Selected Notes on HPJava

Bryan Carpenter, Yuh-Jye Chang, Geoffrey Fox
Northeast Parallel Architectures Centre,
Syracuse University,

Syracuse, New York

December, 1996

Contents

1

Java and Distributed Simulation. Geoffrey Foz, email dated 6 Aug
1996 3

HPJava: Work in progress. Bryan Carpenter, Yuh-Jye Chang, Au-

gust 9, 1996 5

2.1 Communication infra-structure: Channels 5
2.1.1 ThePortclass 6
2.1.2 TheRPCclass i i i i i ittt e i e 7
2.1.3 The Childclass 8
2.1.4 Stream interfaces 9

2.1.5 Non-deterministic communications 9
2.1.6 Limitations of the prototype 10
2.2 Parallel arrays and data parallel computation 11
2.3 Applications L e 12
Some Remarks on Parallel Processing and Java. Geoffrey Foz,
email dated 6 Aug 1996 18
HPJava Suggestions. Bryan Carpenter, email dated 5 Aug 1996 21
HPJava: Work in progress. Bryan Carpenter, Yuh-Jye Chang,
November 12, 1996 28
5.1 Parallel arrays and data parallel computation 28
5.1.1 Example data parallel Java program 28
5.1.2 Starting an HPJ program 31
5.1.3 Outlook on data-parallel programming in Java 31
5.2 Channels e 31
5.2.1 Overview of the channel model 32
5.2.2 Outlook on channel communication in Java 32
“HPJava”: Demo Description. Bryan Carpenter, Yuh-Jye Chang,
November 16, 1996 33
6.1 Conway’s Gameof Life. 33
6.2 2D FFT “Image Compression” 35
MPI Java Wrapper Implementation. Yuh-Jye Chang, December
16, 1996 36
7.1 MPI Java wrapper introduction Lo, 36
7.2 MPI Java wrapper design Lo, 36
7.3 Javaclasses for MPI, 37
7.4 Class methods for Java MPT 37
7.5 Javanativemethod o000, 38
7.6 Javadatatypes o 40

7.7 Problems due to strong typing and no pointer 41
7.8 The polymorphism of Java Datatype class 41
7.9 Other problems L oo 42
7.10 Conclusion L e 42
7.11 Test example e 42
7.12 Execution resulto o o oo o 44
7.13 List of detailed Java wrapper for MPI 44

1 Java and Distributed Simulation. Geoffrey Foz,
email dated 6 Aug 1996

Distributed computing is a powerful tool in many high performance applica-
tions but it is particularly relevant when the underlying problem is itself dis-
tributed. The best known examples come from tactical military simulations
as implemented in SIMNET and successor programs such as DSI—Distributed
Simulation Internet. However there are many other distributed organizations
and/or applications which can naturally use this paradigm—in the commercial
arena, finance and interdisciplinary (inter-organization) manufacturing are two
examples.

Distributed simulation is characterized by some key features—geographically
distributed but relatively loosely coupled components. These components can
be pure simulation modules but can also include “people in the loop” or active
sensors and instruments (“Machines in the loop”). In the military case, one
has linked simulated vehicles (say aircraft and tanks) with real vehicles in the
field and with military commanders and pilots/tank drivers all in the same
simulation.

We suggest that the Web and Java are very suitable for such applications.
The Web itself naturally supports a distributed set of loosely coupled applica-
tions coordinated by linked web servers. The session management function
of current collaborative tools needs to be generalized to support the event
driven simulation paradigm underlying typical distributed simulation applica-
tions. VRML provides the natural client technology to support simulated virtual
environments for “people in the loop” —here we use the latest VRML 2.0 en-
hancements to provide dynamic behavior. Web-linked databases and an overall
Dataflow (WebFlow) computing model provide the necessary high level infor-
mation and computing services.

Java is the natural implementation language at all levels of such a distributed
computing environment. Some arguments for the use or Java are quite general
and reflect my prejudice that Java will become a dominant general purpose lan-
guage. The “web-ready” nature of Java and its excellent support for graphics
output are some such general features. Looking at particular capabilities, event
driven simulations are usually built as a set of objects interacting via messages.
This appears to be naturally implemented using Java’s object-oriented features.
Java (as in MIT’s Jigsaw and NCSA’s Habanero) is getting used in a growing
number of Web server and collaboration systems. This illustrates that Java
will be excellent base control software for a distributed simulation environment.
Note that we expect that Java will soon be supported in three distinct but co-
existing modes with different performance-functionality tradeoffs. There is the
current semi-interpreted (Universal bytecode) Applet model; JavaScript (being
integrated with Java by Netscape) and the VRMLScript discussions illustrate
that a fully interpreted version of Java will be supported. This is essential

in many applications. Finally there will be native Java compilers which will
give Java (native) classes with performance competitive with C and FORTRAN
code. Distributed simulation needs all three modes in different parts of its
implementation.

Java and the Web automatically build in support for the coordination of
loosely coupled simulation modules which is the major form of parallelism
needed in most distributed simulations. However one can expect to need data
parallel execution of some tightly coupled components. For example, these could
be an airflow simulation component in a distributed manufacturing system or a
military weather simulation or image processing application. We have finished
a preliminary study of data parallelism in Java and believe that techniques de-
veloped in HPF and HPC++ can be adapted for Java. Interpreted Java front
ends can invoke high performance Java wrapper classes which link to native
FORTRAN (HPF) or compiled Java programs.

ot

2 HPJava: Work in progress. Bryan Carpenter,
Yuh-Jye Chang, August 9, 1996

Our present emphasis is on providing class libraries to facilitate communication
and parallel computation within the framework of Java. For now this means
communicating Java applications, but soon we will provide class libraries which
allow applets downloaded from a common server to communicate (in the short
term, by having their server transparently through-route communications).

We are implementing (and have already prototyped) a class library for chan-
nel communication layered on the Java socket interface.

It may also be useful to have a Java interface to MPI (by which we mean
some class library that allows a Java program to communicate with a C or
Fortran program which itself uses the standard MPI interface). This could
be implemented by “native methods” wrappers around some pre-existing MPI
implementation. In the view of one of us (DBC) this will only be particularly
useful if the underlying MPI implementation supports dynamic spawning of new
processes.

We are also considering various options for implementing parallel arrays
and collective communication within Java. The naive first idea is to simply
extend the C++4 STL approach to provide parallel arrays. This now looks quite
difficult because of the limitations of the Java language [Java jettisoned most
of the interesting features of C++ that make STL work...]. We are presently
considering a lower level approach, closer in spirit to the nascent PCRC interface
for Fortran. This approach looks more practical to realize in Java, and may still
be useful to the application programmer.

2.1 Communication infra-structure: Channels

We are developing a Java class library for channel communication. The seman-
tics are modelled on the dynamic channels of Fortran M.
This model is particularly attractive in Java because

1. Tt is “connection-oriented” so ordinary data communications map directly
onto the socket I/O primitives efficiently implemented for Java and the

Web.

2. Tt directly supports highly dynamic situations where new remote pro-
cesses (eg, applets) come into existence unpredictably, and may have un-
predictable communication demands (eg, determined by requirements of
a remote user).

3. Tt provides a layer of abstraction above internet addresses and socket port
numbers, and associated resources to which access may be limited by Java
security models.

The remainder of this section describes our prototype interface. There is a
complete example at the end of this report.

2.1.1 The Port class

Access to logical channels is provided through a Java class called a Port. The
Port dresses up and adds functionality to an internet port, but should not be
confused with this lower-level idea. The Port interface does not provide direct
access to port numbers or internet addresses.

In the existing prototype the public interface to the Port class is

public class Port {
// Constructor.
public Port() ;
// Channel creation.
public static synchronized void channel(Port P, Port Q) ;
// Public members for communication.

public synchronized void send(byte data []) ;
public synchronized int recv(byte data []) ;
public synchronized byte [] recv() ;

public synchronized void sendInt(int data) ;
public synchronized int recvInt() ;

public synchronized void sendChan(Port S) ;
public synchronized void recvChan(Port R) ;

}

The constructor Port.Port() creates an unconnected port.

The static member Port.channel(Port, Port) connects two current un-
connected Ports. [These are Ports “inside the current program”, so to speak.
The Port itself is purely a local entity.] Logically, it creates a channel within
the local processor, and binds the two ends of the channel to the two ports.

A channel supports bi-directional communication (with unbounded buffer-
ing). send(byte [1) and recv(byte [1) send and receive messages. A mes-
sage is an atomic entity. If an n-byte vector is output on one end of the channel
with send, the recv operation at the other end must be prepared to accept an
n-byte vector. revc() is a variant of recv(byte []) which allocates space for
the received message internally, and returns it to the caller.

sendInt and recvInt are provided for convenience. They are simply wrap-
pers on send(byte [1) and recv(byte []).

The more interesting operations are sendChan(Port) and recvChan(Port).
The argument of sendChan should be a connected port—a port with a bound
channel-end. The argument of recvChan should be an unconnected port. The
effect of a sendChan(P) /recvChan(Q) communication is to transfer the channel-
end, leaving P unconnected, and the channel-end bound to Q. This may involve
transferring the channel-end between different processors, if the communication
channel connects different processors.

In the prototype implementation every Port has an associated ServerSocket
and an associated input handler thread. The use of a server socket restricts use
of Ports to Java applications. The implementation is fairly straightforward, but
requires some care in the protocol for notifying a Port when its peer Port (the
Port connected to the other end of its channel) is in motion, and in ensuring
that input data currently buffered in a port is physically communicated at the
same time as the channel-end is logically transferred.

Tt should be possible to provide alternate (probably less efficient) implemen-
tations that can be used within applets.

2.1.2 The RPC class
The RPC class supports remote procedure calls. Its current interface is

public class RPC {
public static void call(String childClass, String remoteHost,
Port toChild) ;

public static void spawn(String childClass, String remoteHost,
Port toChild) ;
1

The call operation invokes a Java application on a remote processor, and sends
a channel-end to it. childClass should be the name of a class derived from
Child, with a main method. remoteHost should be the name of a host. toChild
should be a port with a bound channel end. The call operation terminates
when the remote call to main terminates. When the call completes, toChild is
unconnected (the remote application is responsible for disposal of the channel-
end it was initially sent).

spawn is similar, but invokes call in a new thread, so it returns immediately.

Typical usage would be

// Create output channel

Port R
Port S

new Port() ;
new Port() ;

Port.channel(R, S) ;

// Spawn remote ‘Child’ application

RPC.spawn("EgChild", "koum", S) ;

. communicate with child through ‘R’.

The current implementation of RPC.call uses the Java exec mechanism to
run the command

rsh remoteHost java childClass
The remote host is a processor on which
1. A remote shell can be executed
2. The Java interpretter java is installed

3. The byte-code for childClass is accessible through the CLASSPATH en-
vironment variable.

call transfers the channel-end through negotiations performed over the stan-
dard input and output streams of the remote process. Subsequent output from
the child process is forwarded to the current process’ standard output stream.

2.1.3 The Child class

A new application spawned by the RPC class should be derived from the class
Child, which has interface

class Child {
static Port initial ;

}
Typical usage would be

public class EgChild extends Child {
public static void main(String args([]) {

. communicate with parent through ‘initial’.

The current implementation of the Child includes static initialization code
which receives a channel-end from the RPC parent and binds it to initial. The
negotiations involved are performed through the standard input and output
streams of the child thread.

2.1.4 Stream interfaces

The classes

public class PortInputStream extends InputStream {
// Constructor.
public PortInputStream(Port P) ;
// Methods.

public synchronized int read() ;
public synchronized int read(byte b [], int off, int len) ;

[etc...]
}

and

public class PortOutputStream extends OutputStream {
Port P ;
ByteArrayOutputStream strm ;

// Constructor.
public PortOutputStream(Port P) ;
// Methods.

public synchronized void write(int b) ;
public synchronized void write(byte b [], int off, int len) ;

public synchronized void flush() ;

X

provide a convenient interface for Java I/O on ports. DataInputStream and
DataOutputStream wrappers can be created around these streams, making the
standard Java read and write operations available.

A PortOutputStream buffers data written to it until a flush operation is
performed. At this point a send operation on the Port is executed and the
buffered data is output as a single message.

A PortInputStream contains a buffer which is replenished by executing
a recv on the Port whenever the buffer is empty and a a read operation is
performed on the stream.

2.1.5 Non-deterministic communications

A functionality similar to the “merge” in Fortran-M is provided through the
“merge pool” class, Merge. The public interface is

10

public class Merge {
public Merge() ;

public void add(Port P) ;
public void rem(Port P) ;

public Port select() ;
}

When initially created, a merge pool is empty. Channel ends are added to
or removed from the pool by passing the associated ports to the add and rem
members.

The only other operation on a merge pool is select. This returns a port
from the pool which presently has input data ready. If no port has a message
ready when the call is executed select blocks until a message arrives.

Merge pools enable non-deterministic patterns of communication.

Example usage

Merge pool = new Merge() ;
for(int i = 0 ; i < NNODES ; i++) {
// ... create a slave process which returns data on port ‘U’

pool.add(U) ;
¥

while (nodesActive) {
Port V = pool.select() ;

DataInputStream fromNode = new DatalnputStream(new PortInputStream(V)) ;

// ... read data from from slave

}

Note that the port returned by select remains in the pool. Ports can only be
removed from the pool by using rem.

In the present implementation a channel end can belong to at most one
merge pool at any given time.

2.1.6 Limitations of the prototype

1. Only Java applications can use Ports because a Port incorporates a
ServerSocket. It should be possible to devise a (less efficient) imple-
mentation which works for applets, sending messages indirectly via the
applet’s server.

11

2.2 Parallel arrays and data parallel computation

After some preliminary investigation of possible interfaces for parallel container
classes in Java, we have a rather cautious view about the opportunities offered
by this approach.

The standard Java library provides a few container classes (Vector,
Dictionary, Hashtable...). Because Java doesn’t provide templates, these are
implemented as containers for the Object base class. This involves forsaking
the safety of compile-time checking, and incurring the inefficiency of run-time
checking of type-casts.

In the majority of HP applications the arrays required will have elements
of primitive types (int, float, double,...). So these will have to wrapped up as
objects. This introduces the further inefficiency and inconvenience of allocating
the wrapper objects for all array elements, and accessing the data through
methods on the wrappers.

Of course it is not possible to provide iterator classes in the STL sense for
Java container classes, due to the lack of pointers and operator overloading.

For these reasons, in the present state of development of Java, it may not be
productive to devote effort to designing parallel container classes [maybe even-
tually Java will evolve into C++, and this will become a better option...]. The
interface is likely to be so clumsy and inefficient that it would be unattractive
to application programmers, or as a target for compilation.

Presently we are focussing on providing a set of lower level “helper” classes,
to facilitate writing data parallel programs. Ultimately these classes could be
incorporated as part of the implementation of container classes, if somebody
comes up with a more viable framework for implementing those.

The kind of helper classes we have in mind describe, for example, process
grids and distributed index ranges.

Our interface is in its early stages, but we will illustrate the general approach
by an example. Consider the HPF program

'HPF$ PROCESSORS p(4, 4)
REAL a(0 : 99, 0 : 99)
'HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO p

FORALL(i = 0 : 99, j = 0 : 99)
a(i, j) = i + j

A possible Java rendition is

Procs p = new Procs(4, 4) ;

Range x = new Range(100, BLOCK, p, 1) ;
Range y = new Range(100, BLOCK, p, 2) ;

float [] [] a = new float [x.seg()] [y.seg(Q] ;

12

for(x.forall() ; x.next() ; x.test())
for(y.forall() ; y.next() ; y.test())
a [x.sub()] [y.sub()] = x.idx() + y.idx() ;

Here Procs is a class describing a process grid, and Range is a class for describing
an index range distributed over a particular grid dimension. The Range members
are

int seg() ;
which returns the size of a local array segment (25 in this example),

void forall() ;
boolean test() ;
void next () ;

which enumerate the local segment of the index range,
int sub() ;

which returns the local subscript for the current iteration and
int idx() ;

which returns the global index for the current iteration.

This example is for illustration only. The concrete interface to the classes is
bound to be changed and extended.

Once the general scheme for representing and accessing distributed arrays
is in place, we can define the interfaces to high level collective communications
(shift, transpose, broadcast, reduce, ...). These could, for example, be imple-
mented on top of the channels interface described in the previous section.

2.3 Applications

We need some applications. Don Leskiw has suggested a target-tracking appli-
cation which combines data and task parallelism with opportunities for applet
front ends. Other numerical applications of Java, suitable for parallelism, are
needed.

As a trivial example of the use of our channels interface, I have ported one of
the examples from the Cornell meta-computing seminar to Java. This outputs
its results to files which can be viewed with xv. It should be given an applet
interface. The source is included below.

import java.io.* ;

13

public class Life {
static final int N = 64 ;
static final int NITER 50 ;

static final String [] hosts = {"koum", "naos"} ;
static final int NNODES = hosts.length ;

public static void main(String args([]) {
try {
DataInputStream fromNode [] = new DatalnputStream [NNODES] ;

// Create a ring of channels

Port R [] = new Port [NNODES] ;
Port S [] = new Port [NNODES] ;

for(int i = 0 ; i < NNODES ; i++) {
R [i] = new Port() ;
S [1i] = new Port() ;

}

for(int 1 = 0 ; i < NNODES ; i++)
Port.channel(R [i]l, S [(i + 1) % NNODES]) ;

// Create the node processes.
for(int i = 0 ; i < NNODES ; i++) {
Port U = new Port() ;
Port V = new Port() ;
Port.channel (U, V) ;

RPC.spawn("LifeWorker", hosts [i], V) ;

// Send parameters to node

(=]

.sendInt (N) ;
.sendInt (NITER) ;

(=]

(=]

.sendInt (NNODES) ;
.sendInt (i) ;

(=]

(=]

.sendChan(R [i]) ;
.sendChan(S [i]) ;

(=]

fromNode [i] = new DatalnputStream(new PortInputStream(U)) ;

14

/* Handle output. */
for(int iter = 0 ; iter <= NITER ; iter++) {
/* Copy current state of board from nodes to a ‘.pgm’ file. */

String fname = "life" + iter / 10 + iter % 10 + ".pgm" ;
PrintStream out = new PrintStream(new FileOutputStream(fname)) ;

out.println("P2") ;
out.println("" + N + " " + N) ;

out.println("" + 1) ;

for(int node_id = 0 ; node_id < NNODES ; node_id++) {
DataIlnputStream in = fromNode [node_id] ;

int blockLen = in.readInt() ;

for(int 1 = 0 ; i < blockLen ; i++) {

out.print("" + in.readInt() + " ") ;
if(i % 20 == 19) out.println("") ;
}
}
}

}

catch(Exception e) {

}

}
}

import java.io.* ;

public class LifeWorker extends Child {
public static void main(String args[]) {

try {
Port R = new Port() ;
Port S = new Port() ;

// Get parameters from host

int N = initial.recvInt() ;

15

int NITER = initial.recvInt() ;

int NNODES = initial.recvInt() ;
int node_id = initial.recvInt() ;

initial.recvChan(R) ;
initial.recvChan(S) ;

// Create port streams

DatalutputStream toHost =
new DataOutputStream(new PortOutputStream(initial)) ;

DatalutputStream toNodePrev =

new DataOutputStream(new PortOutputStream(R)) ;
DatalnputStream fromNodePrev =

new DatalnputStream(new PortInputStream(R)) ;

DatalutputStream toNodeNext =

new DataOutputStream(new PortOutputStream(S)) ;
DatalnputStream fromNodelNext =

new DatalnputStream(new PortInputStream(S)) ;

// Define block

int blockSizeMax = (N + NNODES - 1) / NNODES ;
int blockBase blockSizeMax * node_id ;

int blockSize ;
if (blockBase + blockSizeMax > N)
blockSize = N - blockBase ;
else
blockSize = blockSizeMax ;

// ‘block’ has ‘blockSize + 2’ columns. This allows for ghost cells.
int block [] [] = new int [blockSize + 2] [N] ;

for(int 1 = 0 ; i < blockSize ; i++) {
int ib =1 + 1 ;
for(int y =0 ; y < N ; y++) {
= blockBase + i ;
if(x==N/21ly==N/2)

block [ib] [y] =1 ;
else
block [ib] [y] = 0 ;

16

// Dump initial state of board to host

toHost.writeInt(blockSize * N) ;
for(int 1 = 0 ; i < blockSize ; i++) {
int ib =1 + 1 ;
for(int y =0 ; y < N ; y++)
toHost.writeInt (block [ib] [y]) ;
}
toHost.flush() ;

// Main update loop.
int neighbours [] [] = new int [blockSize] [N] ;
for(int iter = 0 ; iter < NITER ; iter++) {
// Shift this block’s upper edge into next neighbour’s lower ghost edge
for(int y =0 ; y < N ; y++)
toNodeNext.writeInt(block [blockSize] [y]) ;

toNodeNext .flush() ;

for(int y =0 ; y < N ; y++)
block [0] [y] = fromNodePrev.readInt() ;

// Shift this block’s lower edge into prev neighbour’s upper ghost edge

for(int y =0 ; y < N ; y++)
toNodePrev.writeInt(block [1] [y]) ;
toNodePrev.flush() ;

for(int y =0 ; y < N ; y++)
block [blockSize + 1] [y] = fromNodeNext.readInt() ;

/* Calculate a block of neighbour sums. */

for(int 1 = 0 ; i < blockSize ; i++) {
int ib =1 + 1 ;
for(int y =0 ; y < N ; y++) {
intyn=(y-1+0N) %N ;
intyp=(+1) 4N ;

neighbours [i] [y] =

block [ib - 1] [y_n] + block [ib - 1] [yl + block [ib - 1] [y_pl +
block [ib] [y_n] + block [ib] [y_pl +

17

block [ib + 1] [y_n] + block [ib + 1] [y] + block [ib + 1] [y_p] ;

/* Update block of board values. */

for(int 1 = 0 ; i < blockSize ; i++) {
int ib =1 + 1 ;
for(int y = 0 ; y < N ; y++) {
int neighbour = neighbours [i] [y] ;

if (neighbour < 2 || neighbour > 3)
block [ib] [yl = 0 ;

if (neighbour == 3)
block [ib] [yl = 1 ;

/* Dump current state of board to host */

toHost.writeInt (blockSize * N) ;
for(int 1 = 0 ; i < blockSize ; i++) {
int ib =1 + 1 ;
for(int y = 0 ; y < N ; y++)
toHost.writeInt (block [ib] [y]l) ;
}
toHost.flush() ;
}
}
catch(Exception e) {

3

}

3 Some Remarks on Parallel Processing and
Java. Geoffrey Fox, email dated 6 Aug 1996

We can distinguish (at least) three forms of parallelism (concurrency) in Java
of which the first two are reasonably uncontroversial.

a) Fine grain functional parallelism as exhibited by the built-in threads of
Java. These could be very helpful in latency hiding by allowing several
concurrent processes on a single node but do not naturally implement
large scale parallelism.

b) Coarse grain functional or task parallelism or what the Linda group and Jim
Browne would call coordination. This is roughly what is implemented in
the Applet and network connection mechanisms of Java. This capability
is the basis of WebFlow our proposed dataflow mechanism on the Web.
Note that threads are shared memory but Applet mechanism is distributed
memory parallelism.

c) Data parallelism is less clear for both technical and emotional reasons (Is it
in the “spirit” of Java!). Let us discuss this in more detail.

In general, it seem plausible that data parallelism in Java should build on
the corresponding discussions in FORTRAN and C++ (HPF and HPC++).
Most relevant Java features are seen in one or both of these languages. In the
following we list some considerations to be borne in mind in considering data
parallelism in Java.

1. Data parallel FORTRAN or C++ typically compiles down to FORTRAN
or C plus message passing. We note that the Java plus message passing
(data parallel) model is uncontroversial. Thus there is no problem in
defining the target implementation of a data parallel Java application.
Further the Java equivalents of Fortran-M and C++4 can be naturally
defined.

2. The “Java plus message passing model” includes the case where “Java”
immediately invokes a native class which could be an existing compiled C,
Fortran or C++ and even an optimized Java code compiled directly for
the native machine. Some argue that use of such (non-portable) native
classes violates the philosophy of the Web or of Java. I disagree. I at least
download C code very often from the Web and current versions of Netscape
illustrate how one is happy to download either the browser or plugins. We
propose that users will be willing to download once and for all, a set of
high performance Engineering and Science native classes. This implies
that PCRC (Parallel Compiler Runtime Consortium) compiler runtime
should be included in such a library and I expect this to be a critical part
of any high performance Java environment.

19

3.

The most powerful model assumes a WebServer (as opposed to a client)
attached to each process in our “Java/Native Classes + Message Passing”
model. This approach allows natural integration of Web computing as
we have demonstrated in Kivanc Dincer’s “HPF on the Web” prototype
supporting Pablo performance and scientific result visualization from data
passed by Java process to associated WebServer. Note that our standard
“WebWindows” philosophy implies such a linked se of servers to coordi-
nate computation.

Any efficient implementation must use “simple types” and not “objects”
for distributed arrays as objects come with too much overhead. However
we can make use of objects as a wrapper which stores at a high level overall
information about array and links via intrinsic “methods” to the high
performance native classes. Such a wrapper class does more than support
data parallelism. It allows a general and convenient Java interface to
existing C and Fortran data structures. This will allow easier development
of Java based interfaces to existing simulations.

We suggest implementing data parallel Java using the HPF Interpreter
approach we explored with Arpa funding and demonstrated (the work of
Furmanski) in Supercomputing 93. The essential idea between the HPF
Interpreter is simple. Take any Fortran90/HPF instruction such as:

A = MATMUL(B,C)

This can be executed in interpreted fashion without significant overhead
as we are only concerned with cases that A, B, C are large arrays and time
to interpret the single coarse grain array statement is small compared
to its execution time even when interpreter invokes optimized parallel
execution. Note that for MIMD parallelism, we imply large grain size in
each process. Furmanski’s HPF Interpreter was successful but we left it
as a prototype as we did not have the resources necessary to complete a
full blown system. Now Java and the Web have given us a more natural
and powerful implementation and further our PCRC HPF infrastructure
is much better.

We can implement the proposed data parallel Java as a main (host) class
interpreting coarse grain statements linked to a set of child (native) dis-
tributed processes. This looks pictorially like:

Main (host) Interpreted HPJava statements
Java Class manipulating
Wrapper HPVector classes

Set of Child Web Server running
(Native) distributed a Java Interpreter invoking a
Processes Highly efficient ‘‘node’’ code

20

10.

11.

12.

which is compiled Java, C and Fortran
using PCRC and MPI libraries etc.

We are suggesting this new HPVector class which is a data parallel ar-
ray (and similarly for other parallel data structures). The HPVector
class (of which &, B, C in bare instances) does not necessarily store ar-
ray elements but rather user accesses elements through methods such
as A.grabelement(il,i2) to return A(i1) through A(i2). We view
HPVector class as a wrapper which links Java to an array in any relevant
code including Java itself, F77, HPF, HPC++, F77 4+ Message Passing
etc.

Wrapper HPVector methods will include A.distribute() and A.align()
to implement HPF directives as calls to methods.

forall statements are very popular and powerful in HPF but are not so
trivially implemented in our formalism as they involve array elements and
not arrays. One possibility is to view a forall as implementing a new HPF
array function in a flexible way and treat forall statement as a script which
implements this new function. Thus something like:

forall(I=1 to 100)
a(I)=b(I)*b(I+1)/c(I)

could be written as:

A=HPVector.forall("forall(I=1 to 100);
a(I)=b(I)*b(I+1)/c(I)",B,C);

The implementation of independent DO loops is also not so clear as really
these reflect control and not data parallelism. Perhaps these should be
implemented through task parallel (coordination) mechanism in Java.

Interesting features of this approach include the fact that no new language
extensions are required (although you could add forall to language); it
allows a (slow) pure Java sequential version as well as optimized parallel
versions. It allows one to build both Java wrappers to existing applications
and new parallel Java applications in the same formalism.

The main (host) class is naturally fully interpreted and the use of some-
thing like JavaScript (when it has been integrated with Java) is particu-
larly natural.

21

4 HPJava Suggestions. Bryan Carpenter, email
dated 5 Aug 1996

For debate, some suggestions for a Java syntax (ie, class library interface).

I’'m trying to incorporate the basic idea of everything being collective opera-
tions on array objects. I haven’t defined FORALL “scripts”, but the expression
trees suggested here could be regarded as a sort of pre-parsed script. The ad-
vantage is that we don’t need parsers and symbol tables in the run-time. The
disadvantage is that the syntax is quite awkward. This is really a peculiarity of
Java (see comments below).

One intention with this interface is that it is sufficiently high-level that it can
be implemented in terms of a SIMD-style Java controller for an HPC back-end,
or of a pure SPMD parallel Java model.

I’'m using my “Range” structures because they allow a simple definition of
“conformance”, and they are useful in indexed array expressions, which go some
way to replacing FORALL.

Unlike HPF, the notation defined here forces communication operations to
be explicitly specified. In that sense it is lower level than HPF—closer to a
run-time library.

The syntax is quite awkward in practise. A big problem is still that Java
doesn’t allow library-defined operator overloading, so expressions quickly be-
come difficult to read.

Index ranges

e An index range is specified by a member of the ‘Range’ class.

e A “primitive range” is either collapsed (sequential), or distributed over a
particular dimension of a particular process array.

Range x = new Range(100) ;
Range y = new Range(50, BLK, p.dim(0)) ;
Range z = new Range(50, BLK, p.dim(1)) ;

x is collapsed. y is distributed blockwise over the first dimension of process
array p, z over the second.

e Two distributed primitive ranges are “orthogonal” if they are distributed
over different dimensions of the same process array. A collapsed primitive
range is orthogonal to any primitive range except itself.

Arrays

e The shape and mapping of an array are defined by an ordered list of
orthogonal index ranges.

22

e The types of array elements are restricted to one of the Java primitive
types (cf, F77). There is a separate (sub)class of array for each primitive

type.

ArrayInt a = new ArrayInt(x, y) ;

ArrayFloat b = new ArrayFloat(y, x) ;
ArrayDouble ¢ = new ArrayDouble(y) ;
ArrayDouble d = new ArrayDouble(z) ;

a and b are rank 2. ¢ is rank 1.

Expressions

e An “expression” is an array expression.

An expression node may correspond to a complete temporary array con-
structed at run-time, or through some process of interpretation (akin to
interpretation of the mooted of forall scripts) it may simply correspond to
a scalar temporary inside a loop in some “node code”.

The classes for expressions parallel the classes for arrays:
ExprInt, ExprFloat, ExprDouble,

e The shape and mapping of an expression are defined by an unordered set
of orthogonal index ranges.

e An array is an expression. It’s shape and mapping are defined by the set
of ranges of the array.

e A range is an integer expression. It’s shape and mapping are defined by
the singleton set containing the range itself.

e Members on the expression class provide arithmetic, eg
b.plus(c)
corresponds to the array expression
b+c
The shape of the result is the union of the shape of the addend and

the argument. The operation is illegal if this union contains any non-
orthogonal range pairs.

Certain arithmetic coercions can be defined by overloading plus, eg

23

ExprInt ExprInt :: plus(ExprInt) ;
ExprFloat ExprInt :: plus(ExprFloat) ;
ExprFloat ExprFloat :: plus(ExprFloat) ;

ExprFloat ExprFloat :: plus(Exprlnt) ;

Other analogous members (times, if, and so on) are provided.

Simple operations on arrays

e An expression “conforms” with an array if its index range set is a subset
of the index range list of the array.

e Assignment is through through suitable members, eg
void ArrayInt :: assign(ExprInt) ;

void ArrayFloat :: assign(ExprFloat) ;
void ArrayDouble :: assign(ExprDouble) ;

Eg,

a.assign(b) ; // a=
b.assign(c) ; // b=c

The argument of assign must conform with the array being assigned.
c.assign(d) ; // ILLEGAL

e The fact that a range is an expression provides some of the power of a
“forall” statement. ..

a.assign(x.plus(y)) ; // forall (x, y) a(x, y) =x +7y ;

e A masked assignment operation ‘where’ could also be provided.

Communication

e The conformance rules for the previous operations mean no communica-
tion is needed in their implementation.

e The array member remap takes an argument of the same shape as the
array (which does not, however, conform with the array) and copies its
value into the array.

24

void ArrayInt :: remap(ArrayInt) ;
void ArrayFloat :: remap(ArrayFloat) ;
void ArrayDouble :: remap(ArrayDouble) ;

Eg

c.remap(d) ; // c=4d

This operation clearly does require communication.

e shift is similar to remap, except that the argument does conform with
the array, but the copy is a shifted copy.

Again, communication is required.

e Other analogous members are provided.

Subranges and Array sections

e A “subrange” is a triplet subrange of some primitive range, created by a
suitable member function, eg

x.sub(1lb, ub, stride) ;
The signature of sub would be
Range Range :: sub(int, int, int) ;

Subranges inherit the orthogonality properties of their parent primitive
range.

e A section of an array is created by passing subranges of the array’s range
set to a suitable member, eg

a.sect(x.sub(0, 99, 2), y) ; // a(0 : 99 : 2, :)
The signatures of ‘sect’ would be

ArrayInt ArrayInt :: sect(Range x) ;
ArrayInt ArrayInt :: sect(Range x, Range y) ;

25

Example

The HPF/F90 program.. .

integer n
parameter(n = 8)

real u(n, n)

'hpf$ distribute u (block, block) onto p
'hpf$ processors p (2, 2)

integer i, j
integer iter

do j i, n
if(i == 1 .or. i ==n .or. j == 1 .or. j == n) then
u(i, j) = 1.0
else
u(i, j) = 0.0
endif
enddo
enddo

do iter = 1, 5
u(2 :n-1,2 :n-1) =&
0.25 * (u(2 :n-1,1:n-2)+u(2 :n-1, 3 : n) + &
u(f :n -2, 2 :n-1) +u(3 :n, 2 :n- 1))
enddo

end
could be translated as. ..

final integer n = 8 ;

Procs p = new Procs(2, 2) ;
Range x = new Range(n, BLK, p.dim(0)) ;
Range y = new Range(n, BLK, p.dim(1)) ;

ArrayFloat u = new ArrayFloat(x, y) ;
ArrayInt mask = new ArrayInt(x, y) ;

26

mask = x.gt(0).and(x.1t(n - 1)).and(y.gt(0)).and(y.1lt(n - 1)) ;

u.where(mask, 0.0, 1.0) ;

ArrayFloat tmpil
ArrayFloat tmp2
ArrayFloat tmp3
ArrayFloat tmp4

new ArrayFloat(x, y) ;
new ArrayFloat(x, y) ;
new ArrayFloat(x, y) ;
new ArrayFloat(x, y) ;

for(int iter = 1 ; iter <= 5 ; iter++) {
tmpl.shift(u, -1, 0) ;
tmp2.shift(u, 1, 0) ;
tmp4.shift(u, -1, 1) ;
tmp3.shift(u, 1, 1) ;

u.where(mask, tmpl.plus(tmp2).plus(tmp3).plus(tmp4).
times(0.25)) ;

// where(mask) u = 0.25 * (tmpl + tmp2 + tmp3 + tmp4)
}

This assumes that the arithmetic members on arrays include boolean arithmetic,
and that two variants of masked assignment (where) are provided (one with
two arguments corresponds to F90 simple WHERE; one with three arguments
corresponds to F90 WHERE/ELSEWHERE).

Variation: the where operation in the loop could be replaced by use of
sections. . .

Range i = x.sub(1, n - 2) ; // subrange 1 : n - 2
Range j = y.sub(i, n - 2) ; // subrange 1 : n - 2

u.sect(i, j).assign(tmpl.sect(i, j).plus(tmp2.sect(i, j)).
plus(tmp3.sect(i, j)).plus(tmp4.sect(i, j)).
times(0.25)) ;

// u(2 :n-1, 2 :n-1) = 0.25 %

// (tmp1(2 : n -1, 2 : n - 1) +
// tmp2(2 : n -1, 2 : n- 1) +
// tmp3(2 : n -1, 2 : n - 1) +
// tmp4(2 : n -1, 2 : n - 1))

Variation: the shift operations could be replaced by remap operations. ..

ArrayFloat tmpl = new ArrayFloat(i, j) ;

27

ArrayFloat tmp2 = new ArrayFloat(i, j) ;
ArrayFloat tmp3 = new ArrayFloat(i, j) ;
ArrayFloat tmp4 = new ArrayFloat(i, j) ;

tmpl.remap(u.sect(x.sub(2, n - 1), j)) ;
tmp2.remap(u.sect(x.sub(0, n - 3), j)) ;
tmp3.remap(u.sect(i, y.sub(2, n - 1))) ;
tmp4.remap(u.sect(i, y.sub(0, n - 3))) ;

// tmp3 = u(l : n -2, 2 :n-1)
// tmp2 = u(0 : n -3, 1 :n-2)
// tmpl = u(2 : n -1, 1 :n - 2)
// tmp4d = u(l : n -2, 0 :n - 3)

u.sect(i, j).assign(tmpl.plus(tmp2).plus(tmp3).plus(tmp4).
times(0.25)) ;

// u(2 :n-1, 2 :n-1) = 0.25 %
// (tmpl + tmp2 + tmp3 + tmp4)

This corresponds more directly to the original Fortran which uses arithmetic on
array sections, rather than shift operations.

5 HPJava: Work in progress. Bryan Carpenter,
Yuh-Jye Chang, November 12, 1996

Emphasis to date has been on providing class libraries to facilitate communica-
tion and parallel computation within the framework of Java. For now this means
communicating Java applications, but eventually it should be possible provide
class libraries which allow Java applets downloaded from a common server to
communicate (for example, by having their server transparently through-route
communications).

We have prototyped a class library for Fortran-M-like channel communica-
tion to support a message-passinge style or programming. Presently we are
experimenting with class library interfaces to directly support the data parallel
programming style.

The existing software for both these approaches has been layered directly on
the Java socket interface. For the next stage of development we plan to produce
a Java interface to a run-time library being developed in the PCRC project. By
interfacing to an existing body of software through Java native methods we will
avoid reimplementing the complex collective operations needed in data parallel
applications. We also expect to obtain better efficiency.

5.1 Parallel arrays and data parallel computation

Our experimental implementation of parallel arrays for Java is similar to the
array model of the C++ library, Adlib, developed by one us. (A similar model is
also being used in the NPAC PCRC library—it is based on the HPF distributed
data model.)

In Java the distribution of an array is parametrized by a member of the
Array class (as it turns out the Java Array object is more akin to an HPF
template than a data array). An Array object is defined in terms a target group
of processes and a set of distributed index ranges, one per array dimension.
The group of processes is some multi-dimensional process grid represented by
an object from the Procs class. Each distributed index range is represented by
an object from the Range class.

Any parallel Java application is written as a a class extending the library
class Node. The Node class maintains some global information and provides
various collective operations on arrays. The code for the “main program” goes
in the run member of the application class.

5.1.1 Example data parallel Java program

A simplified version of the code for the “Life” demo is given in figure 1.

The object p represents a 2 by 2 process grid. In this simplified example we
assume that the program executes on exactly four processors. More generally
the library provides a member function on Procs to determine whether the local

29

public class Life extends Node implements Runnable {
public void run() {
Procs p = new Procs(this, 2, 2) ;

Range x = new Range(N, p, 0) ;
Range y = new Range(N, p, 1) ;

Array r = new Array(p, x, y) ;

int xys = r.seg();
bytel[] w = new bytel[xys];

byte[] cn_ = new bytel[xys];
byte[] cp_ = new bytel[xys];
. etc, create arrays for 8 meighbours

// Initialize the Life board

for(r.forall(); r.test(); r.next())
wlr.sub()] = fun(x.idx(), y.idx(Q)) ;

// Main loop
for (int k=0; k<NITER; k++) {
// Get neighbours
shift(en_, w, r, 0, 1, CYCLIC);
shift(cp_, w, r, 0, -1, CYCLIC);
. etc, copy arrays for 8 neighbours
// Life update rule
for(int i=0; i<w.length; i++) {
switch (en_[i] + cp_[i] + c_n[i] + c_p[i] +
cnnl[i] + cnpli] + cpnlil + cpplil) {
case 2 : break;

case 3 : w[i] = 1; break;
default: w[i] = 0; break;

Figure 1: Simplified code of the Life demo program.

30

process holds any member of the virtual process grid. The Procs constructor
takes the current Node object as an argument, from which it obtains information
on the available physical processes.

The objects x and y represent index ranges of size N (the global index is in
the range 0, ..., N - 1) distributed over the first and second dimensions of
the grid p. The default distribution format is blockwise. Cyclic distribution
format can also be specified by using a range object of class CRange, which is
derived from Range (the pilot implementation does not provide any more general
distribution or alignment options).

The object r represents the shape and distribution of a two dimensional
array. Note that this “template” can be shared by several actual arrays because
it does not contain a data vector. The limited polymorphism of Java makes
it awkward to create true container classes for primitive data types. The data
vectors that hold the local segments of arrays are created separately using the
inquiry function seg which returns the number of locally held elements. In the
example the elements of the main data array are held in w. The extra arrays
cn_, ¢cp_, ..., cnn, ... will be used to hold arrays on neighbour sites.

The “forall loop” initializing w should be read as something like

forall(i in range x, j in range y)
w(i, j) = fun(i, j)

where fun is some function of the global indices defining the initial state of the
life board. The members forall, test, next update the state of r and the
range structures contained in it so that r.sub() returns the local subscript for
the current iteration, and x.idx() and y.idx() return the global index values
for the current iteration

The main loop uses cyclic shift operations to obtain neighbours, commu-
nicating data where necessary. The shift operation is a member of the Node
class. Eventually it will be overloaded to accept data vectors of any primitive
type—here the array elements are bytes.

Finally w is implemented in terms of its neighbours. This could have been
done using a “forall loop”, but since global index values are not needed here
the loop has been optimised for a simple for loop over the local segment. This
performance-critical inner loop is coded at least as efficiently as a typical se-
quential program.

Note some characteristic features of the data-parallel style of programming:

e The distribution format of the arrays can be changed just by altering a few
parameters at the start of the program—the main program is insensitive
to these details

e low level message-passing is abstracted into high-level collective operations
on distributed array structures.

31

5.1.2 Starting an HPJ program

A Node instance can be started on any host running a suitable daemon. A master
server process records the pool of slave daemons currently running. When a new
daemon is started, it registers with this central server. Clients may request a
list of hosts running daemons from the main server, then ask for a particular
Java object file to be run on any subset of those hosts. Typically the client is
an applet running in a browser, and the main HPJ server runs on the same host
as an HTTP server from which the applet was downloaded.

5.1.3 Owutlook on data-parallel programming in Java

Although Java is quite a restrictive language, our experiments suggest that
it should be possible develop a useful class library interface for data parallel
programming, without necessarily extending the basic language.

Java’s strict typing regime (the absence, for example, of castable pointers)
makes it difficult to write interfaces to communication libraries that efficiently
accept data of multiple types (polymorphism). The T/O and socket commu-
nication classes in the standard API resort to expensive format conversions
whenever an object has to be transfered. Benchmarking the example presented
earlier indicates that while parallelism gives genuine performance gains there is
an obvious communication penalty even with large problem sizes. For example,
the following timings were obtained on a grid size of 512 by 512

number of time per
processors iteration/ms
1 1502
2 1011
4 784

The volume of data that has to be communicated in an iteration is on the order
of 1% of the total data set, but speedup is still a long way from ideal. Further
benchmark results are available on the demo Web page.

We hope that the efficiency problems can be overcome by taking a different
approach to implementing the interface. Instead of implementing the library
within Java on top of the standard API we will call the existing PCRC run-
time library through a native methods interface. In any case this approach will
be easier than recoding collective communication operations, some much more
complicated the shift, within Java.

5.2 Channels

We have prototyped a Java class library for channel communication. The se-
mantics are similar (but not identical) to the dynamic channels of Fortran M.
The model is quite attractive in Java because

32

1. Tt is “connection-oriented” so ordinary data communications map directly
onto the socket 1/O primitives efficiently implemented for Java and the

Web.

2. Tt directly supports highly dynamic situations where new remote pro-
cesses (eg, applets) come into existence unpredictably, and may have un-
predictable communication demands (eg, determined by requirements of
a remote user).

3. It provides a layer of abstraction above internet addresses and socket port
numbers, and associated resources to which access may be limited by Java
security models.

5.2.1 Overview of the channel model

In our model a channel supports bi-directional communication of data (with
unbounded buffering). Access to logical channels is provided through a Java
class called a Port!. Networks of Java applications connected by channels are
created through the following operations

e A pair of locally defined ports can be connected, creating a local channel
between a pair of connected channel ends.

e A remote procedure call mechanism allows initiation of a Java application
on a remote processor, and creates an initial channel between the parent
and the remote application.

e Channel ends can be communicated over other channels, on much the
same footing as data.

These primitives are sufficient to create sets of processes with arbitrary channel
connectivity.

A functionality similar to the “merge” in Fortran-M is provided through the
“merge pool” class, Merge. Channel ends can be added to or removed from the
pool by passing their ports to suitable member functions. A blocking select
operation returns a handle to a port in the pool which presently has input data
ready. Merge pools enable non-deterministic patterns of communication.

5.2.2 Outlook on channel communication in Java

This seems like a intersting approach to Java communication, which could have
applications beyond scientific parallel programming. For now this line of inves-
tigation is being pursued less actively than the data parallel approach.

1 The Port dresses up and adds functionality to an internet port, but should not be confused
with this lower-level idea. The Port interface does not provide direct access to port numbers
or internet addresses.

33

Process Available Process Selected

ospreyh.npac.syr.edu:39564 ospreyd.npac.syr.efu:37086
ospreyi.npac.syr.edn:27166 osprey3.npac.syr.edn:37465
osprey8.npac.syr.edn:24692 ospreyl.npac.syr.edn:64915
osprey7 . npac.syr.ed:28090
osprevd.npac.syredn:37086
osprey3.npac.syr.edu:37465
ospreyl.npac.syr.etn:64915

Add I Remove I
Proc | Life | FFT | Quit || Detach |

Figure 2: Menu for selecting processors.

6 “HPJava”: Demo Description. Bryan Carpen-
ter, Yuh-Jye Chang, November 16, 1996

The Web server for the demo runs on a processor from a cluster of high perfor-
mance workstations located at NPAC. Various other hosts in this cluster run
daemons that support remote execution of the Java class files for the demos.

When the demo starts, a menu of available hosts is presented. A subset of
these hosts can be selected and added to the set subsequently used for running
the examples.

6.1 Conway’s Game of Life

“Life” is a familiar cellular automaton, in which cells on a two-dimensional
board are updated according to the current state of their eight neighbours. It
provides a simple illustration of the the archetypal nearest-neighbour update,
which recurs in various numerical simulations, and lends itself well to parallel
computation.

The Java implementation uses an experimental version of a class library in-
tended to facilitate data-parallel computations on regular arrays. Characteristics
of this approach, similar to High Performance Fortran, include

e The distribution format of the arrays can be changed just by altering a few

34

total=1799ms, calc (estimate)=458ms

Iteration | 7 |

Tteration/Display | 1 |

X-Mode 4 Block ~ Cyclic
Y-Mode 4 Block + Cyclic
Begin I Test I Pattern I
Prac | Life | FFT | Quit | Detach | Proc | Life | FFT | Quit | Detach |

Figure 3: Screens of the “Life” demo.

parameters at the start of the program—the main program is insensitive
to these details

e low level message-passing (in the Java case, through Internet sockets) is
abstracted into high-level collective operations on distributed array struc-
tures.

Clicking on the “Life” button brings up a menu of parameters which can be
changed. These include the size of the grid (“board”), the number of iterations,
and the frequency with which the state of the board is displayed. Displaying
the board generally takes much longer than updating it: for benchmarking
purposes the display should happen infrequently (for demonstration purposes,
frequently). The options also allow changing the distribution format of the
board—the way the board is split between processors. Like HPF, block or
cyclic distributions are allowed.

Clicking on the “Begin” button causes the simulation to start. The initial
state of the board is currently a fixed “cross” of live cells. This will evolve into
more interesting patterns as the simulation proceeeds. The processor “owning”
a portion of the board is coded through the colour of the cells, providing a clear
visualization of the various distribution formats.

The processor set can be changed by clicking the “Proc” button. The pa-
rameters or distribution format can be changed by clicking the “Life” button
again.

35

6.2 2D FFT “Image Compression”

This demo is a Java port of one of the HPFA (High Performance Fortran Ap-
plications) kernels. As explained in the description of the original code:

The Fast Fourier Transform (FFT) is the most widely known ex-
ample of the Spectral method for computational problems. In all
such methods, one performs a linear transformation of the stated
problem into another physical domain where it is hoped will be
more tractable. In Fourier transformations, the mapping is from
the time-domain to the frequency-domain. The FFT is widely used
in the field of image processing, where one commonly describe an
image in terms of intensity values in a two-dimensional matrix. The
codes contained here performs a two-dimensional FFT over an ex-
ample matrix in the following manner:

1. Set up the input 2-D matrix.

2. Perform FFT across the leading dimension of the matrix.

3. Transpose the matrix, using an F90/HPF intrinsic function.
4

. Perform FFT again, across the leading dimension.

In our case “transpose” is a new operation in the class library, on a par with
the “shift” operation used in nearest neighbour updates. As explained above,
sequential FFTs are performed on all columns of the image data in parallel,
then on all rows of the image in parallel. The transpose operation sits between
these two phases.

After selecting the set of processors click on the “FFT” button. In the demo
the image data is a photograph of a wolf. One of several image files (of different
resolution) can be selected. In order of increasing size, the options presently are

wolf_4.pgm
wolf_2.pgm
wolf.pgm

The mask width defines the size of a square centered in the Fourier space repre-
sentation of the picture. You can choose to delete modes inside or outside this
boundary. On clicking the “Begin” button, the original image is displayed then
the FFT is performed. The result of the Fourier transform is also displayed as
an image, mapping Fourier components into pixels. According to the masking
selection, some of the components will be deleted. Finally the FFT is reversed,
and the modified (“uncompressed”) version of the original image is displayed.

Once again the processor “owning” a particular pixel or Fourier component
is coded through the colour of the cells.

36

FFT Setup

Image File |wu].f 2.pgm |

MaskWidth | 2 |

Mask 4 Inside ~ Outsize
Begin I Test | Pattern |
Proc | Life | FFT | Quit | Detach | Proc | Life | FFT | Quit | Detach |

Figure 4: Screens of the “FFT” demo.

7 MPI Java Wrapper Implementation. Yuh-Jye
Chang, December 16, 1996

7.1 MPI Java wrapper introduction

This draft presents a Java language interface for MPI. There are some issues
specific to Java that must considered in the design of this interface that go
beyond the simple description of language bindings. In particular, in Java, we
must be concerned with the design of objects, their methods, the feature of Java
native methods, rather than just the design of a language-specific functional
interface to MPI. Fortunately, the original design of MPI was based around the
notion of objects, so a natural set of classes is already part of MPI.

7.2 MPI Java wrapper design

The Java wrapper for MPI is designed according to the following criteria:

e The Java wrapper for MPI consists of a small set of classes with a
lightweight functional interface to MPI. The classes are based upon the
fundamental MPT object types (e.g. communicator, group, etc.).

e The Java wrapper language bindings provide a semantically correct inter-
face to MPI.

e There is a one-to-one mapping between MPI functions and their Java
wrapper bindings.

37

e To the greatest extent possible, the Java wrapper for MPI functions are
methods functions of MPI classes.

7.3 Java classes for MPI

All MPI classes, constants, and methods are declared within the scope of an
MPI package. Thus, by import the MPI package or using the MPI.xxx prefix,
we can reference the MPI Java wrapper. The classes of the MPI package are
those classes corresponding to objects implicitly used by MPI. An abbreviated
definition of the MPI package and its member classes is as follows:

package MPI;

public class MPI;

public class Comm;
public class Group;
public class Datatype;
public class Op;

public class Status;
public class Request;
public class Errhandler;

7.4 Class methods for Java MPI

All methods (except for constructors and destructors) of MPT classes are public
native. Which means in Java program the methods identifier and arguments
are defined without further implementation.

Example 1. Example showing a simple Java MPI wrapper usage.

Examplel. java
import MPI. *;
public class Examplel {

static public void main(String[] args) {
MPI JMPI = new MPI(args);
int[] myid = new int[1];
int[] numprocs = new int[1];

JMPI.COMM_WORLD. Size(numprocs) ;
JMPI.COMM_WORLD.Rank(myid) ;

System.out.println("Process "+myid[0]+"/"+numprocs [0]+
" on "+JMPI.Get_processor_name());

JMPI.finalize();

MPI JMPI = new MPI(args);

This statement will create a MPI class instance called JMPI. The MPI classes
constructor will transform the String[] arguments into C style string array
reference, call MPI_Init, create communicator COMM_WORLD, create default MPI
reduce operators MIN, MAX, SUM, etc.

int[] myid = new int[1];
int[] numprocs = new int[1];

Here, two variable myid and numprocs are declared. In Java, the simple type
like int, byte, double, ... will only pass by value. So we can never reflect the
value change back to the caller. To work around the fact that Java don*t have
pass by reference and pointer, we can use simple type array instead.

JMPI.COMM_WORLD.Size(numprocs);
JMPI.COMM_WORLD.Rank(myid);

Now, two native methods belong to COMM_WORLD were called. The COMM_WORLD
is a Comm class instance which initiated in MPI() constructor. The COMM_WORLD
communicator provide all the MPI communication binding that use the
MPI_COMM_WORLD communicator. As we had mention before, the Size() and
Rank () methods will take a int[] argument, so the result can be received.

System.out.println("Process "+myid[0]+"/"+numprocs[0]+
" on "+JMPI.Get_processor_name());

Output the myid, numberprocs, and processor_name into standard output.
JMPI.finalize();

The last step that conclude the MPI usage is calling finalize() method.

7.5 Java native method

The Java native method is a great way to gain and merge the power of C or
C++ programming into Java. To use Java as a scientific and high performance
language, when efficient native Java compilers are not fully implemented, use
native method can boost the performance to at least the speed of C compiled
code.

Example 2. Example showing how Java native method works.

JMPI. java :
public class JMPI {
public native int Init(String[] args);
public native int Finalize();
static {
System.loadLibrary("JMPI");

39

JMPI.h : (created by javah and JMPI.class)

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <native.h>

/* Header for class JMPI %/

#ifndef _Included_JMPI
#define _Included_JMPI

typedef struct ClassJMPI {
char PAD; /* ANSI C requires structures to have a least one member
*/
} ClassJMPI;
HandleTo(JMPI) ;

#ifdef __cplusplus
extern "C" {

#endif

struct Hjava_lang_String;

extern long JMPI_Init(struct HJMPI *,HArrayOfString *);
extern long JMPI_Finalize(struct HJMPI *);

#ifdef __cplusplus

}

#endif

#endif

JMPI.c : (created by javah -stub and JMPI.class)
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <StubPreamble.h>

/* Stubs for class JMPI %/

/* SYMBOL: "JMPI/Init([Ljava/lang/String;)I", Java_JMPI_Init_stub */
stack_item *Java_JMPI_Init_stub(stack_item *_P_,struct execenv *_EE_) {
extern long JMPI_Init(void *,void *);

P[0].i = JMPI_Init(_P_[0].p,((_P_[1]1.p)N);

return _P_ + 1;

}

/* SYMBOL: "JMPI/Finalize()I", Java_JMPI_Finalize_stub */
stack_item *Java_JMPI_Finalize_stub(stack_item *_P_,struct execenv
*_EE_) {

extern long JMPI_Finalize(void *);

P[0].i = JMPI_Finalize(_P_[0].p);

return _P_ + 1;

}

40

JMPINative.c
#include "mpi.h"
#include "JMPI.h"
#include "stdlib.h"

long JMPI_Init(struct HJMPI #this, HArrayOfString *args) {
int i, result, len;
char** sargs;
HString #*data = unhand(args)->body;
len = obj_length(args);
sargs = (charx#*)calloc(len, sizeof (char*));
for (i=0; i<len; i++) {
sargs[i] = allocCString(datalil);
}
result = MPI_Init(&len, &sargs);
for (i=0; i<len; i++) free(sargs[il);
free(sargs);
return result;

long JMPI_Finalize(struct HIMPI this) {
return MPI_Finalize();

}

The only programs user created are JMPI. java and JMPINative.c. The JMPI.h
and JMPI.c are generated by javah and compiled JMPI.class files. Compile
the JMPI.c and JMPINative.c into 1ibJMPI.so (in UNIX) or JMPI.d11l (in
Microsoft Windows) and you are done.

7.6 Java datatypes

The following table lists all of the Java basic simple type and their corresponding
C/C++ and MPI datatype.

Java datatype C/C++ datatype MPI datatype
byte signed char MPI_CHAR

char signed short int MPI_SHORT

short signed short int MPI_SHORT

boolean signed long int MPI_LONG

int signed long int MPI_LONG

long signed long long int MPI_LONG_LONG_INT
float float MPI_FLOAT

double double MPI_DOUBLE

Because Java is platform independent, the size of simple type will be the same
in all platforms. So in order to fit into some system that has 64bits pointer, we
use the long in Java to store the MPI object handle or pointer reference.

41

7.7 Problems due to strong typing and no pointer

All MPI functions with choice arguments associate actual arguments of different
datatypes with the same dummy argument. This is not allowed by Java. In C,
the void* formal arguments avoid these problems.

The following code fragment is technically illegal and may generate a
compile-time error.

float £ = new float[10];
double r = new double[10];

MPI.COMM_WORLD.Send(f, *);
MPI.COMM_WORLD.Send(r, *);

Technically, we will have to use methods overload with different argument
datatype or methods with different identifier.

The methods overload implementation in native method will cause prob-
lem. Because the methods that has the same name will have the same sub

initialization function generated by javah.
The methods with different identifier will implement as following.

MPI.COMM_WORLD.SendFloat(f, *);
MPI.COMM_WORLD.SendDouble(r, *);

But, there are many MPI communication functions, eg. MPI_Send, MPI_Bsend,
MPI_Ssend, MPI_Rsend, etc. If we use this approach, than we are going to have
tons of native methods for each functions and datatypes. Which we believe
is quite a waste. So we introduce a Java Datatype class which perform the
polymorphism between different Java datatypes.

7.8 The polymorphism of Java Datatype class
The Datatype class listed partly as following.

Datatype. java

package MPI ;

public class Datatype {
public Datatype() { handle = type = 0;}
public Datatype(byte[] data) { SetupByte(data);}
public Datatype(char[] data) { SetupChar(data);}

private native void SetupByte(byte[] data);
private native void SetupChar (char[] data);

private long handle, type;
private int size;

42

There are constructors for each java datatype array. In each constructor, it will
invoke a native method with different identifier that store the memory address
into 64 bits handle variable, store the corresponding MPI_Datatype object (eg.
MPI_CHAR, MPI_SHORT, ...) into 64 bits type variable, and the buffer size into
size variable.

The original MPT call in C/C++

MPI_Send(void#, int size, MPI_Datatype, int dest, int tag, MPI_Comm);
would become much simpler in Java

MPI.Comm.Send(MPI.Datatype, int dest, int tag);

7.9 Other problems

1. The creation of MPI_0Op and MPI_Request will involve the pointer to func-
tion, which is not allowed in Java also. But we think this problem could
be resolve by invoke a Java class and invoke its method automatically.

2. The current implementation of MPI conflict with Java seriously. When
number of processor > 1, use mpirun to invoke Java interpreter will core
dump or even hang the processes. We already reflect this problem to MPI
implementation authors. Hopefully they will solve this problem soon.
Currently, Bryan Carpenter modify part of the MPI source code and it
works quite good (but will still core dump when np > 3). Thanks to his
patch, we can have further progress in this implementaion.

7.10 Conclusion

To propose the Java as the scientific and high performance language, we believe
that the Java MPI wrapper is a very useful and important step. Which shows
the Java versatility and flexibility. We also believe that Java will play a very
important role in scientific and high performance world.

7.11 Test example

test.java :
import MPI.*;

class test {
static public void main(String[] args) {

MPI JMPI = new MPI(args);
byte[] buf = new byte[1024];
int i, done = 0;
int[] n = new int[1];
int[] myid = new int[1];
int[] numprocs = new int[1];

43

Datatype N = new Datatype(n);
double PI25DT = 3.141592653589793238462643;
double[] mypi = new double[1];
double[] pi = new double[1];
Datatype Mypi = new Datatype(mypi);
Datatype Pi = new Datatype(pi);
double h, sum, x;

double startwtime = 0.0;

double endwtime;

String processor_name;

Status stat = new Status();

JMPI.COMM_WORLD. Size(numprocs) ;
JMPI.COMM_WORLD.Rank(myid) ;
System.out.println("Process "+myid[0]+"/"+numprocs [0]+
" on "+JMPI.Get_processor_name());
n[0] = 0;
while (done == 0) {
if (myid[0] == 0) {
n[0] = (n[0]==0) ? 100 : O;
startwtime = JMPI.Wtime();
}
JMPI.COMM_WORLD.Bcast (N, 0);
if (nf0] '=0) {
h = 1.0 / (double)n[0];
h = 1.0 / (double)n[0];
sum = 0.0;
for (i = myid[0] + 1; i <= n[0]; i += numprocs[0]) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}
mypi[0] = h * sum;
JMPI.COMM_WORLD.Reduce (Mypi, Pi, JMPI.SUM, 0);
if (myid[0] == 0) {
System.out.println("pi is approximately "+pi[0]+
", Error is "+Math.abs(pi[0] - PI25DT));
endwtime = JMPI.Wtime();
System.out.println("wall clock time = " +
(endwtime-startwtime));
}
} else done = 1;
}
n[0] = 99;
System.out.println("Send self n: "+n[0]);
JMPI.COMM_WORLD.Send(N, myid[0], 23);
JMPI.COMM_WORLD.Recv(N, myid[0], 23, stat);
System.out.println("Recv self n: "+n[0]);

44

System.out.println("Status: cound: "+stat.count+", SOURCE: "+
stat.SOURCE+", TAG: "+stat.TAG+", ERROR:"+stat.ERROR);

JMPI.Buffer_attach(buf);

n[0] = 98;

System.out.println("Buffer Send self n: "+n[0]);

JMPI.COMM_WORLD.Bsend (N, myid[0], 22);

JMPI.COMM_WORLD.Recv(N, myid[0], 22, stat);

System.out.println("Recv self n: "+n[0]);

JMPI.Buffer_detach(buf);

System.out.println("Status: cound: "+stat.count+", SOURCE: "+
stat.SOURCE+", TAG: "+stat.TAG+", ERROR:"+stat.ERROR);

JMPI.finalize();

7.12 Execution result

mpirun -np 2 run

Process 0/2 on ospreyl.npac.syr.edu

Process 1/2 on osprey2.mpac.syr.edu

pi is approximately 3.1416, Error is 8.33333e-06
wall clock time = 0.040595

Send self n: 99

Recv self n: 99

Status: cound: 1, SOURCE: 0, TAG: 23, ERROR:0
Buffer Send self n: 98

Recv self n: 98

Status: cound: 1, SOURCE: 0, TAG: 22, ERROR:0
Send self n: 99

Recv self n: 99

Status: cound: 1, SOURCE: 1, TAG: 23, ERROR:0
Buffer Send self n: 98

Recv self n: 98

Status: cound: 1, SOURCE: 1, TAG: 22, ERROR:0

7.13 List of detailed Java wrapper for MPI

MPI. java :
package MPI;
public class MPI {
public Comm COMM_WORLD;
public Op MAX, MIN, SUM, PROD, LAND, BAND,
LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC;

public MPI(String[] args);

public void finalize();
public native double Wtime();

45

public
public
public
public
*

static

native double Wtick();
native String Get_processor_name();

native int
native int

{

Buffer_attach(byte[] buf);
Buffer_detach(byte[] buf);

System.loadLibrary ("MPI");

}
}

Comm. java

package MPI;

public class Comm {
public final static int NULL 0;

public final static int SELF

]
[y

public final static int WORLD = 2;

public Comm() { handle = 0;}
public Comm(int Type) { Setup(Type);}
private native void Setup(int Type);

public
public
public

public
public
public
public
public

native int
native int
native int

native int
native int
native int
native int
native int

Status stat);

*
public
public
public
public
public
public

native int
native int
native int
native int
native int
native int

int root);

*

Barrier();
Size(int[] size);
Rank(int[] rank);

Send(Datatype buf, int dest, int tag);
Bsend(Datatype buf, int dest, int tag);
Ssend(Datatype buf, int dest, int tag);
Rsend(Datatype buf, int dest, int tag);
Recv(Datatype buf, int source, int tag,

Bcast (Datatype buf, int root);

Gather(Datatype sbuf, Datatype rbuf, int root);
Scatter(Datatype sbuf, Datatype rbuf, int root);
Allgather(Datatype sbuf, Datatype rbuf);
Alltoall(Datatype sbuf, Datatype rbuf);
Reduce(Datatype sbuf, Datatype rbuf, Op op,

private long handle ;

Datatype. java :
package MPI ;
public class Datatype {

public Datatype() { handle = type = 0;}

46

public
public
public
public
public
public
public
public
*
private
private
private
private
private
private
private
private
*
private
private

Datatype(byte[] data) { SetupByte(data);}
Datatype(char[] data) { SetupChar(data);}
Datatype(short[] data) { SetupShort(data);}
Datatype(boolean[] data) { SetupBoolean(data);}
Datatype(int[] data) { SetupInt(data);}
Datatype(long[] data) { SetupLong(data);}
Datatype(float[] data) { SetupFloat(data);}
Datatype(double[] data) { SetupDouble(data);}

native void SetupByte(byte[] data);
native void SetupChar(char[] data);
native void SetupShort(short[] data);
native void SetupBoolean(boolean[] data);
native void SetupInt(int[] data);

native void SetupLong(long[] data);
native void SetupFloat(float[] data);
native void SetupDouble(double[] data);

long handle, type;
int size;

Op. java
package MPI ;

public cl
public
public
public
public
public
public
public
public
public
public
public
public
public

public
public

private

private

Status.j

ass Op {

final static int NULL =
final static int MAX =
final static int MIN =
final static int SUM =
final static int PROD =
final static int LAND =
final static int BAND =
final static int LOR =
final static int BOR =
final static int LXOR
final static int BXOR =10;
final static int MINLOC=11;
final static int MAXLOC=12;

W 00 ~N O Ul b W N = O

0p() { handle = 0;}
Op(int Type) { Setup(Type);}
native void Setup(int Type);

long handle ;

ava :

47

package MPI ;

public class Status {
public int count;
public int SOURCE;
public int TAG;
public int ERROR;

Request. java

package MPI ;

public class Request {
private long handle;

}

