Thoughts on the structure of an MP.J reference

implementation.

Mark Baker*and Bryan Carpenter
NPAC at Syracuse University
Syracuse, NY 13244
Mark.Baker@port.ac.uk,dbc@npac.syr.edu

November 23, 1999

Abstract

We sketch a proposed reference implementation for MPJ, the Java
Grande Forum’s MPI-like message-passing API [9, 3]. The proposal re-
lies heavily on RMI and Jini for finding computational resources, creating
slave processes, and handling failures. User-level communication is imple-
mented efficiently directly on top of Java sockets.

*Current address: University of Portsmouth, UK

Contents

Introduction
Some design decisions
Overview of the Architecture

Process creation and monitoring

4.1 The MPJ daemon
4.2 The MPJslave o o o
4.3 The MPJclient o oo
4.4 Handling MPJ aborts—Jinievents
4.5 Other failures—Jini leasing

Sketch of a “Device-Level” API for MPJ

5.1 Minimal APT oo
5.2 Implementationnotes
5.3 Eager send protocol L. oo oo
5.4 Rendezvous protocol Lo

1 Introduction

The Message-Passing Working Group of the Java Grande Forum was formed
about a year ago as a response to the appearance of several prototype Java
bindings for MPI-like libraries. An initial draft for a common API specification
was distributed at Supercomputing '98. Since then the working group has met
in San Francisco and Syracuse. The nascent API is now called MPJ.

Presently there is no complete implementation of the draft specification. Our
own Java message-passing interface, mpiJava, is moving towards the “standard”.
The new version 1.2 of the software supports direct communication of objects
via object serialization, which is an important step towards implementing the
specification in [3]. Once a few remaining open questions about the specification
have been resolved, we will release a version 1.3 of mpiJava, implementing the
new API. Most likely this will be the first “reference implementation” for that
API, although some other groups have related efforts.

The mpiJava wrappers rely on the availability of platform-dependent native
MPI implementation for the target computer. While this is a reasonable basis
in many cases, the approach has some disadvantages

e The two-stage installation procedure—get and build native MPI then in-
stall and match Java wrappers—is tedious and probably off-putting to
new users. Systems like MPICH made considerable strides in terms of ease
of installation on diverse platforms, but historically software for parallel
computing has been relatively hard to install and configure for different
platforms. Presumably this has not facilitated its wider uptake. In any
case, the “wrapper” approach to implementing MPJ aggravates matters
because it adds one more step to this process.

e On several occasions in the development of mpiJava we saw conflicts be-
tween the JVM environment and the native MPI runtime behaviour. The
situation has improved, and mpiJava now runs on various combinations
of JVM and MPI implementation. Some problems remain. A persistent
one relates to concurrent operations involving the same Java array. These
ought to be allowed if the concurrent operations refer to disjoint sections
of the array. But the way the Java Native Interface mechanism interacts
with the data in Java arrays means that unexpected results may occur.

e Finally, this strategy simply conflicts with the ethos of Java, where pure-
Java, write-once-run-anywhere software is the order of the day.

Ideally, the first two problems would be addressed by the providers of the original
native MPI package. We envisage that they could provide a Java interface bun-
dled with their C and Fortran bindings, avoiding the the headache of separately
installing the native software and Java wrapper. Also they are presumably in
the best position to iron-out low-level conflicts between the MPI library and the
Java runtime. Hence we can only encourage vendors and other providers of MPI
software to consider releasing Java wrapper software (which could be based on

the public domain mpiJava, for example) along with their core software. Ulti-
mately, such packages would probably represent the fastest, industrial-strength
implementations of MPJ.

Meanwhile, to address the last shortcoming listed above, this report consid-
ers production of a pure-Java reference implementation for MPJ. Design goals
are that the system should be as easy to install on distributed systems as we can
reasonably make it, and that it be sufficiently robust enough to be useable in an
Internet environment!. Ease of installation and use are special concerns to us.
We want a package that will be useable not only by experienced researchers and
engineers, but also in, say, an educational context. A corollary of easy installa-
tion is that the software should only depend on other systems that are widely
installed. A minimum requirement is a Java development environment, includ-
ing RMI. Beyond this we assume the installation of some Jini software. This
technology is relatively new, but it seems likely that it will become pervasive in
Java-aware environments.

We are by no means the first people to consider implementing MPI-like
functionality in pure Java, and working systems have already been reported in
[8, 6], for example. The goal here is to build on the some lessons learnt in those
earlier systems, and produce software that is standalone, easy-to-use, robust,
and fully implements the specification of [3].

This report

Section 2 reviews our design goals, and describes some decisions followed from
these goals. Section 3 reviews the proposed architecture. Various distributed
programming issues posed by computing in an unreliable environment are dis-
cussed in Section 4, which covers basic process creation and monitoring. This
section assumes free use of RMI and Jini. Implementation of the message-
passing primitives on top of Java sockets and threads is covered in 5.

Acknowledgements

We are extremely grateful to Glenn Judd and Kivanc Dincer, who freely made
the sources of their Java MPI systems available to us. Various ideas from those
systems have been adopted in the architecture described here, and the final
implementation is likely borrow directly from those earlier systems.

2 Some design decisions

As noted above, an MPJ “reference implementation” can be implemented as
Java wrappers to a native MPI implementation, or it can be implemented in pure
Java. It could also be implemented principally in Java with a few simple native

LA particularly strong requirement is that in no circumstances must the software leave
resource-wasting orphan processes lurking after an untidy termination. This very undesirable
behaviour affected some early implementations of MPI in the past.

methods to optimize operations (like marshalling arrays of primitive elements)
that are difficult to do efficiently in Java. In this note we will focus on the
latter possibilities—essentially pure Java, although experience with DOGMA
and other systems strongly suggests that optional native support for marshalling
will be desirable. The aim is to provide an implementation of MPJ that is
maximally portable.

We envisage that a user will download a jar-file of MPJ library classes onto
machines that may host parallel jobs. Some installation “script” (preferably a
parameterless script) is run on the potential host machines. This script installs
a daemon on those machines (probably by registering a persistent activatable
object with an existing rmid daemon). Parallel java codes are compiled on
any host. An mpjrun program invoked on that host transparently loads all the
user’s class files into JVMs created on remote hosts by the MP.J daemons, and
the parallel job starts. The only required parameters for the mpjrun program
should be the class name for the application and the number of processors the
application is to run on. These seem to be an irreducible minimum set of steps;
a conscious goal is that the user need do no more than is absolutely necessary
before parallel jobs can be compiled and run.

In light of this goal one can sensibly ask if the step of installing a daemon on
each host is essential. On networks of UNIX workstations—an important target
for us—packages like MPICH avoid the need for special daemons by using the
rsh command and its associated system daemon. Dispensing with the need
for special installation procedures on target hosts would be a significant gain in
simplicity, so this option needs serious consideration. In the end we decided this
is probably not the best approach for us. Important targets, notably networks
of NT systems, do not provide rsh as standard, and often on UNIX systems the
use of rsh is complicated by security considerations. Although neither RMI or
Jini provide any magic mechanism for conjuring a process out of nothing on a
remote host, RMI does provide a daemon called rmid for restarting activatable
objects. These need only be installed on a host once, and can be configured to
survive reboots of the host. We propose to use this Java-centric mechanism,
on the optimistic assumption that rmid will become as widely run across Java-
aware platforms as rshd is on current UNIX systems.

An implementation ought to be fault-tolerent in at least the following senses.
If a remote host is lost during execution, either because a network connection
breaks or the host system goes down, or if the JVM running the remote MPJ
task halts for some other reason (eg, occurrence of a Java exception), or if the
process that initiated the MPJ job is killed—in any of these circumstances—all
processes associated with the particular MPJ job must shut down within some
(preferably short) interval of time. On the other hand, unless it is explicitly
killed or its host system goes down altogether, the MPJ daemon on a remote host
should survive unexpected termination of any particular MPJ job. Concurrent
tasks associated with other MPJ jobs should be unaffected, even if they were
initiated by the same daemon. These requirements likely put some restrictions
on the portability of the daemon. They probably imply at least the ability to
create a new JVM on demand, for example by using Runtime.exec to execute

the java command. This facility is available in the major operating systems we
target (UNIX and NT).

In the initial reference implementation we will probably use Jini technology][1,
7] to facilitate location of remote MPJ daemons and to provide a framework for
the required fault-tolerance. This choice rests on our guess that in the medium-
to-long-term Jini will become a ubiquitous component in Java installations.
Hence using Jini paradigms from the start should eventually promote interoper-
ability and compatibility between our software and other systems?. In terms of
our aim to simplify using the system, Jini multicast discovery relieves the user
of the need to create a “hosts” file defining where each process of a parallel job
should be run. If the user actually wants to restrict the hosts, unicast discovery
is available. Of course it has not escaped our attention that eventually Jini dis-
covery may provide a basis for much more dynamic access to parallel computing
resources.

Less fundamental assumptions bearing on the organization of the MPJ dae-
mon are that standard output (and standard error) streams from all tasks in
an MPJ job are merged non-deterministically and copied to the standard out-
put of the process that initiates the job. No guarantees are made about other
IO operations—for now these are system-dependent. Rudimentary support for
global checkpointing and restarting of interrupted jobs would be useful, although
we doubt that checkpointing would happen without explicit invocation in the
user-level code, or that restarting would happen automatically?.

The main role of the MPJ daemons and their associated infrastructure is
thus to provide an environment consisting of a group of processes with the
user-code loaded and running, and running in a reliable way. As indicated
above, the process group is reliable in the sense that no partial failures should
be visible to higher levels of the MPJ implementation or the user code. As
already explained, partial failure is the situation where some members of a
group of cooperating processes are unable to continue because other members
of the group have crashed, or the network connection between members of the
group has failed. To quote [11]: partial failure is a central reality of distributed
computing. No software technology can guarantee the absence of total failures,
in which the whole MPJ job dies at essentially the same time (and all resources
allocated by the MPJ system to support the user’s job are released). But total
failure should be the only failure mode visible to the higher levels. Thus a
principal role of the base layer is to detect partial failures and cleanly abort the
whole parallel program when they occur*.

Once a reliable cocoon of user processes has been created through negoti-
ation with the daemons, we have to establish connectivity. In the reference

2In the short-to-medium-term—before Jini software is widely installed—we might have to
provide a version of the MPJ reference implementation that is unbundled from Jini. Designing
for Jini protocols should, nevertheless, have a beneficial influence on overall robustness and
maintainability. Use of Jini implies use of RMI for various management functions.

3Perhaps one could exploit the two-phase commit of the Jini transaction model to make
checkpointing truly fault-tolerant.. .

4We notice that an MPJ job as a whole has some characteristics of a single Jini transaction.
While interesting, this analogy is not clearly useful.

High Level MPI Collective operations
Process topol ogies

Base Level MPI All point-to-point modes

Groups
Communicators
Datatypes

MPJ Device Level

isend, irecv, waitany, . . .

Physical processids (no groups)
Contexts and tags (no communicators)
Byte vector data

Java Socket and Thread APIs All-to-all TCP connections
Input handler threads.
Synchronized methods, wait, notify

Process Creation and Monitoring | MPJservice daemon
Lookup, leasing, distributed events (Jini)

exec javaMPJSlave
Serializable objects, RMIClassL oader

Figure 1: Layers of an MPJ reference implementation

implementation this will be based on Java sockets. Recently there has been
interest in producing Java bindings to VIA [4, 12]. Eventually this may provide
a better platform on which to implement MPI, but for now sockets are the only
realistic, portable option. Between the socket API and the MPJ API there will
be an intermediate “MPJ device” level. This is modelled on the abstract device
interface of MPICH [10]. Although the role is slightly different here—we don’t
really anticipate a need for multiple device-specific implementations—this still
seems like a good layer of abstraction to have in our design. The API is actu-
ally not modelled in detail on the MPICH device, but the level of operations is
similar.

3 Overview of the Architecture

A possible architecture is sketched in Figure 1.

The bottom level, process creation and monitoring, incorporates initial nego-
tiation with the MPJ daemon, and low-level services provided by this daemon,
including clean termination and routing of output streams. The daemon invokes

the MPJSlave class in a new JVM. MPJSlave is responsible for downloading the
user’s application and starting that application. It may also directly invoke
routines to initialize the message-passing layer. Overall, what this bottom layer
provides to the next layer is a reliable group of processes with user code installed.
It may also provide some mechanisms—presumably RMI-based (we assume that
the whole of the bottom layer is built on RMI)—for global synchronization and
broadcasting simple information like server port numbers.

The next layer manages low-level socket connections. It establishes all-to-all
TCP socket connections between the hosts.

The idea of an “MPJ device” level is modelled on the abstract device inter-
face of MPICH. A minimal API includes non-blocking standard-mode send and
receive operations (analogous to MPI_ISEND and MPI_IRECV, and various wait
operations—at least operations equivalent to MPI_WAITANY and MPI_TESTANY).
All other point-to-point communication modes can be implemented correctly
and with reasonable efficiency on top of this minimal set. Unlike the MPICH
device level, we do not incorporate direct support for groups, communicators
and (necessarily) datatypes at this level (but we do assume support for message
contexts). Message buffers will probably be byte arrays. The device level is in-
tended to be implemented on socket send and recv operations, using standard
Java threads and synchronization methods to achieve its richer semantics.

The next layer is base-level MPJ, which includes point-to-point commu-
nications, communicators, groups, datatypes and environmental management.
On top of this are higher-level MPJ operations including the collective opera-
tions. We anticipate that much of this code can be implemented by fairly direct
transcription of the src subdirectories in the MPICH release—the parts of the
MPICH implementation above the abstract device level.

4 Process creation and monitoring

We assume that an MPJ program will be written as a class that extends
MPJApplication. To simplify downloading we assume that the user class also
implements the Serializable interface. The main program will be imple-
mented as an instance method main:

class MyMPJApp extends MPJApplication {
public void main(String [] args, Comm world) {...}
}

The default communicator is passed as an argument to main. Note there is no
equivalent of MPI_INIT or MPI FINALIZE. Their functionality is absorbed into
code executed before and after the user’s main method is called®.

In a perfect world we might execute MyMPJApp by a command like

5This is a change to the API of mpiJava [2], for example, where the main method is static
and the default communicator is a class variable. The approach here (which follows more
closely DOGMA [8] or JMPI [5]) seems to fit more naturally with RMI, and allows for the
possibility of running several MPJ processes as threads in a single JVM (although probably
that won’t be supported in the initial reference implementation).

Figure 2: Independent clients may find MPJService daemons through the Jini
lookup service. Each daemon may spawn several slaves.

java MyMPJApp -np 8

where the —np option specifies the number of processors on which the program
is to execute. This isn’t quite practical, because there is no obvious way for
a generic static main method (defined in the base class MPJApplication) to
discover the actual subclass that the java command was started with®. So it
cannot dispatch instances of MyMPJApp to remote machines. Probably we have
to settle instead for

java MPJClient MyMPJApp -np 8

where now MPJClient is a separate library class that is responsible for starting
instances of the MyMPJApp on 8 remote machines.

4.1 The MPJ daemon

The MPJ daemon must be installed on any machine that can host an MPJ
process. It will be realized as an instance of the class MPJService. It is likely
to be an activatable remote object registered with a system rmid daemon’.
The MPJ daemon executes the Jini discovery protocols and registers itself with
available Jini lookup services, which we assume are accessible as part of the
standard system environment (Figure 2).

The API of MPJService includes a createSlave remote method call, along
the lines:

6The args array passed to main only holds command-line arguments after MyMPJApp.

"Using an activatable object is not essential, but it can reduce resources consumed by a
daemon that is not in use, and provides an automatic way for the daemon to be restarted
after crashes of the host system.

class MPJService extends Remote {
public MPJSlave createSlave(MPJClient client, ...)
throws RemoteException {...}

}

In normal operation, a call to createSlave will behave essentially as:

int slaveID = SlaveTable.allocateID() ;

String cmd = "java MPJSlaveImpl " + slavelID + " " + registryPort ;
Process child = Runtime.getRuntime() .exec(cmd) ;

. fork a monitor thread
SlaveTable.waitFor(slaveID) ; // Wait for call-back from slave.

return SlaveTable.getSlaveObject(slavelD) ;

The data structure SlaveTable is a table of slave processes currently managed
by the daemon. The daemon passes the id of the new slave into the java
command that starts the slave running. We assume the daemon is running an
RMI registry, in which it publishes itself. The port of this registry is passed to
the slave as a second argument. The first actions of the slave object are to look
up its master in the registry, then call back to the master and install a remote
reference to itself (the slave) in the master’s slave table®. The monitor thread
in the daemon behaves essentially as:

DatalnputStream stdout = new DatalnputStream(child.getInputStream()) ;

// Forward standard output from child

String line ;

while ((line = stdout.readLine()) != null)
client.println(line) ;

child.waitFor() ;

Output is multiplexed to the client by calling a remote println method on the
client.

The net effect is that the client receives a remote reference to a new slave
object running in a private JVM. In practise a remote destroySlave method
that invokes the Process.destroy method will probably be needed as well.

4.2 The MPJ slave

The implementation class associated with the MPJSlave interface normally be-
haves as follows (schematically):

public class MPJSlavelmpl extends UnicastRemoteObject {
public static void main(String args []) {

8 Not its RMI registry!

10

int slaveID Integer.parselnt(args [0]) ;
String masterPort = args [1] ;

MPJService master
(MPJService) Naming.lookup("rmi://localhost:" + args [1] +
"/MPJService") ;

master.addSlave(int slaveID, int new MPJSlavelmpl()) ;
}

public runTask(MPJApplication task, String [] args, ...)
throws RemoteException {

. create default communicator, ‘world’

task.main(world, args) ;
¥
}

The main method creates a remote object and “registers” it with its daemon by
calling a remote method addSlave on the master. Later the client calls back
with the runTask method, passing an instance of the actual user class. Because
this is a serializable object it is passed by value to the remote runTask method.
Importantly, the byte code for the user class will be loaded by RMIClassLoader
from the code-base specified in the serialized object. As discussed below, this
will be the URL of a process serving a (typically very much stripped-down)
subset of the HT'TP protocol.

Hence, using the dynamic class-loading mechanisms provided as standard in
RMI, we ensure that all user code is automatically available to the remote host.

4.3 The MPJ client

In pseudocode, the normal behaviour of the client is:

create an ‘MPJClient’ remote object for call-back by slaves

discover Jini lookup services and create table, ‘daemons’,
of P remote references to suitable ‘MPJService’ objects

for i = 0..P-1 do {
slaves [i] = daemons [i].createSlave(clientObject, ...) ;

}

create an instance, ‘task’, of user’s ‘MPJApplication’ class
for i = 0..P-1 in parallel threads do {
slaves [i].runTask(task, args) ;

}

destroy slaves

11

The client must arrange for any byte code on the current CLASSPATH to
be available via HTTP from a URL specified in the rmi.server.code.base
property of the client JVM. In the usual way, this URL will be embedded in the
serialized task object passed to the slave. A likely arrangement is for the client
process itself to serve the necessary parts of the HI'TP protocol.

In the normal case, the P threads terminate when the remote runTask meth-
ods all complete. The MPJ client process then terminates. As mentioned earlier,
the client object provides a remote println method, which simply copies its
argument to System.out.

4.4 Handling MPJ aborts—Jini events

If any slave JVM terminates unexpectedly while the runTask method is in
progress, a RemoteException will be passed to the thread that started the
remote call. The thread should catch the exception, and generate an MPJAbort
event. This is a Jini remote event—a subclass of RemoteEvent. Early in the
process of creating a slave, the MPJ daemons will have registered themselves
with the client as handlers for MPJAbort events. Their notify method will
apply the destroy method to the appropriate slave Process object.

Hence if any slave aborts (while the network connection stays good), all
remaining slave processes associated with the job are immediately destroyed.

4.5 Other failures—Jini leasing

The distributed event mechanism can rapidly clean up processes in the case
where some slaves disappear unexpectedly, but it cannot generally reclaim re-
sources in the case where the client process is killed during execution of an MPJ
job, or the daemon process is killed while it has some active slaves, or in the
case of network failures that don’t directly affect the client. There is a danger
that orphaned slave processes will be left running in the network.

The solution is to use the Jini leasing paradigm. The client leases the services
of each daemon for some interval, and continues renewing leases until all slaves
terminate, at which point it cancels its leases. If the client process is killed
(or it connection to the slave machine fails), its leases will expire. If a client’s
lease expires the daemon applies the destroy method to the appropriate slave
Process object.

If a user program deadlocks, it is assumed that the user eventually notices
this fact and kills the client process. Soon after, the client’s leases expire, and
the orphaned slaves are destroyed. We anticipate that lease periods will be
relatively short by Jini standards—perhaps on the order of 60 seconds.

This doesn’t deal with the (presumably less common) case where a daemon
is killed while it is servicing some MPJ job, but the slave continues to run. To
deal with this case a daemon may lease the service of its own slave processes
immediately after creating them. Should the daemon die, its leases on its slaves
expire, and the slaves self-destruct.

5 Sketch of a “Device-Level” API for MPJ

In this section we turn to the issue of how to implement MPJ once a reliable
group of processes has been established. Whereas the previous section was con-
cerned with true distributed programming where partial failure is the overriding
concern, this section is mainly concerned with concurrent programming within
a single JVM—a reliable environment®.

We assume that the MPJ user-level API will be implemented on top of a
“device-level” API, roughly corresponding to the MPID layer in MPICH. The
following properties are considered to be desirable for the device-level API:

1. Tt should be implementable on the standard Java API for TCP sockets.
In the absence of select, this essentially forces introduction of at least
one receive thread for each input socket connection.

2. Tt should be efficiently implementable (and probably will be implemented)
with precisely this minimum required number of threads.

3. Tt should be efficiently implementable with at least two protocols:

a) The naive eager-send protocol, assuming receiver threads have unlim-
ited buffering.

b) A ready-to-send/ready-to-receive/rendezvous protocol requiring re-
ceiver threads only have enough buffering to queue unserviced “ready”
messages.

4. The basic operations will include isend, irecv and waitany (plus some
other “wait” and “test” operations). These suffice to build legal imple-
mentations of all the MPI communication modes. Optimized entry points
for the other modes can be added later.

5. (Probably) all handling of groups and communicators will be outside the
device level. The device level only has to correctly interpret absolute
process ids and integer contexts from communicators.

6. (Maybe) all handling of user-buffer datatypes is outside the device level.
The device level only deals with byte vectors.

5.1 Minimal API

The methods isend and irecv return communication request objects. A set of
these request objects can then be passed to the waitany method, which waits
until one of them completes. In principle any number of user threads are allowed
(but we assume that a particular request object will not appear concurrently in
waitany calls being executed in different threads).

9In this context, arguably, the biggest concern is correct synchronization.

13

5.2 Implementation notes

A communication request is pending if the communication has not yet started.

As a matter of taste, the implementations of the minimal API sketched here
do not use polling to implement their “wait” methods. If a waitany method
specifying a particular request has been invoked, a wait-object may be associ-
ated with that request. Any wait-object provides a synch() method, which
implements barrier synchronization between precisely two threads. This can be
implemented as follows:

class Wait {

void synchronized int synch() {
if (waiting) {
waiting = false ;
notify() ;
}
else {
waiting = true ;
wait () ;
}
}

boolean waiting = false ;

}

Wait-objects are used for synchronization between input-handlers and user thr-
eads. In practise wait-objects will contain extra fields relating to nominated
and selected sets of request objects, and these fields will provide a channel of
communication between input-handlers and user threads.

Besides wait-objects, the principle means of synchronization is mutual ex-
clusion on a single lock that controls access to the communication sets—data
structures describing the ongoing communications. The communication sets in-
clude the input-buffer and the pending-request-set. The input-buffer contains
messages that have been accepted by the input handlers, but not yet consumed
by the user threads. Depending on the protocol, the input-buffer may hold
request-to-send messages and/or complete messages containing user data. The
pending-request-set, as its name implies, is the set of communication request
objects that are currently pending.

The input-handlers are threads—one per input socket connection. These
handle all input from sockets. All output to sockets occurs in the context of
user threads.

5.3 Eager send protocol

Messages are sent immediately by isend, assuming unlimited space for data in
the input buffer. In practise this protocol is most suitable for short messages.

14

isend:
send the message

return a non-pending (completed) request object

Figure 3: Pseudocode for isend method (eager protocol)

irecv:
lock communication-sets
if irecv matches some message in the input buffer {
copy data into user-buffer
acquire a non-pending (completed) request object
}
else
put a request object in the pending-request-set
unlock communication-sets

return the request object

Figure 4: Pseudocode for irecv method (eager protocol)

waitany:
lock communication-sets
if all of the specified set of requests are pending
associate one wait-object with all specified requests
unlock communication-sets

if all the requests were pending
‘synch()’ on wait-object

else
select one of the non-pending requests

Figure 5: Pseudocode for waitany method (eager protocol)

loop {
receive header

lock communication-sets
if message matches some request in pending-request-set {
receive data into user-buffer

remove the request from the pending-request-set

if the request has an associated wait-object {
dissociate that wait-object from all requests

‘synch()’ on wait-object
}
}
else
receive data into input-buffer
unlock communication-sets

}

Figure 6: Pseudocode for input handler threads (eager protocol)

16

5.4 Rendezvous protocol
This assumes the protocol:
1. source sends ready-to-send
2. destination sends ready-to-receive
3. data is exchanged

Data is never buffered, although ready-to-send messages may be. This protocol
is likely to be more efficient for long messages, because it eliminates the need
to copy data from input-buffer to user space. A ready-to-receive message can
include an identifier for the request object at the receiving end. The sending end
can reflect this id in the header of the data packet, allowing the input handler
at the receiving end to retrieve the relevant request when the data arrives.

17

isend:
lock communication-sets
put a send request object in the pending-request-set
unlock communication-sets

send a ready-to-send message

return the request object

Figure 7: Pseudocode for isend method (rendezvous protocol)

irecv:
lock communication-sets
if irecv matches a ready-to-send message in the input buffer
acquire a non-pending request object
else
put a receive request object in the pending-request-set
unlock communication-sets

return the request object

Figure 8: Pseudocode for irecv method (rendezvous protocol)

waitany:
lock communication-sets
if all of the specified set of requests are pending
associate one wait-object with all specified requests
unlock communication-sets

if all the requests were pending
‘synch()’ on wait-object
else

select one of the non-pending requests

if selected request was a receive request {
associate a wait-object with the request

send a ready-to-receive message (containing id of request)

‘synch()’ on wait-object (waiting for data)

}
if selected request was a send request

send the data

Figure 9: Pseudocode for waitany method (rendezvous protocol)

18

input handler threads:
loop {
receive header

lock communication-sets

if message is a ready-to-send message {
if header matches some receive request in pending-request-set {
remove the matching request from the pending-request-set

if the request has an associated wait-object {
dissociate the associated wait-object from all requests

‘synch()’ on wait-object
}
}

else
put the ready-to-send message in the input buffer

if message is a ready-to-receive message {
remove the matching request from the pending-request-set

if the request has an associated wait-object {
dissociate that wait-object from all requests

‘synch()’ on wait-object
}
}

if message is data {
receive the data

‘synch()’ on wait-object in request (identified in header)

}

unlock communication-sets

}

Figure 10: Pseudocode for input handler threads (rendezvous protocol)

19

References

(1]

2]

[3]

[9]

[10]

[11]

Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann
Wollrath. The Jini Specification. Addison Wesley, 1999.

Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Xinying
Li. mpiJava: A Java interface to MPIL. In First UK Workshop on Java
for High Performance Network Computing, Furopar ’98, September 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Ge-
offrey Fox. MPI for Java: Position document and draft API specifica-
tion. Technical Report JGF-TR-3, Java Grande Forum, November 1998.
http://www.javagrande.org/.

Chi-Chao Chang and Thorsten von Eiken. Interfacing Java to the Virtual
Interface Architecture. In ACM 1999 Java Grande Conference. ACM Press,
June 1999.

George Crawford 111, Yoginder Dandass, and Anthony Skjellum. The JMPI
commercial message passing environment and specification: Requirements,
design, motivations, strategies, and target users.
http://www.mpi-softtech.com/publications.

Kivanc Dincer. jmpi and a performance instrumentation analysis and
visualization tool for jmpi. In First UK Workshop on Java for
High Performance Network Computing, Europar ’98, September 1998.
http://www.cs.cf.ac.uk/hpjworkshop/.

W. Keith Edwards. Core Jini. Prentice Hall, 1999.

Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed object
group management architecture. In ACM 1998 Workshop on Java for
High-Performance Network Computing. Palo Alto, February 1998, volume
10(11-13) of Concurrency: Practice and Experience, 1998.

Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard. University of Tenessee, Knoxville, TN, June 1995.
http://www.mcs.anl.gov /mpi.

MPICH—a portable implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich/.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. Technical Report SMLI TR-94-29, Sun Microsystems
Laboratories, 1994. Reprinted in [1].

Matt Welsh. Using Java to make servers scream. Invited talk at ACM 1999
Java Grande Conference, San Francisco, CA, June, 1999.

20

