Programming in ad++

D.B. Carpenter

Northeast Parallel Architectures Centre,
Syracuse Unwversity,
111 College Place,
Syracuse, New York 13244-410

DRAFT

Contents

8

9

Overview of ad++

This article

Defining a process array
Distributed data
Accessing array elements
Communication
Subranges

Process groups

The active process group

10 Array sections

11 remap

12 Replicated data

13 Other distribution formats

14 Other communication operations

10

14

16

17

19

20

21

23

1 Overview of ad++

Adlib is a C++ class library for data parallel programming. It was originally
designed as part of the run-time support system for a public domain High Per-
formance Fortran (HPF) compilation system. In this article we will emphasize
the a user-level C++ interface to Adlib called ad++, and illustrate how it can
be used directly for parallel programming in C++.

The ad++ library provides a set of abstract data types representing parallel
arrays. As in HPF, an array can be distributed over a logical process array,
which the library maps transparently to the available pool of physical processors.

The library also provides operations to implement a set of distributed con-
trol constructs. These constructs, called on, at and overall are data-parallel
analogues of familiar sequential control constructs like if and for. They are used
for traversing parallel arrays.

Finally it provides a set of high-level communication operations. These are
collective operations on parallel arrays. They include

e simple but general remap operations, which copy the whole contents of
one array to another of the same shape (but potentially different mapping
to the process array),

e generalised gather-scatter operations which allow any pattern of array sub-
scripting, and

e arithmetic reduction operations, which combine all elements of a parallel
array by some operation, such as addition or logical conjunction.

The ad++ interface embodies a high-level model of programming with Adlib.
It comes with a caveat. Although the array descriptor and regular communica-
tion schedules of the underlying library are supposed to be “production-quality”,
efficient implementations, the distributed control macros of the ad++ interface,
in particular the distributed loop, are too inefficient to be used in real appli-
cations. The kernel library definition describes transformations that can be
applied to make the overall construct acceptably efficient.

2 This article

Adlib has a rich functionality. Its distributed data model is a superset of the
data model of HPF version 1.0. Its control constructs and communication li-
brary have been designed to fully support nested parallelism, a powerful but
often unimplemented feature of HPF, which allows one to call parallel intrinisic
functions or user-defined pure procedures inside other parallel constructs.
Rather than starting with complete, formal definitions of the ad++ classes
and concepts, this article takes the reader as quickly possible into ad++ pro-
gramming through simple examples. The underlying concepts are then visited

in more depth, in no particular logical order. By the end of the article the reader
should be familiar with all the main ideas in the library.

The article presumes some familiarity with data-parallel and SPMD pro-
gramming. Familiarity with HPF would also be helpful. Some knowledge of
C++ is required.

3 Defining a process array

ad++ provides a series of classes Procsi, Procs2, ...derived from a common
base class Procs. These classes represent multi-dimensional process arrays. A
process array represents a set of logical processes over which data and work can
be divided.

If there are fewer logical processes than processors available, each logical
process is mapped to a different processor, and some processors hold none of
the logical processes in the array. In the present implementation of Adlib it
is not allowed to declare a process array with more logical processes than the
number of available processors.

A rank-2 (two-dimensional) process array p is declared by

Procs2 p(2, 2) ;

p represents 4 processes arranged in a two by two array. The shape of a process
array should be chosen by the programmer to suit the the intended distribution
format (blocking) of data arrays. There is no implied pattern of connectivity or
nearness between individual processes.

The declaration of p is completely analogous to the HPF declaration

'HPF$ PROCESSORS P (2, 2)

A process array is activated by using the distributed control macro ON, and
deactivated again by using the macro NO. We will always use these functions in
a context like this:

oN(p) {
// ... some code
} No(p) ;

This idiom is called an on construct. The code inside the construct is only
executed by processors which hold part of p. Inside the construct, p is designated
the active process group. It loses this status after on exit from the construct.

4 Distributed data

A conventional array has a set of index ranges. The ordinary C++ array

float a [100] [10] ;

has index ranges 0..99 and 0..9. The index ranges of an ad++ parallel array
are more complex, because the elements of the array are distributed over a
process dimension. A base class Range is introduced to represent these ranges.
Two instances, x and y can be declared as follows

BlockRange x(100, p.dim(0)), y(10, p.dim(1)) ;

BlockRange is a subclass of Range which has simple blockwise distribution for-
mat. The first argument of the constructor for x specifies that the extent of x
is 100—its global indices run from 0..99. The second argument specifies that
x is distributed over the first dimension of p. The member function dim has the
signature

Dimension Procs :: dim(const int d) ;

Its argument is in the range 0,..., R — 1, where R is the rank of the process
array. It returns a new class of object representing an individual dimension of a
process array. In this example the extent of the process dimension is two, and
array elements with global index 0. .49 are stored on the first row of processes
and elements with indices 50. .99 on the second.

The range y is similar, but it has extent 10 and is distributed over the second
dimension of p.

The x, y declarations are comparable with the HPF declarations

'HPF$ TEMPLATE T (100, 10)
'HPF$ DISTRIBUTE T (BLOCK, BLOCK) ONTO P

The ranges x and y are analogous to the individual dimensions of the template
T.

Returning to ad++, if p is the currently active process group, a distributed
array of floating point variables can be declared by

Array2<float> a(x, y) ;
This declaration is comparable to the HPF declarations

REAL A (100, 10)
'HPF$ ALIGN A WITH T

The Arrayl, Array2,...template classes are derived from a base class DAD
which provides various inquiry functions, including

Range DAD :: rng(const int d) ;

The member rng is analogous to the dim member of Procs, but returns a range
rather than a dimension. Its argument is in the range 0,..., R — 1, where R is
the rank of the array.

The extent of a range can be determined by the member function size. Its
interface is

int Range :: size() ;

5 Accessing array elements

Only a processor which holds a copy of an array element is allowed to access
that element directly. Elements of an array can either be accessed concurrently
through a distributed loop, or they can be accessed sequentially. Concurrent
access to distributed data is particularly simple in ad+4. The range objects
introduced in the previous section can be used to construct iterators for dis-
tributed loops. The iterators are activated by the macro OVERALL. Suppose p is
the active process group, the code

Index i(x), j(y) ;
OVERALL(i) {
OVERALL(j) {
a(i, j) =1i+3j;
} ALLOVER(j) ;
} ALLOVER(i) ;

initialises every element of of a to the sum of its two global index values. A
member of the Index class represents the iterator of a distributed loop. In
general if i is an index the idiom

OVERALL(i) {
// ... some code
} ALLOVER(i) ;

is called an overall construct.

To explain better how the code fragment above works we need to introduce a
new class which represents local subscripts. A local subscript defines a particular
element of a distributed range. The range object behaves as a map from global
index values to local subscripts through the overloaded operator

Location& Range :: operator()(const int) ;
So the declarations
Location s(x(75)), t(y(1)) ;

create s as a local subscript representing element 75 of the range x, while t
represents element 1 of y. A Location object defines a particular coordinate
within a process array, and a particular offset within the index block (or array
block) held on a process at that coordinate. Local subscripts can be used directly
to subscript arrays through the overloaded operator

T& Array2<T> :: operator()(Location&, Location&) ;

But use of this operator is only legal on a processor which holds the selected
element (a restriction which will be stated more formally in section 12). One
way to test whether an element is held locally is to use the third and final

control construct of ad++, the at construct. The at construct looks rather like
the on construct, but uses the AT and TA macros, parametrized by members of
Location class, as follows:

AT(s) {
AT(t) {
a(s, t) = 76 ;
} TA(t) ;
} TA(s) ;

The body of the construct executes only if the processor executing the code
holds a logical process with the coordinate defined by the subscript. In general
if s is a local subscript the idiom for the at construct is

AT(s) {
// ... some code

} TA(s) ;

Now we return to the first example in this section. The index object main-
tains some internal state defining the global index value associated with the
current iteration. The OVERALL macro is defined so that the loop body executes
just once for each value of the global index held by the processor executing the
code. The body of the nested overall constructs:

a(i, j) =i+ 3 ;

relies on a couple of clever tricks. The use of i and j on the left hand exploits the
fact that the Index class is derived from the Location class. While the index
is activated, its Location component represents the local subscript associated
with the current iteration. The use of i and j on the right hand side of the
assignment uses a defined conversion from Index to integer which returns the
global index associated with the current iteration. The equivalent code with
explicit casts is

a(i, j) = (int) i + (int) j ;

This is a good point at which to collect together some of the fragments
introduced so far, to make our first complete, useless, ad++ program

Procs2 p(2, 2) ;

oN(p) {
BlockRange x(100, p.dim(0)), y(10, p.dim(1)) ;

Array2<float> a(x, y) ;

Index i(x), j(y) ;

OVERALL(i) {
OVERALL(j) {
a(i, j) =1i+3;
} ALLOVER(j) ;
} ALLOVER(i) ;

} nNo(p) ;

The program defines a process array, declares an array distributed over the
process array, and initialises its elements. It is comparable to the HPF program

'HPF$ PROCESSORS P (4, 4)

'HPF$ TEMPLATE T (100, 10)
'HPF$ DISTRIBUTE T (BLOCK, BLOCK) ONTO P

REAL A (100, 10)
'HPF$ ALIGN A WITH T

FORALL (I =1 : 100, J =1 : 10)
A(I,) =1I+1J

There is one minor difference between the two programs and one major differ-
ence. The minor difference is that Fortran array indices start from 1 by default,
whereas Adlib global indices always start from 0. The major difference is that
the ad++ program specifies explicitly that the computation i + j occurs on
the process holding element a(i, j). In the HPF program the owner computes
heuristic adopted by most compilers would probably lead to I + J being com-
puted on the home process of A(I, J), but this is not required by the language
definition. HPF provides no means for the programmer to state explicitly where
a computation is performed—it is at the compiler’s discretion. ad++, on the
other hand, forces the to programmer specify, through the distributed control
constructs, which process is responsible for every computation.

Although there are restrictions on the patterns of data access in the body of
the owverall construct, arbitrary sequential control constructs are allowed there.
For example, the kernel of a Mandelbrot set computation is illustrated in figure

1.

6 Communication

In Adlib, communication is normally achieved through collective operations on
distributed arrays. One of the simplest is the shift operation, whose interface
is

template<class T>

Procs2 p(2, 2) ;

oN(p) {
BlockRange x(N, p.dim(0)), y(N, p.dim(1)) ;

Array2<float> colour(x, y) ;

Index i(x), j(y) ;
OVERALL(i) {
OVERALL(j) {
float cr = (4.0 * 1 - 2 *x N) / (N - 1) ;
float ci = (4.0 * j -2 *xN) / (N - 1) ;
float zr = cr, zi = ci ;

for (int i = 0 ; i < RESOLUTION &%
(zr * zr + zi * zi) < 4.0 ; i++) {
Zr = cr + zr ¥ zr - zi * zi + cr ;
zi

}

ci+ 2 % zr * zi ;

colour (i, j) =1 ;
} ALLOVER(j) ;
} ALLOVER(j) ;

} no(p) ;

Figure 1: Mandelbrot set kernel.

void shift(const Sectioni<T>& dst, const Sectionl<T>& src,
const int shift, const int dim, const Mode mode) ;

template<class T>
void shift(const Section2<T>& dst, const Section2<T>& src,
const int shift, const int dim, const Mode mode) ;

The parameters dst and src are arrays, which must have identical type, shape
and mapping (for now, we take this to mean that they share the same range
structures). Sectioni1<T>, Section2<T>, ...are base classes of Array1<T>,
Array2<T>, The operation shifts the values in src by shift places in
the dim dimension, and puts the result in dst. shift is a signed integer. dim
is in the range 0,1,..., R— 1, where R is the rank of the arrays. mode is one of
CYCL or EDGE, selecting either cyclic or “edge-off” shift.

With shift we can write some more meaningful programs. In figure 2 the
overall construct replaces each element of w (except those on the edges) with the
average of the four neighbouring values. This is the kernel of simplified PDE
solver. Figure 3 performs an iteration of Conway’s Life.

Adlib provides many communication operations more powerful than shift.
They will be introduced in later sections.

7 Subranges

The ranges introduce so far were template ranges. Adlib also has an idea of a
subrange. A subrange is a subrange of some other range (and, ultimately, of
some template range). It retains an alignment to its parent range. The location
of a subrange element remains the same as the corresponding element of the
parent range.

BlockRange x(N, p.dim(0)) ;
Range u = x.subrng(N - 2, 1) ;

The range u is a subrange of x. It has extent N — 2 and offset 1. Element 0 of
u is aligned with element 1 of x, element 1 with element 2, and so on. The last
element of u, element NV — 3, is aligned with the penultimate element, N — 2, of
X.

As an immediate application, the overall construct in figure 2 could be re-
placed by

Index k(x.subrng(N - 2, 1)) ;
Index 1(y.subrng(N - 2, 1)) ;

OVERALL(k) {

10

Procs2 p(2, 2) ;

oN(p) {
BlockRange x(N, p.dim(0)), y(N, p.dim(1)) ;

Array2<float> w(x, y) ;
// ... some code to initialise ‘w’

Array2<float> wnx(x, y), wpx(x, y), wny(x, y), wpy(x, y) ;

shift(wnx, w, 1, 0, EDGE) ;
shift(wpx, w, -1, 0, EDGE) ;
shift(wny, w, 1, 1, EDGE) ;
shift(wpy, w, -1, 1, EDGE) ;

Index i(x), j(y) ;
OVERALL(i) {

OVERALL(j) {

if(i '=0&& i '=N-1&% j '=0&& j !=N-1)
w(i, j) = 0.25 *
(wnx(i, j) + wpx(i, j) + wny(i, j) + wpy(i, j)) ;

} ALLOVER(j) ;

} ALLOVER(i) ;

} on(p) ;

Figure 2: PDE solver kernel.

11

Procs2 p(2, 2) ;

oN(p) {
BlockRange x(N, p.dim(0)), y(N, p.dim(1)) ;

Array2<int> c(x, y) ;

// ... some code to initialise ‘c’
Array2<int> cn_(x, y), cp_(x, y), c_n(x, y), c_p(x, y),

con(x, y), cnp(x, y), cpn(x, y), cpp(x, y) ;

, 1, 0, CYCL) ;
, -1, 0, CYCL) ;
shift(c_n, ¢, 1, 1, CYCL) ;
shift(c_p, ¢, -1, 1, CYCL) ;
shift(cnn, cn_, 1, 1, CYCL) ;
shift(cnp, cn_, -1, 1, CYCL) ;
shift(cpn, cp_, 1, 1, CYCL) ;
shift(cpp, cp_, -1, 1, CYCL) ;

shift(cn_,
shift(cp_,

1
1
1
1

Index i(x), j(y) ;
OVERALL(1i) {
OVERALL(j) {
switch (en_(i, j) + cp_(i, j) + c_n(i, j) + c_p(di, j) +
cnn(i, j) + cnp(di, j) + cpn(i, j) + cpp(i, j)) {
case 2 :
break ;
case 3 :
c(i, j)
break ;
default :
c(i, j)
break ;

1l
-

1l
o

}
} ALLOVER(j) ;
} ALLOVER(1i) ;

} no(p) ;

Figure 3: Conway’s Life iteration.

12

OVERALL(1) {
w(k, 1) = 0.25 *
(wnx(k, 1) + wpx(k, 1) + wny(k, 1) + wpy(k, 1)) ;
} ALLOVER(1) ;
} ALLOVER(k) ;

This works because a local subscript constructed from a subrange is exactly
equivalent to a subscript constructed from a parent range at an aligned point.
The advantage of the new version is that we have eliminated an expensive test
from the inner body of the loops.

If the original code had been something like

Index i(x), j(y) ;
OVERALL(i) {
OVERALL(j) {
if(i '=0 & i '=N-18& j '=0& j '=N-1)
w(i, j) =i+ 3j;
} ALLOVER(j) ;
} ALLOVER(i) ;

with a dependence on global index value, we could still perform the above
transformation by declaring k, 1 as above, then

OVERALL (k) {
OVERALL(1) {
w(k, 1) = x(k) + y(1) ;
} ALLOVER(1) ;
} ALLOVER(k) ;

This exploits the operator
int Range :: operator()(Location&) ;

which effectively allows a range to subscripted as if it were a one-dimensional
array holding its global index values.
It is possible to specify a stride in a subrange, as in

Range t = x.subrng(10, 20, 2) ;

Element 0 of range t is aligned with element 20 of range x, element 1 with
element 22, etc.

Arrays can be declared with subranges. This mechanism allows affine align-
ment between arrays, as provided in HPF 1.0.

13

8 Process groups

A process group is a set of logical processes, such as a process array. In general
a process group has two roles—a particular action can be performed within a
specified process group, or a particular data object can be distributed over a
specified process group.

All the examples so far used process groups in a peripheral way. One process
array was declared, immediately activated by an on construct, and deactivated
at the end of the program. This static approach to process configuration is
enough to write many useful programs, but Adlib provides more flexibility, if
that flexibility is needed.

A program can declare several different process arrays, possibly of different
rank. Data arrays declared in the earlier examples were always distributed
over the unique active process group. In general the array constructor takes a
process group as its last argument, specifying that the data is distributed over
that group. In this way a program can contain coexisting arrays distributed
over different groups. For example

Procs2 p(2, 2) ;
Procsi q(3) ;

BlockRange x(10, p.dim(0)), y(10, p.dim(1)) ;
Array2<float> a(x, y, p) ;

BlockRange z(100, q.dim(0)) ;
Arrayi<int> b(z, q) ;

oN(p) {
// ... some code processing ‘a’
} no(p) ;

ON(q) {
// ... some code processing ‘b’
} No(q) ;

Note that p and q can only activated in turn, not concurrently. We will see
section 11 how data can be transferred between data arrays distributed over
different process groups.

Adlib also has a more general idea of a process group, which is a “slice” of
a process array formed by restricting one or more of the process dimensions to
a single coordinate.

A process coordinate is defined implicitly by a local subscript. The operator
/ is overloaded to construct a new process group (class Group) from an existing
process group and a subscript.

14

14

,,,

15,

19

y 0 ... 4 5 ... 9 10,... 14 15,...19

Figure 4: Examples of process groups. The square boxes represent the 16 logical
processes in the process array p. The dashed lines embrace groups ¢, r and s.

Procs2 p(4, 4) ;
BlockRange x(20, p.dim(0)), y(20, p.dim(1)) ;
Location i(x(12)), j(y(7)) ;

Group q(p / i) ;
Group r(p / j) ;
Group s(q / j) ;

The groups q, r and s are illustrated in figure 4. The parent process array of
all these groups is p. Sometimes we refer to groups like q, r and s as restricted
process groups. A process group is either a process array or a restricted process
group.

Any process group has a set of process dimensions taken from its parent
array. The dimension set for p is p.dim(0) and p.dim(1); the set for q is just
p-dim(1); the set for s is empty.

The generalised process group provides more refined way to describe the
active process group inside the ad++ control constructs (see section 9), and to
describe the process groups over which general array sections are distributed
(see section 10).

15

9 The active process group

At any point of execution of a program, one group is singled out as the active
process group (APG). From the viewpoint of a particular processor, the active
process group is the set of processes sharing the current “thread of control”.

There is a natural contains relationship between certain process groups.
Group p contains group q if

1. p was the active process group at the point at which ¢ was declared, or
2. ¢ is a sub-array of p, constructed by the / operation.
3. p contains some process array r which in turn contains g.

For example

Procsi p(86) ;
oN(p) {
Procs2 r(2, 2) ;

BlockRange x(100, r.dim(1)) ;
Group q(r / x(50)) ;

// ...
} nNo(p) ;

Here, p contains r by rule 1 above, r contains q by rule 2, and p contains q by
rule 3. As a matter of convention we say that a group contains itself.

The three ad++ control constructs affect the active process group in the
following ways.

e If the active process group is currently p, and q is another process group,

inside

ON(q) {
/] ...
} No(p) ;

the ON(q) operation changes the active process group to q. The NO(p)
operation restores it to p.

e If the active process group is currently p and s is a subscript, then inside
AT(s) {

// ...
} TA(s) ;

16

the AT (s) operation changes the active process grouptop / s. The TA(s)
operation restores it to p.

e If the active process group is p and i is an index, inside

OVERALL(i) {
// ...
} ALLOVER(i) ;

the OVERALL(i) operation changes the active process group to p / 1i,
assuming the coercion from index to subscript explained in section 5. The
ALLOVER(1i) operation restores it to p.

Each construct has a precondition

e An on construct can appear only if its process group is contained in the
active process group.

e An at construct can appear only if its subscript is derived from a range
distributed over a dimension of the active process group.

e A overall construct can appear only if the range of its index is distributed
over a dimension of the active process group.

One effect of these rules is to outlaw the appearance of nested at or overall
constructs if their subscripts or index ranges are distributed in the same di-
mensions. The groups activated by at and overall are strictly smaller than the
surrounding APG, reduced in rank by one. (The on construct, on the other
hand, can leave the APG unchanged, if its argument happens to be identical to
the current APG.)

10 Array sections

ad++ supports array sections analogous to Fortran array sections through the
member function sect.
Suppose we have the ad++ declarations

Procs2 p(2, 2) ;

BlockRange x(10, p.dim(0)) ;
BlockRange y(10, p.dim(1)) ;

Array2<int> a(x, y, p) ;

which are comparable to the HPF declarations

17

'HPF$ PROCESSORS P (2, 2)
'HPF$ TEMPLATE T (10, 10)
'HPF$ DISTRIBUTE T(BLOCK, BLOCK) ONTO P

INTEGER A(10, 10)
'HPF$ ALIGN A (:, :) WITH T

In ad4++ a section of a can be introduced as follows

Range u = x.subrng(8, 1) ;
Range v = y.subrng(8, 1) ;

Section2<int> b = a.sect(u, v) ;

u and v are subranges similar to the ones introduced in section 7. The array
b represents a section of a containing only the non-edge points. It provides
an alias for this section of a’s data. This alias can be passed to ad++-defined
procedures (including other section constructors) and user-defined procedures
in just the same way as a full data array.

The section b is comparable with the Fortran section

A(2:09,2:09)

Fortran, unlike ad++, does not allow this section to be named, ezcept by passing
it to a procedure and referencing it as a dummy argument.

A local subscript can be passed to a section-constructor, in place of a range.
With the earlier declarations we could also define

Location i(y(5)) ;
Sectioni<int> ¢ = a.sect(x, i) ;

which makes ¢ analogous to the Fortran section
A (., 6)
Note:

e Any range or subscript passed to an array constructor must be derived
from the range used to construct the parent array argument.

e Like any other data array in ad++, a section is distributed over a par-
ticular process group. The section b is distributed over p. The section
c is distributed over p / y(5). In general the section is distributed over
the same group as the parent array, restricted by any local subscript ar-
guments.

Incidentally, it is not only array sections that can be distributed over restricted
process groups. With the above declarations, the ad++ code

18

Arrayi<int> d(x, p / i) ;
is comparable to the HPF 1.0 code

INTEGER D (10)
'HPF$ ALIGN D (:) WITH T (:, 6)

The DAD base class provides the inquiry function
Group DAD :: grp() ;

which returns the process group over which an array is distributed.

11 remap

In section 6 we introduced one of the simplest communication operations in
Adlib—the shift. A much more powerful cousin of shift is remap.
The deceptively simple interface of remap is

template<class T>
void remap(const Sectioni<T>& dst, const Sectioni<T>& src) ;

template<class T>
void remap(const Section2<T>& dst, const Section2<T>& src) ;

The two arguments are arrays of the same type and shape. The operation just
copies src to dst. The mapping of the two arrays is unrestricted. They can be
distributed differently over the same process group, or they can be distributed
over different process groups. The only constraint on the arguments is that
they are both accessible. An array is accessible if it is distributed over a process
group contained in the active process group. Nearly all collective operations in
Adlib require their array arguments to be accessible’.

Used in conjunction with array sections, remap can implement many patterns
of communication. For example the shift in

BlockRange x(N, p.dim(0)) ;
Arrayi<float> a(x), b(x) ;

shift(a, b, 1, 0, EDGE) ;

could be coded (more clumsily) as

LA significant exception is the section constructor introduced in the last section, which
only requires that the constructed array is accessible. The whole of the parent array need not
by accessible.

19

Range u = x.subrng(N - 1, 1), v = x.subrng(N - 1, 0, x) ;
remap(a.sect(u), b.sect(v)) ;

Here we used the section constructor inline to create anonymous sections. The
code is comparable to the Fortran

REAL A& (N), B (N)

A(2:M=B((:N-1)

12 Replicated data

Consider the array declarations in

Procs2 p(2, 2) ;

oN(p) {
BlockRange x(10, p.dim(0)) ;
BlockRange y(10, p.dim(1)) ;

Array2<int> a(x, y) ;
Arrayi<int> b(x) ;
Array0<int> c ;

// ...
} no(p) ;

Arrays like a, with ranges distributed over all dimensions of their process group,
have been illustrated many times in earlier examples. Array b, on the other
hand, is distributed over the active process group p, but has no range distributed
over p.dim(1). Array c has no range distributed over any dimension of p.

In general an array need not have ranges distributed over all dimensions of
its process group (but each distributed range of an array must be distributed
over a distinct dimension of that group).

Array b is replicated over dimension p.dim(1). Similarly c is replicated over
both dimensions of the process array.

Any simple C++ variable is replicated over the process group active at the
time at its declaration. The array ¢ only differs from a such a variable by being
wrapped up as an array. This mean that it can be passed to operations such as
remap.

The fragment

remap(c, a.sect(x(5), y(5))) ;

is a broadcast, copying the (5, 5) element of a into the single replicated element
of c. This value can then be referenced simply as c(). Notice that both argu-
ments of remap must be rank-0 arrays here, so the second argument had to be

20

a section. We could not simply write a(x(5), y(5)), because that expression
evaluates to a simple int2, whereas remap requires an array argument.

We have to follow some rule in updating replicated data, to ensure that
copies remain consistent. An operation like

Index i(x), j(y) ;
OVERALL(i) {
OVERALL(j) {
a(i, j) = b(i) ;
} ALLOVER(j) ;
} ALLOVER(i) ;

ought to be allowed, whereas

OVERALL(i) {
OVERALL(j) {
b(i) = a(i, j) ;
} ALLOVER(j) ;
} ALLOVER(i) ;

should be forbidden, because it would (presumably) create inconsistent values
for the elements of b, which are supposed to be replicated across different pro-
Cessors.

The rule is simple enough. Suppose a rank-R array a is distributed over
process group p. If s1,..., sg are suitable local subscripts, then, as a matter of
definition, the array element a(sy, ..., sgr), is replicated over p/s1/.../sgp. Now
the required rule is

An array element can only be updated when the active process group
is identical to the group over which the element is replicated.

We can also generalize and make more precise a rule about general access to
array elements which was stated informally in section 5. The new formulation
is:

The value of an array element can only be accessed if it is replicated
over a group containing the active process group.

With the understanding that simple C++ variables are replicated over the group
active at their point of declaration, we propose that they satisfy the same access
rules.

13 Other distribution formats

So far we have only seen one distribution format for template ranges—simple
block distribution. Adlib currently supports several other formats

2 And this expression is undefined except on the processor which holds the element.

21

collapsed

simple cyclic
e block cyclic

e step
A collapsed range is declared with the syntax
Range x(100) ;

The range x is not distributed across any process array. It is mapped into the
memory of a single logical process. For example

Range x(100) ;
Arrayi<float> a(x) ;

Procsi p(4) ;
BlockRange y (100, p.dim(0)) ;
Arrayi<float> b(y, p) ;

// ... initialize ‘b’

remap(a, b) ;

The array a retains the slightly awkward syntax a(x(n)) for accessing element
n, but is otherwise essentially a sequential array: a copy of all elements are held
on all processes of the active process group>. The remap operation implements
a “concatenate” operation which copies the distributed array b to the sequential
array a. In general an array can have a free mixture of distributed ranges and
collapsed ranges.

A range is declared with simple cyclic distribution by

CyclicRange y(100, p.dim(d)) ;

Element i of the range is mapped to a process with coordinate ¢ mod P;, where
P, is the extent of p.dim(d).

[HPF-style block-cyclic distribution is also supported, but the ad++ syntax
for the range constructor is under revision.]

Step distribution is specified by

StepRange w(100, p.dim(d)) ;

This format is similar to simple block distribution except that the first 100 mod
P, processes are assigned b+ 1 range elements and the remaining processes are
assigned b elements, for suitably chosen block size b.

All of the template ranges support subranges as described in section 7.

3A where construct parametrised by x would be perfectly legal, but an ordinary for loop
is probably more conveninent for processing a. An at construct parametrised by a subscript
in x is legal, but fairly redundant, as it has no effect on the active process group.

22

14 Other communication operations

There are three main families of communication operations in Adlib
e the remap family.
e the gather-scatter family, and
e the reduction family.

All the communication operations described here are collective operations. They
must be invoked consistently by all members of the active process group. A pow-
erful feature of Adlib, designed to support “nested parallelism”, is that collective
operations such as communication operations and array declarations (and even
process array declarations), can appear at any point of the program. Tt is not
required that all physical processors engage in the operations*. Any synchroni-
sation implied by the collective operation affects just the processors cooperating
in a particular active process group, leaving other processors undisturbed. So
it is legal to call a shift operation, say, inside an overall construct, as in

Array2<int> a(x, y), b(x, y) ;

Index j(y) ;
OVERALL(j) {

shift(b.sect(x, j), a.sect(x, j), j, 0, CYCL) ;
} ALLOVER(j) ;

which implements a skewed shift of a. The sect functions create rank-1 arrays
representing individual columns of a and b®.

The remap family includes remap itself, shift and a few similar operations.

The gather-scatter family includes various operations which allow more com-
plex non-linear subscripting patterns in access to distribute arrays.

The general gather operations have interfaces

template<class T>
void gather(const Sectioni<T>& b, const Sectioni<T>& a,
const Sectioni<int>& s_1) ;

template<class T>
void gather(const Section2<T>& b, const Sectioni<T>& a,
const Section2<int>& s_1) ;

41t is generally required that all array arguments of the operation are accessible, as ex-
plained in section 11.
5the final use of j in the shift operation is as an integer global index.

23

template<class T>

void gather(const Sectioni<T>& b, const Section2<T>& a,
const Sectioni<int>& s_1,
const Sectioni<int>& s_2) ;

template<class T>

void gather(const Section2<T>& b, const Section2<T>& a,
const Section2<int>& s_1,
const Section2<int>& s_2) ;

Here b is the gathered data and a is the scattered data. These are followed by
subscript arrays, which are integer arrays with the same shape and mapping as
the gathered data. The number of subscripts should be equal to the rank of the
scattered data, and their values should lie in the ranges expected by subscripts
of that array. Data is copied from a to b with the specified subscripting pattern.
A completely analogous primitive scatter copies data from b to a. Adlib also
provides a combining scatter which is parametrised by some combining function.

These operations are unnecesarily general if it is only required to implement
the patterns of access in Fortran 90 array syntax (but they are needed for
parallelising FORALL, for example). Vector subscripts can be handled by the
simpler primitives

template<class T>
void vecGather(const Sectionl<T>& b, const Sectionl<T>& a,
const Sectionl<int>* s_1) ;

template<class T>

void vecGather(const Section2<T>& b, const Section2<T>& a,
const Sectioni<int>* s_1,
const Sectionl<int>* s_2) ;

where now a and b have the same rank, and the subscripts are rank-1 arrays,

whose individual ranges are the same as the corresponding to range of b. If any

subscript argument is null it is assumed that the gathered and scattered data

have the same extent in the associated dimension, and the operation behaves

like an array assignment with respect to that dimension. vecScatter is similar.
The simplest reduction primitive has the inteface

template<class T>
T sum(const Sectioni<T>& src) ;

template<class T>

24

T sum(const Section2<T>& src) ;

This adds all elements of src, broadcasting the result over the active process
group. Variants include all reductions (including searches and scalar products)
from the Fortran 90 transformational intrinsics.

