ideas from MPI with Jini

ideas about fault tolerance. This model will be integrated with the three-tier JiniMPI
model.

C.4 Related Work

C.4.1 Experience with mpiJava

mpiJava [4, 7, 27] is our object-oriented Java interface to MPI. The system provides a fully-
featured Java binding of MPI 1.1 standard. The object-oriented API is modelled largely on
the C++ binding that appeared in the MPI 2 standard. The implementation of mpiJava is
through JNI (Java Native Interface) wrappers to a suitable native implementation of MPI.
The software comes with a comprehensive test-suite translated from the IBM test-suite
for the C version of MPI. Platforms currently supported include Solaris using MPICH or
SunHPC-MPI, Linux using MPICH, and Windows NT using WMPI 1.1.

The MPI standard is explicitly object-based. The C and Fortran bindings rely on
“opaque objects” that can be manipulated only by acquiring object handles from con-
structor functions, and passing the handles to suitable functions in the library. The C++
binding specified in the MPI 2 standard collects these objects into suitable class hierarchies
and defines most of the library functions as class member functions. The mpiJava API fol-
lows this model, lifting the structure of its class hierarchy directly from the C++4 binding.
The major classes of mpiJava are illustrated in Figure C.2.

The benchmarks in Figure C.3 compare mpiJava (“J”) timings with native C timings
for communication between a pair of PCs. The timings represent two different native MPI
implementations (MPICH and WMPI), and also compare with with raw Windows sockets.
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Figure C.3: PingPong Results in Distributed Memory mode

We see that the mpiJava JNI wrappers introduce a modest extra latency relative to native
MPI, but for large messages bandwidth is not compromised. Although these results are
encouraging, we should remark that these benchmarks were run using the Classic JVM.
Current JIT compilers will degrade bandwidth because Java arrays are usually copied when
they are passed to native methods. How best to avoid such overheads is an important
research question [9, 35]. Also, these results are obtained for one-dimensional arrays with
no serialization applied.

mpiJava is part of the HPJava environment [30]. We are actively developing and sup-
porting the software. Downloads currently run at about 30 per month.

C.4.2 Java Grande Message-passing Working group

Java bindings to MPI were developed independently by several teams. One Java MPI
interface was produced by Getov and Mintchev [15, 23]. In their work Java wrappers were
automatically generated from the C MPI header. This eased the implementation work,
but did not lead to a fully object-oriented API. A subset of MPI was implemented in the
DOGMA system for Java-based parallel programming [21]. Dincer and Kadriy described an
instrumented Java interface to MPI called jmpi [12]. Java implementations of the related
PVM message-passing environment have been reported in [38] and [14].

The Message-Passing Working Group of the Java Grande Forum was formed just over
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a year ago as a response to the appearance of these diverse APIs. An immediate goal
was to discuss a common API for MPI-like Java libraries. An initial draft for a common
API specification was distributed at Supercomputing 98 [8]. Since then the working group
has met in San Francisco and Syracuse, and a Birds of a Feather meeting was held at
Supercomputing '99. Minutes of meetings were published on the java-mpt mailing list and
are available at [19, 20]. To avoid confusion with standards published by the original MPI
Forum (which is not presently convening) the nascent API is now called MPJ.

C.4.3 Case study: reference implementation of MPJ

Presently there is no complete implementation of the draft MPJ specification. Our own Java
message-passing interface, mpiJava, 1s moving towards the “standard”. The new version
1.2 of the software supports direct communication of objects via object serialization, which
is an important step towards implementing the specification in [§].

The mpiJava wrappers rely on the availability of a platform-specific native MPI im-
plementation for the target computer. While this is a reasonable basis in many cases, the
approach has some disadvantages. For one thing the two-stage installation procedure—
get and build a native MPI then install and match Java wrappers—can be tedious and
discouraging to potential users. Secondly, in the development of mpiJava we sometimes
saw conflicts between the JVM environment and the native MPI runtime behaviour. The
situation has improved, and mpiJava now runs with several combinations of JVM and MPI
implementation, but some problems remain. Finally, this strategy simply conflicts with the
ethos of Java, where pure-Java, write-once-run-anywhere software is the order of the day.

Ideally, the first two problems would be addressed by the providers of the original native
MPI package. We envisage that they could provide a Java interface bundled with their C
and Fortran bindings. Ultimately, such packages would presumably be the best, industrial-
strength implementations of systems like MPJ. Meanwhile, to address the last shortcoming
listed above, we have outlined in [3] a design for a pure-Java reference implementation for
MPJ. Design goals were that the system should be as easy to install on distributed systems
as we can reasonably make it, and that it be sufficiently robust to be useable in an Internet
environment. A particularly strong requirement is that in no circumstances should the
software leave resource-wasting orphan processes lingering after an abrupt termination.

We are by no means the first people to consider implementing MPI-like functionality in
pure Java. Working systems have already been reported in [12, 21], for example. Our goal
was to build on some lessons learnt in those earlier systems, and produce software that is
standalone, easy-to-use, robust, and fully implements the specification of [8].

We wish to simplify installation of message-passing software to a bare minimum. A
user should download a jar-file of MPJ library classes to machines that may host parallel
jobs, and run a parameterless installation script on each. Thereafter parallel java codes
can be compiled on any host in the LAN (or subnet). An mpjrun program invoked on the
development host transparently loads all the user’s class files to available compute hosts,
and the parallel job starts. The only required parameters for the mpjrun program should
be the class name for the application’s main program and the number of processors the
application is to run on.

To be usable, an MPJ implementation should be fault-tolerent in at least the following
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High Level MPI Collective operations
Process topol ogies

Base Level MPI All point-to-point modes

Groups
Communicators
Datatypes

MPJ Device Level

isend, irecv, waitany, . . .

Physical processids (no groups)
Contexts and tags (no communicators)
Byte vector data

Java Socket and Thread APIs All-to-all TCP connections
Input handler threads.
Synchronized methods, wait, notify

Process Creation and Monitoring | MPJservice daemon
Lookup, leasing, distributed events (Jini)

exec javaMPJSlave
Serializable objects, RMIClassL oader

Figure C.4: Layers of proposed MPJ reference implementation

senses. If a remote host is lost during execution, either because a network connection breaks
or the host system goes down, or for some other reason, all processes associated with affected
MPJ jobs must shut down within some short interval of time. On the other hand, unless it
is explicitly killed or its host system goes down altogether, the MPJ daemon on a remote
host should survive unexpected termination of any particular MPJ job. Concurrent tasks
associated with other MPJ jobs should be unaffected, even if they were initiated by the
same daemon.

The paper design suggests that Jini is a natural foundation for meeting these require-
ments. The installation script can start a daemon on the local machine by registering
a persistent activatable object with the rmid daemon. The MPJ daemons automatically
advertise their presence through the Jini lookup services. The Jini paradigms of leasing
and distributed events are used to detect failures and reclaim resources in the event of fail-
ure. These observations lead us to believe that an initial reference implementation of MPJ
should probably use Jini technology [2, 13] to facilitate location of remote MPJ daemons
and to provide a framework for the required fault-tolerance.

A possible architecture is sketched in Figure C.4. The base layer—process creation and
monitoring—incorporates initial negotiation with the MPJ daemon, and low-level services
provided by this daemon, including clean termination and routing of output streams (Figure
C.5). The daemon invokes the MPJSlave class in a new JVM. MPJSlave is responsible for
downloading the user’s application and starting that application. It may also directly
invoke routines to initialize the message-passing layer. Overall, what this bottom layer
provides to the next layer is a reliable group of processes with user code installed. It
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Jini Lookup Services

Figure C.5: Independent clients may find MPJService daemons through the Jini lookup
service. Each daemon may spawn several slaves.

may also provide some mechanisms—presumably RMI-based (we assume that the whole
of the bottom layer is built on RMI)—for global synchronization and broadcasting simple
information like server port numbers.

Higher layers use Java sockets directly for efficient communication. The first manages
low-level socket connections, establishing all-to-all TCP socket connections between the
hosts. The idea of an “MPJ device” layer is inspired by the abstract device interface of
MPICH. A minimal APT includes non-blocking standard-mode send and receive operations.
Other point-to-point communication modes are implemented with reasonable efficiency on
top of this minimal set. The device level itself is meant to be implemented on socket send
and recv operations, using standard Java threads and synchronization methods to achieve
its richer semantics. The next layer above this is base-level MPJ, which includes point-to-
point communications, communicators, groups, datatypes and environmental management.
On top of this are higher-level MPJ operations including the collective operations. We
anticipate that much of this code can be implemented by fairly direct transcription of the
src subdirectories in the MPICH release—the parts of the MPICH implementation above
the abstract device level.
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C.4.4 Results from prior NSF support

Work on this proposal is related to previous NSF awards including the research grant
described below from the Division of Advanced Computational Infrastructure and Research.
This project is ongoing and will transfer from Syracuse to Florida State. Fox is PI.

Grant: 9872125, total award $346,827 over period 09/01/98-08/31/01, “Data
Parallel SPMD Programming Models from Fortran to Java”.

This involves senior personnel Fox and Carpenter, who with two students on the project
will be moving from Syracuse to Florida State. The project focuses on the use of Java for
data parallel programming but the methods are applicable to other languages. Collaborator
Professor Xiaoming Li from Peking University is investigating applications to traditional
scientific languages—especially Fortran. We have published several papers on this subject
where the details are described. The HPJava model is less ambitious than systems like High
Performance Fortran (HPF) and aims to support an SPMD model intermediate between
basic message passing (MPI) and HPF. One can incorporate pure MPI code but also array
based computation with automatic decomposition with a user specified mapping in the
spirit of HPF. An essential capability is unified support of successful data parallel libraries
like ScaLAPACK, PetSC, Kelp, Global Array Toolkit, PARTI/CHAOS and Adlib. So far
we have developed an operational HP Java translator and linked to Global Arrays and Adlib.
As part of our collaboration we have prepared and given in China a tutorial on HP Java and
related approaches (http://www.npac.syr.edu/projects/pcpc/HPJava/beijing.html). To
support MPI work from within HP Java programs we developed the MPI Java binding mpz-
Java which is available for download from (http:/www.npac.syr.edu/projects/pcrc/HP Java-
/mpiJava.html), and will be form one of the foundations of the work described in the current
proposal. It is a reference implementation used by the Java Grande Message Passing Work-
ing Group. Fox organized the Java Grande Forum (http://www.javagrande.org) to address
all the issues connected with the use of Java in scientific computing and both the working
groups and associated conferences (now sponsored by ACM) have been quite successful.
HPJava ideas have greately benefitted from contacts in this arena. As well as publications
given below, Sung Hoon Ko will complete his Ph.D. in this area during this semester.
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